Skip to main content

Riemann Surfaces and the L 2 \(\bar{\partial}\)-Method for Scalar-Valued Forms

  • Chapter
An Introduction to Riemann Surfaces

Part of the book series: Cornerstones ((COR))

  • 3611 Accesses

Abstract

In this chapter, we consider some elementary properties of Riemann surfaces, as well as a fundamental technique called the L 2 \(\bar{\partial}\)-method, Radó’s theorem on second countability of Riemann surfaces, and analogues of the Mittag-Leffler theorem and the Runge approximation theorem for open Riemann surfaces. Viewing holomorphic functions as solutions of the homogeneous Cauchy–Riemann equation \(\partial f/\partial\bar{z}=0\) in ℂ allows one to very efficiently obtain their basic properties (see Chap. 1). The intrinsic form of the homogeneous Cauchy–Riemann equation on a Riemann surface is given by \(\bar{\partial}f=0\) (see Sect. 2.5). In order to obtain holomorphic functions (and holomorphic 1-forms) on a Riemann surface (even on an open subset of ℂ), it is useful to consider the inhomogeneous Cauchy–Riemann equation \(\bar{\partial}\alpha=\beta\). One well-known approach to solving this differential equation (as well as differential equations in many other contexts) is to consider weak solutions in L 2. This is the approach taken in this book. In order to do so, we must develop suitable versions of an L 2 space of differential forms (see Sect. 2.6) and an (intrinsic) distributional \(\bar{\partial}\) operator (see Sect. 2.7). The relatively simple approaches to the above appearing in this book are, in part, special to Riemann surfaces; but they do contain important elements of the higher-dimensional versions (see, for example, L. Hörmander, An Introduction to Complex Analysis in Several Variables, North-Holland, 1990 or J.-P. Demailly, Complex Analytic and Differential Geometry, online book, for the higher-dimensional versions).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. H. Behnke, K. Stein, Entwicklung analytischer Funktionen auf Riemannschen Flächen, Math. Ann. 120 (1949), 430–461.

    Article  MathSciNet  MATH  Google Scholar 

  2. E. Bishop, Subalgebras of functions on a Riemann surface, Pac. J. Math. 8 (1958), 29–50.

    Article  MATH  Google Scholar 

  3. J.-P. Demailly, Cohomology of q-convex spaces in top degrees, Math. Z. 204 (1990), 283–295.

    Article  MathSciNet  MATH  Google Scholar 

  4. J.-P. Demailly, Complex Analytic and Differential Geometry, online book.

    Google Scholar 

  5. H. Florack, Reguläre und meromorphe Funktionen auf nicht geschlossenen Riemannschen Flächen, Schr. Math. Inst. Univ. Münster, no. 1, 1948.

    Google Scholar 

  6. D. Gardner, The Mergelyan–Bishop theorem, preprint.

    Google Scholar 

  7. R. E. Greene, H. Wu, Embedding of open Riemannian manifolds by harmonic functions, Ann. Inst. Fourier (Grenoble) 25 (1975), 215–235.

    Article  MathSciNet  MATH  Google Scholar 

  8. F. Hartogs, A. Rosenthal, Über Folgen analytischer Funktionen, Math. Ann. 104 (1931), no. 1, 606–610.

    Article  MathSciNet  Google Scholar 

  9. L. Hörmander, An Introduction to Complex Analysis in Several Variables, third edition, North-Holland, Amsterdam, 1990.

    MATH  Google Scholar 

  10. J. H. Hubbard, Teichmüller Theory and Applications to Geometry, Topology, and Dynamics, Vol. 1: Teichmüller Theory, Matrix Editions, Ithaca, 2006.

    Google Scholar 

  11. M. Jarnicki, P. Pflug, Extension of Holomorphic Functions, de Gruyter Expositions in Mathematics, 34, Walter de Gruyter, Berlin, 2000.

    Book  MATH  Google Scholar 

  12. L. K. Kodama, Boundary measures of analytic differentials and uniform approximation on a Riemann surface, Pac. J. Math. 15 (1965), 1261–1277.

    Article  MathSciNet  MATH  Google Scholar 

  13. B. Malgrange, Existence et approximation des solutions des équations aux dérivées partielles et des équations de convolution, Ann. Inst. Fourier 6 (1956), 271–355.

    Article  MathSciNet  Google Scholar 

  14. S. N. Mergelyan, Uniform approximations of functions of a complex variable (in Russian), Usp. Mat. Nauk 7 (1952), no. 2 (48), 31–122.

    MathSciNet  Google Scholar 

  15. T. Napier, M. Ramachandran, Elementary construction of exhausting subsolutions of elliptic operators, Enseign. Math. 50 (2004), 367–390.

    MathSciNet  MATH  Google Scholar 

  16. R. Narasimhan, Complex Analysis in One Variable, second ed., Birkhäuser, Boston, 2001.

    Book  MATH  Google Scholar 

  17. R. Remmert, From Riemann surfaces to complex spaces, in Matériaux pour l’histoire des mathématiques au XX e siécle (Nice, 1996), 203–241, Séminaires et congrès, 3, Société Mathématique de France, Paris, 1998.

    Google Scholar 

  18. W. Rudin, Real and Complex Analysis, third ed., McGraw-Hill, New York, 1987.

    MATH  Google Scholar 

  19. C. Runge, Zur Theorie der eindeutigen analytischen Funktionen, Acta Math. 6 (1885), no. 1, 229–244.

    Article  MathSciNet  MATH  Google Scholar 

  20. G. Springer, Introduction to Riemann Surfaces, second ed., Chelsea, New York, 1981.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Terrence Napier .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Napier, T., Ramachandran, M. (2011). Riemann Surfaces and the L 2 \(\bar{\partial}\)-Method for Scalar-Valued Forms. In: An Introduction to Riemann Surfaces. Cornerstones. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-0-8176-4693-6_2

Download citation

Publish with us

Policies and ethics