Skip to main content

Aspects of Stochastic Global Analysis

  • Chapter
From Geometry to Quantum Mechanics

Part of the book series: Progress in Mathematics ((PM,volume 252))

  • 1451 Accesses

Abstract

This is a survey of some topics where global and stochastic analysis play a role. An introduction to analysis on Banach spaces with Gaussian measure leads to an analysis of the geometry of stochastic differential equations, stochastic flows, and their associated connections, with reference to some related topological vanishing theorems. Following that, there is a description of the construction of Sobolev calculi over path and loop spaces with diffusion measures, and also of a possible L 2 de Rham and Hodge-Kodaira theory on path spaces. Diffeomorphism groups and diffusion measures on their path spaces are central to much of the discussion. Knowledge of stochastic analysis is not assumed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. F. Atiyah and R. Bott. The Yang-Mills equations over Riemann surfaces. Philos. Trans. Roy. Soc. London Ser. A, 308(1505):523–615, 1983.

    MATH  MathSciNet  Google Scholar 

  2. S. Aida and B. K. Driver. Equivalence of heat kernel measure and pinned Wiener measure on loop groups. C.R. Acad. Sci. Paris Sér. I Math., 331(9):709–712, 2000.

    MATH  MathSciNet  Google Scholar 

  3. S. Albeverio, A. Daletskii, and Y. Kondratiev. De Rham complex over product manifolds: Dirichlet forms and stochastic dynamics. In Mathematical physics and stochastic analysis (Lisbon, 1998), pages 37–53. World Sci. Publishing, River Edge, NJ, 2000.

    Google Scholar 

  4. S. Aida. Stochastic analysis on loop spaces [translation of Sūgaku 50 (1998), no. 3, 265–281; MR1652019 (99i:58155)]. Sugaku Expositions, 13(2):197–214, 2000.

    MathSciNet  Google Scholar 

  5. H. Airault, P. Malliavin, and A. Thalmaier. Canonical Brownian motion on the space of univalent functions and resolution of Beltrami equations by a continuity method along stochastic flows. J. Math. Pures Appl. (9), 83(8):955–1018, 2004.

    MATH  MathSciNet  Google Scholar 

  6. L. Accardi, A. Mohari, and C. V. Volterra. On the structure of classical and quantum flows. J. Funct. Anal., 135(2):421–455, 1996.

    Article  MATH  MathSciNet  Google Scholar 

  7. A. Atsuji. Brownian motion and harmonic maps: value distribution theory for regular maps. Sūgaku, 54(3):235–248, 2002.

    MathSciNet  Google Scholar 

  8. P. Baxendale. Gaussian measures on function spaces. Amer. J. Math., 98(4):891–952, 1976.

    Article  MATH  MathSciNet  Google Scholar 

  9. P. Baxendale. Brownian motions in the diffeomorphism groups I. Compositio Math., 53:19–50, 1984.

    MATH  MathSciNet  Google Scholar 

  10. J.-M. Bismut. The Atiyah-Singer theorems: a probabilistic approach: I and II. J. Funct. Anal., 57:56–99&329–348, 1984.

    Article  MATH  MathSciNet  Google Scholar 

  11. E. Bueler and I. Prokhorenkov. Hodge theory and cohomology with compact supports. Soochow J. Math., 28(1):33–55, 2002.

    MATH  MathSciNet  Google Scholar 

  12. E. L. Bueler. The heat kernel weighted Hodge Laplacian on noncompact manifolds. Trans. Amer. Math. Soc., 351(2):683–713, 1999.

    Article  MATH  MathSciNet  Google Scholar 

  13. A. P. Carverhill, M. J. Chappell, and K. D. Elworthy. Characteristic exponents for stochastic flows. In Stochastic processes-mathematics and physics (Bielefeld, 1984), volume 1158 of Lecture Notes inMath., pages 52–80. Springer, Berlin, 1986.

    Chapter  Google Scholar 

  14. A. B. Cruzeiro and S. Fang. Une inégalité l 2 pour des intégrales stochastiques anticipatives sur une variété riemannienne. C. R. Acad. Sci. Paris, Série I, 321:1245–1250, 1995.

    MATH  MathSciNet  Google Scholar 

  15. A. Daletskii. Poisson configuration spaces, von Neumann algebras, and harmonic forms. J. Nonlinear Math. Phys., 11(suppl.):179–184, 2004.

    Article  MathSciNet  Google Scholar 

  16. R. M. Dudley, Jacob Feldman, and L. Le Cam. On seminorms and probabilities, and abstract Wiener spaces. Ann. of Math. (2), 93:390–408, 1971.

    Article  MathSciNet  Google Scholar 

  17. Giuseppe Da Prato and Arnaud Debussche. Ergodicity for the 3D stochastic Navier-Stokes equations. J. Math. Pures Appl. (9), 82(8):877–947, 2003.

    MathSciNet  Google Scholar 

  18. B. K. Driver. A Cameron—Martin type quasi-invariance theorem for Brownian motion on a compact Riemannian manifold. J. Functional Analysis, 100:272–377, 1992.

    Article  MathSciNet  Google Scholar 

  19. Bruce K. Driver. Integration by parts and quasi-invariance for heat kernel measures on loop groups. J. Funct. Anal., 149(2):470–547, 1997.

    Article  MATH  MathSciNet  Google Scholar 

  20. Andreas Eberle. Absence of spectral gaps on a class of loop spaces. J. Math. Pures Appl. (9), 81(10):915–955, 2002.

    MATH  MathSciNet  Google Scholar 

  21. K. D. Elworthy and Xue-Mei Li. An L 2 theory for 2-forms on path spaces I & II. In preparation.

    Google Scholar 

  22. K. D. Elworthy and Xue-Mei Li. Geometric stochastic analysis on path spaces. In Proceedings of the International Congress of Mathematicians, Madrid, 2006. Vol III, pages 575–594. European Mathematical Society, Zurich, 2006.

    Google Scholar 

  23. K. D. Elworthy and Xue-Mei Li. Special Itô maps and an L 2 Hodge theory for one forms on path spaces. In Stochastic processes, physics and geometry: new interplays, I (Leipzig, 1999), pages 145–162. Amer. Math. Soc., 2000.

    Google Scholar 

  24. K. D. Elworthy and Xue-Mei Li. Some families of q-vector fields on path spaces. Infin. Dimens. Anal. Quantum Probab. Relat. Top., 6(suppl.):1–27, 2003.

    Article  MATH  MathSciNet  Google Scholar 

  25. K. D. Elworthy and Xue-Mei Li. Ito maps and analysis on path spaces. Warwick Preprint, also www.xuemei.org, 2005.

    Google Scholar 

  26. H. Eliasson. Geometry of manifolds of maps. J. Diff. Geom., 1:169–194, 1967.

    MATH  MathSciNet  Google Scholar 

  27. K. D. Elworthy, Yves Le Jan, and Xue-Mei Li. A geometric approach to filtering of diffusions. In preparation.

    Google Scholar 

  28. K. D. Elworthy, Yves Le Jan, and Xue-Mei Li. Equivariant diffusions on principal bundles. In Stochastic analysis and related topics in Kyoto, volume 41 of Adv. Stud. Pure Math., pages 31–47. Math. Soc. Japan, Tokyo, 2004.

    Google Scholar 

  29. K. D. Elworthy, Y. LeJan, and X.-M. Li. On the geometry of diffusion operators and stochastic flows, Lecture Notes in Mathematics 1720. Springer, 1999.

    Google Scholar 

  30. K. D. Elworthy, X.-M. Li, and Steven Rosenberg. Curvature and topology: spectral positivity. In Methods and applications of global analysis, Novoe Global. Anal., pages 45–60, 156. Voronezh. Univ. Press, Voronezh, 1993.

    Google Scholar 

  31. K. D. Elworthy, X.-M. Li, and S. Rosenberg. Bounded and L 2 harmonic forms on universal covers. Geom. Funct. Anal., 8(2):283–303, 1998.

    Article  MATH  MathSciNet  Google Scholar 

  32. K. D. Elworthy. The space of stochastic differential equations. In Stochastic analysis and applications—A symposium in honour of Kiyosi Itô. Proceedings of Abel Symposium, 2005. Springer-Verlag. To appear.

    Google Scholar 

  33. K. D. Elworthy. Stochastic Differential Equations on Manifolds, London Mathematical Society Lecture Notes Series 70. Cambridge University Press, 1982.

    Google Scholar 

  34. K. D. Elworthy. Stochastic flows on Riemannian manifolds. In Diff usion processes and related problems in analysis, Vol. II (Charlotte, NC, 1990), volume 27 of Progr. Probab., pages 37–72. Birkhäuser Boston, Boston, MA, 1992.

    Google Scholar 

  35. K. D. Elworthy. Geometric aspects of stochastic analysis. In Development of mathematics 1950–2000, pages 437–484. Birkhäuser, Basel, 2000.

    Google Scholar 

  36. D. G. Ebin and J. Marsden. Groups of diffeomorphisms and the motion of an incompressible fluid. Ann. Math., pages 102–163, 1970.

    Google Scholar 

  37. K. D. Elworthy and Steven Rosenberg. Manifolds with wells of negative curvature. Invent. Math., 103(3):471–495, 1991.

    Article  MATH  MathSciNet  Google Scholar 

  38. K. D. Elworthy and S. Rosenberg. Homotopy and homology vanishing theorems and the stability of stochastic flows. Geom. Funct. Anal., 6(1):51–78, 1996.

    Article  MATH  MathSciNet  Google Scholar 

  39. K. D. Elworthy and M. Yor. Conditional expectations for derivatives of certain stochastic flows. In J. Azéma, P.A. Meyer, and M. Yor, editors, Sem. de Prob. XXVII. Lecture Notes in Mathematics 1557, pages 159–172. Springer-Verlag, 1993.

    Google Scholar 

  40. S. Fang and J. Franchi. De Rham—Hodge—Kodaira operator on loop groups. J. Funct. Anal., 148(2):391–407, 1997.

    Article  MATH  MathSciNet  Google Scholar 

  41. Z. Ge. Betti numbers, characteristic classes and sub-riemannian geometry. Illinois J. of Mathematics, 36:372–403, 1992.

    MATH  Google Scholar 

  42. Leonard Gross. Potential theory on Hilbert space. J. Functional Analysis, 1:123–181, 1967.

    Article  MATH  MathSciNet  Google Scholar 

  43. M. Gromov. Carnot—Carathéodory spaces seen from within. In Sub-Riemannian geometry, volume 144 of Progr. Math., pages 79–323. Birkhäuser, Basel, 1996.

    Google Scholar 

  44. F.-Z. Gong and F.-Y. Wang. On Gromov’s theorem and L 2-Hodge decomposition. Int. J. Math. Math. Sci., (1–4):25–44, 2004.

    Article  MathSciNet  Google Scholar 

  45. G. A. Hunt. Semigroups of measures on lie groups. Trans. Amer. Math. Soc., 81:264–293, 1956.

    Article  MATH  MathSciNet  Google Scholar 

  46. N. Ikeda and S. Watanabe. Stochastic Differential Equations and Diffusion Processes, second edition. North-Holland, 1989.

    Google Scholar 

  47. J. D. S. Jones and R. Léandre. L p-Chen forms on loop spaces. In Stochastic analysis (Durham, 1990), volume 167 of London Math. Soc. Lecture Note Ser., pages 103–162. Cambridge Univ. Press, Cambridge, 1991.

    Google Scholar 

  48. I. Kolar, P. W. Michor, and J. Slovak. Natural operations in differential geometry. Springer-Verlag, Berlin, 1993.

    MATH  Google Scholar 

  49. S. Kusuoka. Degree theorem in certain Wiener Riemannian manifolds. In Stochastic analysis (Paris, 1987), volume 1322 of Lecture Notes in Math., pages 93–108. Springer, Berlin, 1988.

    Chapter  Google Scholar 

  50. S. Kusuoka. de Rham cohomology of Wiener-Riemannian manifolds. In Proceedings of the International Congress of Mathematicians, Vol. I,II (Kyoto, 1990), pages 1075–1082, Tokyo, 1991. Math. Soc. Japan.

    MathSciNet  Google Scholar 

  51. R. Léandre. Cohomologie de Bismut—Nualart—Pardoux et cohomologie de Hochschild entière. In Séminaire de Probabilités, XXX, volume 1626 of Lecture Notes in Math., pages 68–99. Springer, Berlin, 1996.

    Chapter  Google Scholar 

  52. R. Léandre. Invariant Sobolev calculus on the free loop space. Acta Appl. Math., 46(3):267–350, 1997.

    Article  MATH  MathSciNet  Google Scholar 

  53. R. Léandre. Stochastic cohomology of Chen-Souriau and line bundle over the Brownian bridge. Probab. Theory Related Fields, 120(2):168–182, 2001.

    Article  MATH  MathSciNet  Google Scholar 

  54. R. Léandre. Brownian pants and Deligne cohomology. J. Math. Phys., 46(3):330–353, 20, 2005.

    Article  Google Scholar 

  55. X.-M. Li. Stochastic differential equations on noncompact manifolds: moment stability and its topological consequences. Probab. Theory Related Fields, 100(4):417–428, 1994.

    Article  MATH  MathSciNet  Google Scholar 

  56. X.-M. Li. On extensions of Myers’ theorem. Bull. London Math. Soc., 27(4):392–396, 1995.

    Article  MATH  MathSciNet  Google Scholar 

  57. P. Li. Differential geometry via harmonic functions. In Proceedings of the International Congress of Mathematicians, Vol. II (Beijing, 2002), pages 293–302, Beijing, 2002. Higher Ed. Press.

    Google Scholar 

  58. W. Linde. Probability in Banach spaces-stable and infinitely divisible distributions. AWiley-Interscience Publication. John Wiley & Sons Ltd., Chichester, 1986.

    MATH  Google Scholar 

  59. H. Blaine Lawson, Jr. and James Simons. On stable currents and their application to global problems in real and complex geometry. Ann. of Math. (2), 98:427–450, 1973.

    Article  MathSciNet  Google Scholar 

  60. Y. LeJan and S. Watanabe. Stochastic flows of diffeomorphisms. In Stochastic analysis (Katata/Kyoto, 1982), North-Holland Math. Library, 32, pages 307–332. North-Holland, Amsterdam, 1984.

    Google Scholar 

  61. P. Malliavin. Formules de la moyenne, calcul de perturbations et théorèmes d’annulation pour les formes harmoniques. J. Functional Analysis, 17:274–291, 1974.

    Article  MATH  MathSciNet  Google Scholar 

  62. P. Malliavin. Stochastic analysis, Grundlehren der Mathematischen Wissenschaften, 313. Springer-Verlag, 1997.

    Google Scholar 

  63. A. Méritet. Théorème d’annulation pour la cohomologie absolue d’une variété riemannienne à bord. Bull. Sci. Math. (2), 103(4):379–400, 1979.

    MATH  MathSciNet  Google Scholar 

  64. P. W. Michor. Gauge theory for fiber bundles, volume 19 of Monographs and Textbooks inPhysical Science. Lecture Notes. Bibliopolis, Naples, 1991.

    MATH  Google Scholar 

  65. M. S. Narasimhan and S. Ramanan. Existence of universal connections. American J. Math., 83:563–572, 1961.

    Article  MATH  MathSciNet  Google Scholar 

  66. D. Quillen. Superconnections; character forms and the Cayley transform. Topology, 27(2):211–238, 1988.

    Article  MATH  MathSciNet  Google Scholar 

  67. I. Shigekawa. de Rham—Hodge—Kodaira’s decomposition on an abstract Wiener space. J. Math. Kyoto Univ., 26(2):191–202, 1986.

    MATH  MathSciNet  Google Scholar 

  68. K.-T. Sturm. Nonlinear martingale theory for processes with values in metric spaces of nonpositive curvature. Ann. Probab., 30(3):1195–1222, 2002.

    Article  MATH  MathSciNet  Google Scholar 

  69. M.-K. von Renesse and Karl-Theodor Sturm. Transport inequalities, gradient estimates, entropy, and Ricci curvature. Comm. Pure Appl. Math., 58(7):923–940, 2005.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Additional information

Dedicated to Hideki Omori

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Birkhäuser Boston

About this chapter

Cite this chapter

Elworthy, K.D. (2007). Aspects of Stochastic Global Analysis. In: Maeda, Y., Ochiai, T., Michor, P., Yoshioka, A. (eds) From Geometry to Quantum Mechanics. Progress in Mathematics, vol 252. Birkhäuser Boston. https://doi.org/10.1007/978-0-8176-4530-4_1

Download citation

Publish with us

Policies and ethics