Skip to main content

Retinal Degeneration is Accelerated when a Mutant Rhodopsin Transgene is Expressed on a Haploid or Null Rhodopsin Background

  • Chapter
Retinal Degenerative Diseases and Experimental Therapy

Abstract

The rod opsin Pro23His mutation accounts for approximately 12% of autosomal dominant retinitis pigmentosa (adRP) cases in the United States. To study mechanisms leading to photoreceptor degeneration, we investigated the effects of mutant and wild-type opsin stoichiometry on retinal morphology and function. We crossbred a trans-genic mouse line expressing the triple mutant, V20G, P23H, and P27L (GHL), with rhodopsin knockout mice. Retinal morphology of 30-day old GHL+ mice with two functional copies of the rod opsin gene (GHL+, rho+/+), one functional copy (GHL+, rho+/−) or no functional copies of the rod opsin gene (GHL+, rho−/−) was examined. Although mice of all three genotypes underwent reunal degeneration, the severity of the retinopathy correleted inversely with the number of wild-type opsin genes present. Mice with no functional wild-type opsin gene were most severely affected, while those with two functional copies were the least affected. Mice with a single functional vvild-type gene were intermediate in the degenerative phenotype. Correspondingly, changes in fundus morphology and ERG function. were most prominent in GHL+, rho−/− mice, whereas GHL+, rho−/− mice were similar to wild-type mice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. T.P. Dryja and T. Li, 1995, Molecular genetics of retinitis pigmentosa, Hum. Mol. Genet. 4:1739–1743.

    PubMed  CAS  Google Scholar 

  2. J. Lem and C.L. Makino, 1996, Phototransduction in transgenic mice, Curr. Opin. Neurobiol. 6:453–458.

    Article  PubMed  CAS  Google Scholar 

  3. K. Gregory-Evans and S.S. Bhattacharya, 1998, Genetic blindness: current concepts in the pathogenesis of human outer retinal dystrophies, Trends Genet 14:103–108.

    Article  PubMed  CAS  Google Scholar 

  4. M.I. Naash, J.G. Hollyfield, M.R. Al-Ubaidi, and W. Baehr, 1993, Simulation of human autosomal dominant retinitis pigmentosa in transgenic mice expressing a mutated murine opsin gene, Proc. Natl. Acad. Sci. U.S.A. 90:5499–5504.

    Article  PubMed  CAS  Google Scholar 

  5. X.R. Liu, T.H. Wu, S. Stowe, A. Matsushita, K. Arikawa, M.I. Naash, and D.S. Williams, 1997, Defective phototransductive disk membrane morphogenesis in transgenic mice expressing opsin with a mutated N-terminal domain, J. Cell Sci. 110:2589–2597.

    PubMed  CAS  Google Scholar 

  6. D.J. Roof, M. Adamian, and A. Hayes, 1994, Rhodopsin accumulation at abnormal sites in retinas of mice with a human P23H rhodopsin transgene, Invest. Ophthalmol. Vis. Sci. 35:4049–4062.

    PubMed  CAS  Google Scholar 

  7. X. Liu, P. Garriga, and H.G. Khorana. 1996, Structure and function in rhodopsin: correct folding and misfolding in two point mutants in the intradiscal domain of rhodopsin identified in retinitis pigmentosa, Proc. Natl. Acad. Sci. USA. 93:4554–4559.

    Article  PubMed  CAS  Google Scholar 

  8. M.M. Humphries, D. Rancourt, G.J. Farrar, P. Kenna, M. Hazel, R.A. Bush, P.A. Sieving, D.M. Shells, N. McNally, P. Creighton, A. Erven, A. Boros, K. Gulya, M.R. Capecchi, and P. Humphries, 1997, Retinopathy induced in mice by targeted disruption of the rhodopsin gene, Nature Genet. 15:216–219.

    Article  PubMed  CAS  Google Scholar 

  9. J. Lem, P.D. Calvert, B. Kosaras, D.A. Cameron, M. Nicolo, C. Makino, and R.L. Sidman, 1999, Morphological, physiological and biochemical changes in rhodopsin knockout mice, Proc. Natl. Acad. Sci. U.S.A., submitted.

    Google Scholar 

  10. G.H. Travis, 1997, Insights from a lost visual pigment [news;comment], Nat. Genet 15:115–117.

    Article  PubMed  CAS  Google Scholar 

  11. J.E. Olsson, J.W. Gordon, B.S. Pawlyk, D. Roof, A. Hayes, R.S. Molday, S. Mukai, G.S. Cowley, E.L. Berson, and T.P. Dryja, 1992, Transgenic mice with a rhodopsin mutation (Pro23His): A mouse model of autosomal dominant retinitis pigmentosa, Neuron 9:815–830.

    Article  PubMed  CAS  Google Scholar 

  12. A.S. Lewin, K.A. Drenser, W.W. Hauswirth, S. Nishikawa, D. Yasumura, J.G. Flannery, and M.M. LaVail, 1998. Ribozyme rescue of photoreceptor cells in a transgenic rat model of autosomal dominant retinitis pigmentosa, Nat. Med 4:967–971.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Kluwer Academic / Plenum Publishers

About this chapter

Cite this chapter

Frederick, J., Krasnoperova, N., Hoffmann, K., Baehr, W., Lem, J., Rüther, K. (1999). Retinal Degeneration is Accelerated when a Mutant Rhodopsin Transgene is Expressed on a Haploid or Null Rhodopsin Background. In: Hollyfield, J.G., Anderson, R.E., LaVail, M.M. (eds) Retinal Degenerative Diseases and Experimental Therapy. Springer, Boston, MA. https://doi.org/10.1007/978-0-585-33172-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-0-585-33172-0_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-46193-4

  • Online ISBN: 978-0-585-33172-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics