Skip to main content

Quantum \(\mathfrak{gl}_n,\) q-Schur Algebras and Their Infinite/Infinitesimal Counterparts

  • Chapter
  • First Online:
Representation Theory of Algebraic Groups and Quantum Groups

Part of the book series: Progress in Mathematics ((PM,volume 284))

  • 1753 Accesses

Abstract

We present a survey of recent developments of the Beilinson–Lusztig–MacPherson approach in the study of quantum \({\mathfrak{g}\mathfrak{l}}_{n}\), infinitesimal quantum \({\mathfrak{g}\mathfrak{l}}_{n}\), quantum \({\mathfrak{g}\mathfrak{l}}_{\infty }\) and their associated q-Schur algebras, little q-Schur algebras and infinite q-Schur algebras. We also use the relationship between quantum \({\mathfrak{g}\mathfrak{l}}_{\infty }\) and infinite q-Schur algebras to discuss their representations.

Mathematics Subject Classifications (2000): 17B20, 17B35, 20G15

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A.A. Beilinson, G. Lusztig and R. MacPherson, A geometric setting for the quantum deformation of GL n, Duke Math. J. 61 (1990), 655–677

    Article  MathSciNet  MATH  Google Scholar 

  2. A.G. Cox, On some applications of infinitesimal methods to quantum groups and related algebras, PhD thesis, University of London, 1997

    Google Scholar 

  3. C. De Concini, and V.G. Kac, Representations of quantum groups at roots of 1, in Operator algebras, Unitary Representations, Enveloping Algebras and Invariant Theory, A. Connes, M. Dulfo, A. Joseph and R. Rentshler (eds) (1990), 471–506

    Google Scholar 

  4. S. Doty and A. Giaquinto, Presenting Schur algebras, International Mathematics Research Notices IMRN, 36 (2002), 1907–1944

    Article  MathSciNet  Google Scholar 

  5. S.R. Doty, D.K. Nakano and K.M. Peters, On Infinitesimal Schur algebras, Proc. London Math. Soc. 72 (1996), 588–612

    Article  MathSciNet  MATH  Google Scholar 

  6. J. Du,A note on the quantized Weyl reciprocity at roots of unity Alg. Colloq. 2 (1995), 363–372

    MATH  Google Scholar 

  7. J. Du and Q. Fu,Quantum \({\mathfrak{g}\mathfrak{l}}_{\infty }\) , infinite q-Schur algebras and their representations, preprint, ArXiv:0708.2525

    Google Scholar 

  8. J. Du and B. Parshall,Linear quivers and the geometric setting for quantumGLn, Indag. Math. N. S.13(2003), 459–481

    Article  MathSciNet  Google Scholar 

  9. J. Du and B. Parshall, Monomial bases for q-Schur algebras, Trans. Amer. Math. Soc. 355 (2003), 1593–1620

    Article  MathSciNet  MATH  Google Scholar 

  10. J. Du, B. Parshall and L. Scott, Quantum Weyl reciprocity and tilting modules, Comm. Math. Phys. 195 (1998), 321–352

    Article  MathSciNet  MATH  Google Scholar 

  11. J. Du, Q. Fu and J.-P. Wang, Infinitesimal quantum gl n and little q-Schur algebras, J. Algebra 287 (2005), 199–233

    Article  MathSciNet  MATH  Google Scholar 

  12. Q. Fu, A comparison between little and infinitesimal q-Schur algebras, Comm. Algebra 33 (2005), 2663–2682

    Article  MathSciNet  MATH  Google Scholar 

  13. Q. Fu, Little q-Schur algebras at even roots of unity, J. Algebra 311(2007), 202–215

    Article  MathSciNet  MATH  Google Scholar 

  14. V. Ginzburg and E. Vasserot, Langlands reciprocity for affine quantum groups of type A n, Internat. Math. Res. Notices 1993, 67–85

    Google Scholar 

  15. G. James and A. Kerber, The Representation Theory of the Symmetric Group, Encyclopedia of Math. and its Appl. no. 6, Addison-Wesley, London, 1981

    Google Scholar 

  16. M. Jimbo, A q-analogue of U(gl(N + 1)), Hecke algebras, and the Yang-Baxter equation, Lett. Math. Phy. 11 (1986), 247–252

    Article  MathSciNet  MATH  Google Scholar 

  17. D. Kazhdan and G. Lusztig, Representations of Coxeter groups and Hecke algebras, Invent. Math. 53 (1979), 165–184

    Article  MathSciNet  MATH  Google Scholar 

  18. G. Lusztig, Modular representations and quantum groups, Comtemp. Math. 82 (1989), 59–77

    MathSciNet  Google Scholar 

  19. G. Lusztig, Canonical bases arising from quantized enveloping algebras, J. Amer. Math. Soc. 3 (1990), 447–498

    Article  MathSciNet  MATH  Google Scholar 

  20. G. Lusztig, Finite dimensional Hopf algebras arising from quantized universal enveloping algebras, J. Amer. Math. Soc. 3 (1990), 257–296

    MathSciNet  MATH  Google Scholar 

  21. G. Lusztig, Introduction to quantum groups, Progress in Math. 110, Birkh\(\ddot{\text{ a}}\)user, Boston, 1993

    Google Scholar 

  22. G. Lusztig, Aperiodicity in quantum affinegl n Asian J. Math. 3 (1999), 147–177

    MathSciNet  MATH  Google Scholar 

  23. G. Lusztig, Transfer maps for quantum affineSl n In Representations and quantizations (Shanghai, 1998), China High. Educ. Press, Beijing (2000), 341–356

    Google Scholar 

  24. C.M. Ringel, Hall algebras and quantum groups, Invent. Math. 101 (1990), 583–592

    Article  MathSciNet  MATH  Google Scholar 

  25. M. Takeuchi, Some topics on GL q (n), J. Algebra 147 (1992), 379–410

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Du .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Du, J., Fu, Q. (2010). Quantum \(\mathfrak{gl}_n,\) q-Schur Algebras and Their Infinite/Infinitesimal Counterparts. In: Gyoja, A., Nakajima, H., Shinoda, Ki., Shoji, T., Tanisaki, T. (eds) Representation Theory of Algebraic Groups and Quantum Groups. Progress in Mathematics, vol 284. Birkhäuser Boston. https://doi.org/10.1007/978-0-8176-4697-4_5

Download citation

Publish with us

Policies and ethics