Skip to main content

A Stochastic Model of Glioblastoma Invasion

  • Chapter

Summary

Glioblastoma is the most malignant form of brain cancer. It is extremely invasive; the mechanisms that govern invasion are not well understood. To better understand the process of invasion, we conducted an in vitro experiment in which a 3D tumor spheroid is implanted into a collagen gel. The paths of individual invasive cells were tracked. These cells were modeled as radially biased, persistent random walkers. The radial velocity bias was found to be 19.6 μm/hr.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. CBTRUS: Primary brain tumors in the United States statistical report 1995–1999. Technical report (2002–2003).

    Google Scholar 

  2. Crocker, J.C., Grier, D.G.: Methods of digital viedo microscopy for colloidal studies. J. Coll. and Interf. Sci., 179, 298–310 (1996).

    Article  Google Scholar 

  3. Deisboeck, T.S., Berens, M.E., Kansal, A.R., Torquato, S., Stemmer-Rachamimov, A.O., Chiocca, E.A.: Pattern of self-organization in tumour systems: complex growth dynamics in a novel brain tumor spheroid model. Cell Proliferation, 34, 115–134 (2001).

    Article  Google Scholar 

  4. Demuth, T., Berens, M.E.: Molecular mechanisms of glioma cell migration and invasion. J. Neuro-Oncol., 70, 217–228 (2004).

    Article  Google Scholar 

  5. Demuth, T., Hopf, N.J., Kempski, O., Sauner, D., Herr, M., Giese, A., Perneczky, A.: Migratory activity of human glioma cell lines in vitro assessed by continuous single cell observation. Clin. and Exper. Metast., 18, 589–597 (2001).

    Article  Google Scholar 

  6. Dunn, G.A., Brown, A.F.: A unified approach to analysing cell motility. J. Cell Sci. Suppl., 8, 81–102 (1987).

    Google Scholar 

  7. Hegedus, B., Zach, J., Czirok, A., Lpvey, J., Vicsek, T.: Irradiation and taxol treatment result in non-monotonous, dose-dependent changes in the motility of glioblastoma cells. J. of Neuro-Oncol., 67, 147–57 (2004).

    Article  Google Scholar 

  8. Ionides, E.L., Fang, K.S., Oster, G.F.: Stochastic models for cell motion and taxis. J. Math. Biol., 48, 23–37 (2004).

    Article  MATH  MathSciNet  Google Scholar 

  9. Kanda, T., Sullivan, K.F., Wahl, G.M.: Histone-gfp fusion protein enables sensitive analysis of chromosome dynamics in living mammalian cells. Curr. Biol., 8, 377–385 (1998).

    Article  Google Scholar 

  10. Kelm, J., Timmins, N., Brown, C., Fussenegger, M., Nielson, L.: Method for generation of homogeneous multicellular tumor spheroids applicable to a wide variety of cell types. Biotechn. and Bioeng., 83, 173–80 (2003).

    Article  Google Scholar 

  11. Stokes, C.L., Lauffenburger, D.A., Williams, S.K.: Migration of individual microvessel endothelial cells: stochastic model and parameter measurement. J. Cell Sci., 99, 419–430 (1991).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 springer

About this chapter

Cite this chapter

Stein, A.M., Vader, D.A., Sander, L.M., Weitz, D.A. (2007). A Stochastic Model of Glioblastoma Invasion. In: Deutsch, A., Brusch, L., Byrne, H., Vries, G.d., Herzel, H. (eds) Mathematical Modeling of Biological Systems, Volume I. Modeling and Simulation in Science, Engineering and Technology. Birkhäuser Boston. https://doi.org/10.1007/978-0-8176-4558-8_19

Download citation

Publish with us

Policies and ethics