Skip to main content

Theoretical Modeling of Cyclically Loaded, Biodegradable Cylinders

  • Chapter
Modeling of Biological Materials

Abstract

The adaptation of fully biodegradable stents, thought to be the next revolution in minimally invasive cardiovascular interventions, is supported by recent findings in cardiovascular medicine concerning human coronaries and the likelihood of their deployment has been made possible by advances in polymer engineering. The main potential advantages of biodegradable polymeric stents are: (1) the stent can degrade and transfer the load to the healing artery wall which allows favorable remodeling, and (2) the size of the drug reservoir is dramatically increased. The in-stent restenotic response usually happens within the first six months, thus a fully biodegradable stent can fulfill the mission of restoring flow while mitigating the probability of long-term complications. However, it is a key concern that the stent not degrade away too soon, or develop structural instabilities due to faster degradation in key portions of the stent. We present here a preliminary model of the mechanics of a loaded, biodegradable cylindrical structure. The eventual goal of this research is to provide a means of predicting the structural stability of biodegradable stents

As a first step towards a fully nonlinear model, biodegradable polymers are modeled as a class of linearized materials. An inhomogeneous field that reflects the degradation, which we henceforth refer to as degradation, and a partial differential equation governing the degradation are defined. They express the local degradation of the material and its relationship to the strain field. The impact of degradation on the material is accomplished by introducing a time-dependent Young’s modulus function that is influenced by the degradation field. In the absence of degradation, one recovers the classical linearized elastic model. The rate of increase of degradation was assumed to be dependent on time and linearized strain with the following characteristics: (1) a material degrades faster when it is exposed to higher strains, and (2) a material that is strained for a longer period of time degrades more rapidly than a material that has been strained by the same amount for a shorter period of time

The initial boundary value problem considered is that of an infinitely long, isotropic, nearly incompressible, homogeneous, and strain-degradable cylindrical annulus subjected to radial stresses at its boundaries. A semiinverse method assuming a specific form of the displacement field was employed and the problem reduced to two coupled nonlinear partial differential equations for a single spatial coordinate and time. These equations were solved simultaneously for the displacement and degradation fields using a time marching finite element formulation with a set of nonlinear iterations for each time step

The main features that were observed were: (1) strain-induced degradation showed acceptable phenomenological characteristics (i.e. progressive failure of the material and parametric coherence with the defined constants); (2) an inhomogeneous deformation leads to inhomogeneous degradation and therefore in an initially homogeneous body the properties vary with the current location of the particles; and (3) the linearized model, in virtue of degradation, exhibits creep, stress relaxation, and hysteresis, but this is markedly different from the similar phenomena exhibited by viscoelastic materials

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [AGa] Agrawal, C.M., and Clark, H.G., Deformation characteristics of a bioabsorbable intravascular stent. Invest. Radiol., 27 (1992), 1020–1024.

    Google Scholar 

  2. Agrawal, C.M., Haas, K.F., Leopold, D.A., and Clark, H.G., Evaluation of poly(L-lactic acid) as a material for intravascular polymeric stents. Biomaterials, 13 (1992), 176–182.

    Google Scholar 

  3. Ahn, Y.K., Jeong, M.H., Kim, J.W., et al., Preventive effects of the heparin-coated stent on restenosis in the porcine model. Catheter Cardiovasc. Interv., 48 (1999), 324–330.

    Google Scholar 

  4. Al Suwaidi, J., Berger, P.B., and Holmes, D.R., Jr., Coronary artery stents. JAMA, 284 (2000), 1828–1836.

    Google Scholar 

  5. Ali, S.A., Doherty, P.J., and Williams, D.F., Mechanisms of polymer degradation in implantable devices. 2. Poly(DL-lactic acid). J. Biomed. Mater. Res., 27 (1993), 1409–1418.

    Google Scholar 

  6. Ali, S.A., Zhong, S.P., Doherty, P.J., and Williams, D.F., Mechanisms of polymer degradation in implantable devices. 1. Poly (caprolactone). Biomaterials, 14 (1993), 648–656.

    Google Scholar 

  7. Ardissino, D., Cavallini, C., Bramucci, E., et al., Sirolimus-eluting vs. uncoated stents for prevention of restenosis in small coronary arteries: a randomized trial, JAMA, 292 (2004), 2727–2734.

    Google Scholar 

  8. Athanasiou, K.A., Agrawal, C.M., Barber, F.A., and Burkhart, S.S., Orthopaedic applications for PLA-PGA biodegradable polymers. Arthroscopy J. Arthroscopic Related Surg., 14 (1998), 726–737.

    Google Scholar 

  9. Axel, D.I., Kunert, W., Goggelmann, C., et al., Paclitaxel inhibits arterial smooth muscle cell proliferation and migration in vitro and in vivo using local drug delivery. Circulation, 96 (1997), 636–645.

    Google Scholar 

  10. Babapulle, M.N., and Eisenberg, M.J., Coated stents for the prevention of restenosis: Part II. Circulation, 106 (2002), 2859–2866.

    Google Scholar 

  11. Bedoya, J., Meyer, C.A., Timmins, L.H., Moreno, M.R., and Moore, J.E., Jr., Effects of stent design parameters on artery wall mechanics (submitted).

    Google Scholar 

  12. Bellenger, V., Ganem, M., Mortaigne, B., and Verdu, J., Lifetime prediction in the hydrolytic aging of polyesters. Polym. Degradation Stability, 49 (1995), 91–97.

    Google Scholar 

  13. Bertrand, O.F., Sipehia, R., Mongrain, R., et al., Biocompatibility aspects of new stent technology. J. Am. Coll. Cardiol., 32 (1998), 562–571.

    Google Scholar 

  14. Bier, J.D., Zalesky, P., Li, S.T., Sasken, H., and Williams, D.O., A new bioabsorbable intravascular stent: in vitro assessment of hemodynamic and morphometric characteristics. J. Interv. CardioL, 5 (1992), 187–194.

    Google Scholar 

  15. Blindt, R., Hoffmeister, K.M., Bienert, H., et al., Development of a new biodegradable intravascular polymer stent with simultaneous incorporation of bioactive substances. Int. J. Artif. Organs, 22 (1999), 843–853.

    Google Scholar 

  16. Bose, S.M., and Git, Y., Mathematical modelling and computer simulation of linear polymer degradation: Simple scissions. Macromol. Theor. Simul., 13 (2004), 453–473.

    Google Scholar 

  17. Browarzik, D., and Koch, A., Application of continuous kinetics to polymer degradation. J. Macromol. Sci. Pure Appl. Chem., 33A (1996), 1633–1641.

    Google Scholar 

  18. Burkersroda, F.v., Schedl, L., and Gopferich, A., Why degradable polymers undergo surface erosion or bulk erosion. Biomaterials, 23 (2002), 4221–4231.

    Google Scholar 

  19. Colombo, A., and Karvouni, E., Biodegradable stents: “Fulfilling the mission and stepping away.” Circulation, 102 (2000), 371–373.

    Google Scholar 

  20. Currier, J.W., and Faxon, D.P., Restenosis after percutaneous transluminal coronary angioplasty: have we been aiming at the wrong target? J. Am. Coll. Cardiol., 25 (1995), 516–520.

    Google Scholar 

  21. De Scheerder, I.K., Wilczek, K.L., Verbeken, E.V., et al., Biocompatibility of biodegradable and nonbiodegradable polymer-coated stents implanted in porcine peripheral arteries. Cardiovasc. Intervent. Radiol., 18 (1995), 227–232.

    Google Scholar 

  22. De Scheerder, I.K., Wilczek, K.L., Verbeken, E.V., et al., Biocompatibility of polymer-coated oversized metallic stents implanted in normal porcine coronary arteries. Atherosclerosis, 114 (1995), 105–114.

    Google Scholar 

  23. DePalma, V.A., Baier, R.E., Ford, J.W., Glott, V.L., and Furuse, A., Investigation of three-surface properties of several metals and their relation to blood compatibility. J. Biomed. Mater. Res., 6 (1972), 37–75.

    Google Scholar 

  24. Di Mario, C., Griffiths, H., Goktekin, O., et al., Drug-eluting bioabsorbable magnesium stent. J. Interv. Cardiol., 17 (2004), 391–395.

    Google Scholar 

  25. Dotter, C.T., Transluminal angioplasty: A long view. Radiology, 135 (1980), 561–564.

    Google Scholar 

  26. Douglas, J.S., Jr., King, S.B., 3rd, and Roubin, G.S., Influence of the methodology of percutaneous transluminal coronary angioplasty on restenosis. Am. J. Cardiol., 60 (1987), 29B–33B.

    Google Scholar 

  27. Drumright, R.E., Gruber, P.R., and Henton, D.E., Polylactic acid technology. Adv. Mater., 12 (2000), 1841–1846.

    Google Scholar 

  28. Duda, S.H., Bosiers, M., Lammer, J., et al., Sirolimus-eluting versus bare nitinol stent for obstructive superficial femoral artery disease: The SIROCCO II trial. J. Vasc. Interv. Radiol., 16 (2005), 331–338.

    Google Scholar 

  29. Duda, S.H., Pusich, B., Richter, G., et al., Sirolimus-eluting stents for the treatment of obstructive superficial femoral artery disease: Six-month results. Circulation, 106 (2002), 1505–1509.

    Google Scholar 

  30. Edelman, E.R., and Rogers, C., Pathobiologic responses to stenting. Am. J. Cardiol., 81 (1998), 4E–6E.

    Google Scholar 

  31. Farb, A., Weber, D.K., Kolodgie, F.D., Burke, A.P., and Virmani, R., Morphological predictors of restenosis after coronary stenting in humans. Circulation, 105 (2002), 2974–2980.

    Google Scholar 

  32. Faxon, D.P., Vascular stents. Rev. Cardiovasc. Med., 2 (2001), 106–107.

    Google Scholar 

  33. Fischell, TA., Polymer coatings for stents. Can we judge a stent by its cover? Circulation, 94 (1996), 1494–1495.

    Google Scholar 

  34. Fischman, D.L., Leon, M.B., Baim, D.S., et al., A randomized comparison of coronary-stent placement and balloon angioplasty in the treatment of coronary-artery disease. N. Engl. J. Med., 331 (1994), 496–501.

    Google Scholar 

  35. Gallo, R., Padurean, A., Jayaraman, T., et al., Inhibition of intimai thickening after balloon angioplasty in porcine coronary arteries by targeting regulators of the cell cycle. Circulation, 99 (1999), 2164–2170.

    Google Scholar 

  36. Garlotta, D., A literature review of poly(lactic acid). J. Polym. Environ., 9 (2001), 63–84.

    Google Scholar 

  37. Glagov, S., Zarins, C.K., Masawa, N., Xu, CP., Bassiouny, H., and Giddens, D.P., Mechanical functional role of non-atherosclerotic intimai thickening. Front. Med. Biol. Eng., 5 (1993), 37–43.

    Google Scholar 

  38. Glagov, S., Intimai hyperplasia, vascular modeling, and the restenosis problem. Circulation, 89 (1994), 2888–2891.

    Google Scholar 

  39. Gopferich, A., and Langer, R., Modeling polymer erosion. Macromolecules, 26 (1993), 4105–4112.

    Google Scholar 

  40. Gopferich, A., Mechanisms of polymer degradation and elimination. In: Domb, A.J., Kost, J., and Wiseman, D.M., Eds. Handbook of Biodegradable Polymers. Harwood Academic, Australia (1997), 451–471.

    Google Scholar 

  41. Gopferich, A., Polymer degradation and erosion: Mechanisms and applications. Eur. J. Pharm. Biopharm., 4 (1996), 1–11.

    Google Scholar 

  42. Grabow, N., Martin, H., and Schmitz, K.P., The impact of material characteristics on the mechanical properties of a poly(L-lactide) coronary stent. Biomed. Tech. (Berl.), 47 (2002), 503–505.

    Google Scholar 

  43. Grabow, N., Schlun, M., Sternberg, K., Hakansson, N., Kramer, S., and Schmitz, K.P., Mechanical properties of laser cut poly(L-lactide) micro-specimens: Implications for stent design, manufacture, and sterilization. J. Biomech. Eng., 127 (2005), 25–31.

    Google Scholar 

  44. Grube, E., Gerckens, U., Muller, R., and Bullesfeld, L., Drug eluting stents: Initial experiences. Z. Kardiol., 91 (2002), 44–48.

    Google Scholar 

  45. Grube, E., Silber, S., Hauptmann, K.E., et al., TAXUS I: Sixand twelve-month results from a randomized, double-blind trial on a slow-release paclitaxel-eluting stent for de novo coronary lesions. Circulation, 107 (2003), 38–42.

    Google Scholar 

  46. Gutwald, R., Pistner, H., Reuther, J., and Muhling, J., Biodegradation and tissue-reaction in a long-term implantation study of poly (L-Lactide). J. Mater. Sci. Mater. Med., 5 (1994), 485–490.

    Google Scholar 

  47. Hawkins, W.L., Polymer degradation. In: Polymer degradation and stabilization. Springer-Verlag, Berlin (1984) 3–34.

    Google Scholar 

  48. Hayashi, T., Biodegradable polymers for biomedical uses. Prog. Polym. Sci., 19 (1994), 663–702.

    Google Scholar 

  49. Heublein, B., Rohde, R., Kaese, V., Niemeyer, M., Hartung W., and Haverich, A., Biocorrosion of magnesium alloys: A new principle in cardiovascular implant technology? Heart, 89 (2003), 651–656.

    Google Scholar 

  50. Hietala, E.M., Salminen, U.S., Stahls, A., et al., Biodegradation of the copolymeric polylactide stent. Long-term follow-up in a rabbit aorta model. J. Vasc. Res., 38 (2001), 361–369.

    Google Scholar 

  51. Holmes, D.R., Camrud, A.R., Jorgenson, M.A., Edwards, W.D., and Schwartz, R.S., Polymeric stenting in the porcine coronary artery model: Differential outcome of exogenous fibrin sleeves versus polyurethane-coated stents. J. Am. Coll. Cardiol., 24 (1994), 525–531.

    Google Scholar 

  52. Hyon, S.H., Jamshidi, K., and Ikada, Y., Effects of residual monomer on the degradation of DL-lactide polymer. Polym. Int., 46 (1998), 196–202.

    Google Scholar 

  53. Isotalo, T., Talja, M., Valimaa, T., Tormala, P., and Tammela, T.L., A bioabsorbable self-expandable, self-reinforced poly-L-lactic acid urethral stent for recurrent urethral strictures: Long-term results. J. Endourol., 16 (2002), 759–762.

    Google Scholar 

  54. Ivanova, T., Grozev, N., Panaiotov, I., and Proust, J.E., Role of the molecular weight and the composition on the hydrolysis kinetics of monolayers of poly(alpha-hydroxy acid)s. Colloid Polym. Sci., 277 (1999), 709–718.

    Google Scholar 

  55. Jeremias, A., Sylvia, B., Bridges, J., et al., Stent thrombosis after successful sirolimus-eluting stent implantation. Circulation, 109 (2004), 1930–1932.

    Google Scholar 

  56. Joshi, A., and Himmelstein, K.J., Dynamics of controlled release from bioerodible matrices. J. Control. Release, 15 (1991), 95–104.

    Google Scholar 

  57. Kastrati, A., Dibra, A., Eberle, S., et al., Sirolimus-eluting stents vs. paclitaxel-eluting stents in patients with coronary artery disease: meta-analysis of randomized trials. JAMA, 294 (2005), 819–825.

    Google Scholar 

  58. Kastrati, A., Hall, D., and Schomig, A., Long-term outcome after coronary stenting. Curr. Control Trials Cardiovasc. Med., 1 (2000), 48–54.

    Google Scholar 

  59. Katti, D.S., Lakshmi, S., Langer, R., and Laurencin, C.T., Toxicity, biodegradation and elimination of polyanhydrides. Adv. Drug Deliv. Rev., 54 (2002), 933–961.

    Google Scholar 

  60. Khang, G., Rhee, J.M., Jeong, J.K., et al., Local drug delivery system using biodegradable polymers. Macromol. Res., 11 (2003), 207–223.

    Google Scholar 

  61. Kimura, T., Yokoi, H., Nakagawa, Y., et al., Three-year follow-up after implantation of metallic coronary-artery stents. N. Engl. J. Med., 334 (1996), 561–566.

    Google Scholar 

  62. Labinaz, M., Zidar, J.P., Stack, R.S., and Phillips, H.R., Biodegradable stents: The future of interventional cardiology? J. Interv. Cardiol., 8 (1995), 395–405.

    Google Scholar 

  63. Lambert, T.L., Dev, V., Rechavia, E., Forrester, J.S., Litvack F, and Eigler, N.L., Localized arterial wall drug delivery from a polymercoated removable metallic stent. Kinetics, distribution, and bioactivity of forskolin. Circulation, 90 (1994), 1003–1011.

    Google Scholar 

  64. Langer, R., Drug delivery and targeting. Nature, 392 (1998), 5–10.

    Google Scholar 

  65. Laufman, H., and Rubel, T., Synthetic absorbable sutures. Surg. Gynecol. Obstet., 145 (1977), 597–608.

    Google Scholar 

  66. Lemos, P.A., Serruys, P.W., van Domburg, R.T., et al., Unrestricted utilization of sirolimus-eluting stents compared with conventional bare stent implantation in the “real world”: The Rapamycin-eluting stent evaluated at Rotterdam Cardiology Hospital (RESEARCH) registry. Circulation, 109 (2004), 190–195.

    Google Scholar 

  67. Levenberg, S., and Langer, R., Advances in tissue engineering. In: Current Topics in Developmental Biology, Vol 61. Elsevier, San Diego (2004) 113.

    Google Scholar 

  68. Li, S.M., and McCarthy, S., Further investigations on the hydrolytic degradation of poly(DL-lactide). Biomaterials, 20 (1999), 35–44.

    Google Scholar 

  69. Li, S.M., and Vert, M., Morphological-Changes Resulting from the hydrolytic degradation of stereocopolymers derived from L-lactides and D1-lactides. Macromolecules, 27 (1994), 3107–3110.

    Google Scholar 

  70. Libby, P., Schwartz, D., Brogi, E., Tanaka, H., and Clinton, S.K., A cascade model for restenosis. A special case of atherosclerosis progression. Circulation, 86 (1992), 11147–11152.

    Google Scholar 

  71. Lincoff, A.M., Fürst, J.G., Ellis, S.G., Tuch, R.J., and Topol, E.J., Sustained local delivery of dexamethasone by a novel intravascular eluting stent to prevent restenosis in the porcine coronary injury model. J. Am. Coll. Cardiol., 29 (1997), 808–816.

    Google Scholar 

  72. Lincoff, A.M., Topol, E.J., and Ellis, S.G., Local drug delivery for the prevention of restenosis. Fact, fancy, and future. Circulation, 90 (1994), 2070–2084.

    Google Scholar 

  73. Lipinski, M.J., Fearon, W.F., Froelicher, V.F., and Vetrovec, G.W., The current and future role of percutaneous coronary intervention in patients with coronary artery disease. J. Interv. Cardiol., 17 (2004), 283–294.

    Google Scholar 

  74. Lunt, J., Large-scale production, properties and commercial applications of polylactic acid polymers. Polym. Degradation Stability, 59 (1998), 145–152.

    Google Scholar 

  75. Marx, S.O., Jayaraman, T., Go, L.O., and Marks, A.R., RapamycinFkbp inhibits cell-cycle regulators of proliferation in vascular smoothmuscle cells. Circulation Res., 76 (1995), 412–417.

    Google Scholar 

  76. Middleton, J.C., and Tipton, A.J., Synthetic biodegradable polymers as orthopedic devices. Biomaterials, 21 (2000), 2335–2346.

    Google Scholar 

  77. Mintz, G.S., Hoffmann, R., Mehran, R., et al., In-stent restenosis: The Washington Hospital Center experience. Am. J. Cardiol., 81 (1998), 7E–13E.

    Google Scholar 

  78. Mintz, G.S., Popma, J.J., Pichard, A.D., et al., Arterial remodeling after coronary angioplasty: A serial intravascular ultrasound study. Circulation, 94 (1996), 35–43.

    Google Scholar 

  79. Moore, J., Jr., and Berry, J.L., Fluid and solid mechanical implications of vascular stenting. Ann. Biomed. Eng., 30 (2002), 498–508.

    Google Scholar 

  80. Morice, M.C., Serruys, P.W., Sousa, J.E., et al., A randomized comparison of a sirolimus-eluting stent with a standard stent for coronary revascularization. N. Engl. J. Med., 346 (2002), 1773–1780.

    Google Scholar 

  81. Moses, J.W., Leon, M.B., Popma, J.J., et al., Sirolimus-eluting stents versus standard stents in patients with stenosis in a native coronary artery. N. Engl. J. Med., 349 (2003), 1315–1323.

    Google Scholar 

  82. Muller, D.W., Ellis, S.G., and Topol, E.J., Experimental models of coronary artery restenosis. J. Am. Coll. Cardiol., 19 (1992), 418–432.

    Google Scholar 

  83. Murphy, J.G., Schwartz, R.S., Edwards, W.D., Camrud, A.R., Vlietstra RE, and Holmes, D.R., Jr. Percutaneous polymeric stents in porcine coronary arteries. Initial experience with polyethylene terephthalate stents. Circulation, 86 (1992), 1596–1604.

    Google Scholar 

  84. Murphy, J.G., Schwartz, R.S., Huber, K.C., and Holmes, D.R., Jr. Polymeric stents: Modern alchemy or the future? J. Invasive. Cardiol., 3 (1991), 144–148.

    Google Scholar 

  85. Nguyen, K.T., Su, S.H., Sheng, A., et al., In vitro hemocompatibility studies of drug-loaded poly-(L-lactic acid) fibers. Biomaterials, 24 (2003), 5191–5201.

    Google Scholar 

  86. Nguyen, T.Q., and Kausch, H.H., GPC data interpretation in mechanochemical polymer degradation. Int. J. Polym. Anal. Characterization, 4 (1998), 447–470.

    Google Scholar 

  87. Nguyen, T.Q., Kinetics of mechanochemical degradation by gel permeation chromatography. Polym. Degradation Stability, 46 (1994), 99–111.

    Google Scholar 

  88. Nuutinen, J.P., Clerc, C., and Tormala, P., Theoretical and experimental evaluation of the radial force of self-expanding braided bioabsorbable stents. J. Biomater. Sci. Polym. Ed., 14 (2003), 677–687.

    Google Scholar 

  89. Ong, A.T., Serruys, P.W., and Aoki, J., et al., The unrestricted use of paclitaxelversus sirolimus-eluting stents for coronary artery disease in an unselected population: One-year results of the Taxus-Stent Evaluated at Rotterdam Cardiology Hospital (T-SEARCH) registry. J. Am. Coll. Cardiol., 45 (2005), 1135–1141.

    Google Scholar 

  90. Ottenbrite, R.M., Albertsson, and A.C., Scott, G., Discussion on degradation terminology. In: Vert, M., Feijen, J., Albertsson, A.C., Scott, G., Chiellini, E., Eds. Biodegradable Polymers and Plastics. The Royal Society of Chemisty, Cambridge (1992) 73–92.

    Google Scholar 

  91. Palmaz, J.C., Balloon-expandable intravascular stent. AJR Am. J. Roentgenol., 150 (1988), 1263–1269.

    Google Scholar 

  92. Peng, T., Gibula, P., Yao K.-d., and Goosen, M.F.A., Role of polymers in improving the results of stenting in coronary arteries. Biomaterials, 17 (1996), 685–694.

    Google Scholar 

  93. Peuster, M., Wohlsein, P., Brugmann, M., et al., A novel approach to temporary stenting: Degradable cardiovascular stents produced from corrodible metal-results 6–18 months after implantation into New Zealand white rabbits. Heart, 86 (2001), 563–569.

    Google Scholar 

  94. Pietrzak, W.S., Sarver, D.R., and Verstynen, M.L., Bioabsorbable polymer science for the practicing surgeon. J. Craniofac. Surg., 8 (1997), 87–91.

    Google Scholar 

  95. Pietrzak, W.S., Verstynen, M.L., and Sarver, D.R., Bioabsorbable fixation devices: Status for the craniomaxillofacial surgeon. J. Craniofac. Surg., 8 (1997), 92–96.

    Google Scholar 

  96. Pistner, H., Bendix, D.R., Muhling, J., and Reuther, J.F., Poly (L-Lactide) — A long-term degradation study invivo. 3. Analytical characterization. Biomaterials, 14 (1993), 291–298.

    Google Scholar 

  97. Pistner, H., Gutwald, R., Ordung, R., Reuther, J., and Muhling, J., Poly(L-lactide) — A long-term degradation study in-vivo.l. Biological results. Biomaterials, 14 (1993), 671–677.

    Google Scholar 

  98. Rajagopal, K.R., and Wineman, A.S., A note on viscoelastic materials that can age. Int. J. NonLinear Mech., 39 (2004), 1547–1554.

    MATH  Google Scholar 

  99. Robaina, S., Jayachandran, B., He, Y., et al., Platelet adhesion to simulated stented surfaces. J. Endovasc. Tier., 10 (2003), 978–986.

    Google Scholar 

  100. Rogers, C., and Edelman, E.R., Endovascular stent design dictates experimental restenosis and thrombosis. Circulation, 91 (1995), 2995–3001.

    Google Scholar 

  101. Roubin, G.S., Douglas, J.S., Jr., King, S.B., 3rd, et al., Influence of balloon size on initial success, acute complications, and restenosis after percutaneous transluminal coronary angioplasty. A prospective randomized study. Circulation, 78 (1988), 557–565.

    Google Scholar 

  102. Saia, F., Marzocchi, A., and Serruys, P.W., Drug-eluting stents. The third revolution in percutaneous coronary intervention. Ital. Heart J., 6 (2005), 289–303.

    Google Scholar 

  103. Sarembock, I.J., LaVeau, P.J., Sigal, S.L., et al., Influence of inflation pressure and balloon size on the development of intimai hyperplasia after balloon angioplasty. A study in the atherosclerotic rabbit. Circulation, 80 (1989), 1029–1040.

    Google Scholar 

  104. Schakenraad, J.M., Hardonk, M.J., Feijen, J., Molenaar, I., and Nieuwenhuis, P., Enzymatic activity toward poly(L-lactic acid) implants. J. Biomed. Mater. Res., 24 (1990), 529–545.

    Google Scholar 

  105. Schatz, R.A., Baim, D.S., Leon, M., et al., Clinical-experience with the Palmaz-Schatz coronary stent-Initial results of a multicenter study. Circulation, 83 (1991), 148–161.

    Google Scholar 

  106. Schatz, R.A., Introduction to intravascular stents. Cardiol. Clin., 6 (1988), 357–372.

    Google Scholar 

  107. Schnabel, W., Polymer Degradation. Macmillan, New York (1981).

    Google Scholar 

  108. Schofer, J., Schluter, M., Gershlick, A.H., et al., Sirolimus-eluting stents for treatment of patients with long atherosclerotic lesions in small coronary arteries: Double-blind, randomised controlled trial (E-SIRIUS). Lancet, 362 (2003), 1093–1099.

    Google Scholar 

  109. Schwartz, R.S., Neointima and arterial injury: Dogs, rats, pigs, and more. Lab. Invest., 71 (1994), 789–791.

    Google Scholar 

  110. Schwartz, R.S., Pathophysiology of restenosis: Interaction of thrombosis, hyperplasia, and/or remodeling. Am. J. Cardiol., 81 (1998), 14E–17E.

    Google Scholar 

  111. Serruys, P.W., Dejaegere, P., Kiemeneij, F., et al., A comparison of balloon-expandable-stent implantation with balloon angioplasty in patients with coronary-artery disease. N. Engl. J. Med., 331 (1994), 489–495.

    Google Scholar 

  112. Serruys, P.W., Emanuelsson, H., van der Giessen, W., et al., Heparincoated Palmaz-Schatz stents in human coronary arteries. Early outcome of the Benestent-II Pilot Study. Circulation, 93 (1996), 412–422.

    Google Scholar 

  113. Siepmann, J., and Gopferich, A., Mathematical modeling of bioerodible, polymeric drug delivery systems. Adv. Drug Delivery Rev., 48 (2001), 229–247.

    Google Scholar 

  114. Sigwart, U., Puel, J., Mirkovitch, V., Joffre, F., and Kappenberger, L., Intravascular stents to prevent occlusion and restenosis after transluminal angioplasty. N. Engl. J. Med., 316 (1987), 701–706.

    Google Scholar 

  115. Silber, S., Hamburger, J., Grube, E., et al., Direct stenting with TAXUS stents seems to be as safe and effective as with predilatation. A post hoc analysis of TAXUS II. Herz, 29 (2004), 171–180.

    Google Scholar 

  116. Siparsky, G.L., Voorhees, K.J., and Miao, F.D., Hydrolysis of polylactic acid (PLA) and polycaprolactone (PCL) in aqueous acetonitrile solutions: Autocatalysis. J. Environ. Polym. Degradation, 6 (1998), 31–41.

    Google Scholar 

  117. Staab, M.E., Holmes, D.R., and Schwartz, R.S., Polymers. In: Sigwart U, Ed. Endoluminal Stenting. WB Saunders, London (1996), 34–44.

    Google Scholar 

  118. Stone, G.W., Ellis, S.G., Cox, D.A., et al., One-year clinical results with the slow-release, polymer-based, paclitaxel-eluting TAXUS stent: The TAXUS-IV trial. Circulation, 109 (2004), 1942–1947.

    Google Scholar 

  119. Su, S.H., Chao, R.Y., Landau, C.L., et al., Expandable bioresorbable endovascular stent. I. Fabrication and properties. Ann. Biomed. Eng., 31 (2003), 667–677.

    Google Scholar 

  120. Tamada, J.A., and Langer, R., Erosion kinetics of hydrolytically degradable polymers. Proceedings of the National Academy of Sciences of the United States of America, 90 (1993), 552–556.

    Google Scholar 

  121. Tamai, H., Igaki, K., Kyo, E., et al., Initial and 6-month results of biodegradable poly-1-lactic acid coronary stents in humans. Circulation, 102 (2000), 399–404.

    Google Scholar 

  122. Tamai, H., Igaki, K., Tsuji, T., et al., A biodegradable poly-L-lactic acid coronary stent in the porcine coronary artery. J. Interven. Cardiol., 12 (1999), 443–449.

    Google Scholar 

  123. Tammela, T.L., and Talja, M., Biodegradable urethral stents. B.JU Int., 92 (2003), 843–850.

    Google Scholar 

  124. Tanabe, K., Serruys, P.W., Grube, E., et al., TAXUS III Trial: Instent restenosis treated with stent-based delivery of paclitaxel incorporated in a slow-release polymer formulation. Circulation, 107 (2003), 559–564.

    Google Scholar 

  125. Therasse, E., Soulez, G., Cartier, P., et al., Infection with fatal outcome after endovascular metallic stent placement. Radiology, 192 (1994), 363–365.

    Google Scholar 

  126. Thombre, A.G., Theoretical aspects of polymer biodegradation: Mathematical modeling of drug release and acid-catalyzed poly(othoester) biodegradation. In: Vert, M., Feijen, J., Albertsson, A.C., Scott, G., Chiellini, E., Eds. Biodegradable Polymers and Plastics. The Royal Society of Chemisty, Cambridge (1992) 214–225.

    Google Scholar 

  127. Tsuji, T., Tamai, H., Igaki, K., et al., Biodegradable polymeric stents. Curr. Interv. Cardiol. Rep., 3 (2001), 10–17.

    Google Scholar 

  128. Tsuji, T., Tamai, H., Igaki, K., et al., Biodegradable stents as a platform to drug loading. Int. J. Cardiovasc. Intervent., 5 (2003), 13–16.

    Google Scholar 

  129. Unverdorben, M., Spielberger, A., Schywalsky, M., et al., A polyhydroxybutyrate biodegradable stent: Preliminary experience in the rabbit. Cardiovasc. Intervent. Radiol., 25 (2002), 127–132.

    Google Scholar 

  130. Uurto, I., Mikkonen, J., Parkkinen, J., et al., Drug-eluting biodegradable poly-D/L-lactic acid vascular stents: An experimental pilot study. J. Endovasc. Ther., 12 (2005), 371–379.

    Google Scholar 

  131. Valimaa, T., Laaksovirta, S., Tammela, T.L., et al., Viscoelastic memory and self-expansion of self-reinforced bioabsorbable stents. Biomaterials, 23 (2002), 3575–3582.

    Google Scholar 

  132. van der Giessen, W.J., Lincoff, A.M., Schwartz, R.S., et al., Marked inflammatory sequelae to implantation of biodegradable and nonbiodegradable polymers in porcine coronary arteries. Circulation, 94 (1996), 1690–1697.

    Google Scholar 

  133. van der Giessen, W.J., Slager, C.J., Gussenhoven, E.J., et al., Mechanical features and in vivo imaging of a polymer stent. Int. J. Card. Imaging., 9 (1993), 219–226.

    Google Scholar 

  134. van der Giessen, W.J., Slager, C.J., van Beusekom, H.M., et al., Development of a polymer endovascular prosthesis and its implantation in porcine arteries. J. Interv. Cardiol., 5 (1992), 175–185.

    Google Scholar 

  135. van der Giessen, W.J., Vanbeusekom H.M.M., Vanhouten, C.D., Vanwoerkens, L.J., Verdouw, P.D., and Serruys, P.W., Coronary stenting with, polymer-coated and uncoated self-expanding endoprostheses in pigs. Coronary Artery Disease, 3 (1992), 631–640.

    Google Scholar 

  136. Vert, M., Li, S., Garreau, H., et al., Complexity of the hydrolytic degradation of aliphatic polyesters. Angew Makromol Chem., 247 (1997), 239–253.

    Google Scholar 

  137. Vert, M., Li, S.M., Spenlehauer, G., and Guerin, P., Bioresorbability and biocompatibility of aliphatic polyesters. J. Mater. Sci. Mater. Med., 3 (1992), 432–446.

    Google Scholar 

  138. Vert, M., Aliphatic polyesters: Great degradable polymers that cannot do everything. Biomacromolecules, 6 (2005), 538–546.

    MathSciNet  Google Scholar 

  139. Virmani, R., Liistro, F., Stankovic, G., et al., Mechanism of late instent restenosis after implantation of a paclitaxel derivate-eluting polymer stent system in humans. Circulation, 106 (2002), 2649–2651.

    Google Scholar 

  140. Weir, N.A., Buchanan, F.J., Orr, J.F., and Dickson, G.R., Degradation of poly-L-lactide. Part 1: In vitro and in vivo physiological temperature degradation. Proc Inst Mech Eng [H], 218 (2004), 307–319.

    Google Scholar 

  141. Weir, N.A., Buchanan, F.J., Orr, J.F., Farrar, D.F., and Dickson, G.R., Degradation of poly-L-lactide: Part 2: Increased temperature accelerated degradation. Proceedings of the Institution of Mechanical Engineers Part H-J. Eng. Med., 218 (2004), 321–330.

    Google Scholar 

  142. Wentzel, J.J., Krams, R., Schuurbiers, J.C., et al., Relationship between neointimal thickness and shear stress after Wallstent implantation in human coronary arteries. Circulation, 103 (2001), 1740–1745.

    Google Scholar 

  143. Wentzel, J.J., Whelan, D.M., van der Giessen, W.J., et al., Coronary stent implantation changes 3-D vessel geometry and 3-D shear stress distribution. J. Biomech., 33 (2000), 1287–1295.

    Google Scholar 

  144. Whelan, D.M., van Beusekom, H.M., and van der Giessen, W.J., Mechanisms of drug loading and release kinetics. Semin. Interv. Cardiol., 3 (1998), 127–131.

    Google Scholar 

  145. Williams, D.F., Biodegradation of surgical polymers. J. Mater. Sci., 17 (1982), 1233–1246.

    Google Scholar 

  146. Yamawaki, T., Shimokawa, H., Kozai, T., et al., Intramural delivery of a specific tyrosine kinase inhibitor with biodegradable stent suppresses the restenotic changes of the coronary artery in pigs in vivo. J. Am. Coll. Cardiol., 32 (1998), 780–786.

    Google Scholar 

  147. Ye, Y.W., Landau, C., Willard, J.E., et al., Bioresorbable microporous stents deliver recombinant adenovirus gene transfer vectors to the arterial wall. Ann. Biomed. Eng., 26 (1998), 398–408.

    Google Scholar 

  148. Yoon, J.S., Jin, H.J., Chin, I.J., Kim, C., and Kim, M.N., Theoretical prediction of weight loss and molecular weight during random chain scission degradation of polymers. Polymer, 38 (1997), 3573–3579.

    Google Scholar 

  149. Zahn, R., Hamm, C.W., Schneider, S., et al., Incidence and predictors of target vessel revascularization and clinical event rates of the sirolimus-eluting coronary stent (results from the prospective multicenter German Cypher Stent Registry). Am. J. Cardiol., 95 (2005), 1302–1308.

    Google Scholar 

  150. Zhang, Y., Zale, S., Sawyer, L., and Bernstein, H., Effects of metal salts on poly(DL-lactide-co-glycolide) polymer hydrolysis. J. Biomed. Mater. Res., 34 (1997), 531–538.

    Google Scholar 

  151. Zidar, J., Lincoff, A., and Stack, R., Biodegradable stents. In: Topol, E.J., Ed. Textbook of Interventional Cardiolology. 2nd ed. WB Saunders, Philadelphia (1994), 787–802.

    Google Scholar 

  152. Zilberman, M., Nelson, K.D., and Eberhart, R.C., Mechanical properties and in vitro degradation of bioresorbable fibers and expandable fiber-based stents. J. Biomed. Mater. Res. B Appl. Biomater., 74 (2005), 792–799.

    Google Scholar 

  153. Zilberman, M., Schwade, N.D., and Eberhart, R.C., Protein-loaded bioresorbable fibers and expandable stents: Mechanical properties and protein release. J. Biomed. Mater. Res. B Appl. Biomater., 69 (2004), 1–10.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Birkhäuser Boston

About this chapter

Cite this chapter

Soares, J.S., Moore, J.E., Rajagopal, K.R. (2007). Theoretical Modeling of Cyclically Loaded, Biodegradable Cylinders. In: Mollica, F., Preziosi, L., Rajagopal, K.R. (eds) Modeling of Biological Materials. Modeling and Simulation in Science, Engineering and Technology. Birkhäuser Boston. https://doi.org/10.1007/978-0-8176-4411-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-0-8176-4411-6_4

  • Publisher Name: Birkhäuser Boston

  • Print ISBN: 978-0-8176-4410-9

  • Online ISBN: 978-0-8176-4411-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics