Skip to main content

Bacterial Heavy Metal Detoxification and Resistance Systems

  • Chapter

Abstract

Bacterial plasmids contain genetic determinants for resistance systems for Hg2+ (and organomercurials), Cd2+, AsO2, AsO4 3-, CrO4 2-, TeO3 2-, Cu2+, Ag+, Co2+, Pb2+, and other metals of environmental concern. In some cases, there is the potential for using genetically engineered microbes for bio-remediation. Recombinant DNA analysis has been applied to mercury, cadmium, zinc, cobalt, arsenic, chromate, tellurium and copper resistance systems. The eight mercury resistance systems that have been sequenced all contain the gene for mercuric reductase, the enzyme that converts toxic Hg2+ ions to less toxic volatile metallic Hg°. Four of these systems also determine the enzyme organomercurial lyase, which cuts the HgC bond and thus detoxifies methylmercury and phenylmercury. Two sequenced Cd2+ resistance determinants govern cellular efflux of Cd2+ assuring a low level of intracellular Cd2+: not an obvious candidate for bioremediation. Cadmium accumulation by bacterial metallothionein or phytochelatin is a potentially useful process, but only preliminary reports have appeared on bacteria producing polythiol polypeptides. For arsenic resistance, a unique efflux ATPase maintains low intracellular As levels. A bacterial AsO2- oxidase has been reported, with the potential of converting more toxic As(III) into less toxic As(V), but this system has not been studied in recent years. For chromate, resistance results from reduced cellular uptake. However, both soluble and membrane-bound Cr(VI) reductase bacterial activities convert more toxic Cr(VI) to less toxic Cr(III) in different bacteria.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aiking, H., H. Govers and J. van’t Riet 1985. Detoxification of cadmium, mercury and lead in Klebsiella aerogenes NCTC418 growing in continuous culture. Appl. Environ. Microbiol. 50, 1262–1267.

    PubMed  CAS  Google Scholar 

  • Begley, T.P., Walts, A.E., and Walsh, C.T. 1986a. Bacterial organomercurial lyase: overproduction, isolation and characterization. Biochem. 25: 7186–7192.

    Article  CAS  Google Scholar 

  • Begley, T.P., Walts, A.E., Walsh, C.T. 1986b. Mechanistic studies of a protonolytic organomercurial cleaving enzyme: bacterial organomercurial lyase. Biochemistry 25: 7192–7200.

    Article  PubMed  CAS  Google Scholar 

  • Belliveau, B.H., and Trevors, J.T. 1989. Mercury resistance and detoxification in bacteria. Appl. Organometaliic Chem. 3: 283–294.

    Article  CAS  Google Scholar 

  • Bender, C.L, Malvick, D.K., Conway, K.E., George, S., and Pratt, P. 1990. Characterization of pXV10A, a copper-resistance plasmid in Xanthomonas campestris pv. vesicatoria. Appl. Environ. Microbiol. 56, 170–175.

    PubMed  CAS  Google Scholar 

  • Bopp, L.H. and Ehrlich, H.L. 1988. Chromate resistance and reduction in Pseudomonas fluorescens strain LB300. Arch. Microbiol. 150: 426–431.

    Article  CAS  Google Scholar 

  • Bopp, L.H. 1984. Microbial removal of chromate from contaminated waste water. U.S. patent # 4,468,461, issued August 28, 1984.

    Google Scholar 

  • Brierley, CL, Brierley, J.A., and Davidson, M.S. 1989. Applied microbial processes for metals recovery and removal from waste water. pp. 359–382. In T.J. Beveridge and R.J. Doyle (eds.) “Metal Ions and Bacteria”, John Wiley & Sons, N.Y.

    Google Scholar 

  • Brierley, J.A., Brierley, C.L., and Goyak, G.M. 1986. AMT-BIOCLAIM: a new waste water treatment and metal recovery technology, pp. 291–304. In “Fundamental and Applied Biohydrometallurgy” (R.W. Lawrence, R.M.R. Branion and H.G. Ebner, eds.) Elsevier, Amsterdam.

    Google Scholar 

  • Brown, N.L. 1985. Bacterial resistance to mercury: reductio ad absurdum. Trends Biochem. Sci. 10: 400–403.

    Article  CAS  Google Scholar 

  • Cervantes, C, Ohtake, H., Chu, L, Misra, T.K., and Silver., S. 1990. Cloning, nucleotide sequence, and expression of the chromate resistance determinant of Pseudomonas aeruginosa plasmid pUM505. J. Bacteriol. 172: 287–291.

    PubMed  CAS  Google Scholar 

  • Cervantes, C. and Silver, S. 1990. Inorganic cation and anion transport systems of Pseudomonas. InPseudomonas: Biotransformations, Pathogenesis and Evolving Biotechnology” (eds. S. Silver, A.M. Chakrabarty, B. Iglewski, and S. Kaplan) American Society for Microbiology, Washington, D.C., pp. 359–372.

    Google Scholar 

  • Chen, CM., Misra, T.K., Silver, S. and Rosen, B.P. 1986. Nucleotide sequence of the structural genes for an anion pump. The plasmid-encoded arsenical resistance operon. J. Biol. Chem. 26l: 15030–15038.

    Google Scholar 

  • Cooksey, D.A. 1987. Characterization of a copper resistance plasmid conserved in copperresistant strains of Pseudomonas syringae pv. tomato. Appl. Environ. Microbiol. 53, 454–456.

    PubMed  CAS  Google Scholar 

  • Darnall, D.W. 1989. Removal and recovery of heavy metal ions from waste waters using a new bioabsorbant; AlgaSORB. In “Innovative Hazardous Waste Treatment Technology” (H. Freeman, ed.), Technomic Publishing company, Lancaster, PA, in press.

    Google Scholar 

  • Darnall, D.W., Gabel, A.M., and Gardea-Torresday, J. 1989. AlgaSORB: a new biotechnology for removing and recovering heavy metal ions from ground water and industrial waste water, pp. 113–124. In Hazardous Waste Treatment: Biosystems for Pollution Control, Proceedings of the 1989. A & WMA/EPA International Symposium. EPA, Cincinnati, Ohio.

    Google Scholar 

  • Distefano, M.D., Au, K.G. and Walsh, C.T. 1989. Mutagenesis of the redox-active disulfide in mercuric ion reductase: catalysis by mutant enzymes restricted to flavin redox chemistry. Biochemistry 28: 1168–1183.

    Article  PubMed  CAS  Google Scholar 

  • Distefano, M.D., Moore, M.J. and Walsh, C.T. 1990. Active site of mercuric reductase resides at the subunit interface and requires Cys135 and Cys140 from one subunit and Cys558 and Cys559 from the adjacent subunit: evidence from in vivo and in vitro heterodimer formation. Biochemistry 29: 2703–2713.

    Article  PubMed  CAS  Google Scholar 

  • Dyke, K.G.H., Walters, J.A. and Curnock, S.P. 1991. Characterization of a staphylococcal plasmid that specifies resistance to cadmium ions, Manuscript in preparation.

    Google Scholar 

  • Erardi, F.X., Failla, M.L. and Falkinham III, J.O. 1987. Plasmid-encoded copper resistance and precipitation bv Mvcobacterium scrofulaceum. Appl. Environ. Microbiol. 53: 1951–1954.

    PubMed  CAS  Google Scholar 

  • Gotz, F., Zebielski, J., Philipson, L. and Lindberg, M. 1983. DNA homology between the arsenate resistance plasmid pSX267 from Staphylococcus xylosus and the penicillinase plasmid pl258 from Staphylococcus aureus. Plasmid 9: 126–137.

    Article  PubMed  CAS  Google Scholar 

  • Gvozdyak, P.I., Mogilevich, N.F., Ryl’skii, A.F. and Grishchenko, N.I. 1986. Reduction of hexavalent chromium by collection strains of bacteria. Mikrobiologiya 55: 962–965.

    CAS  Google Scholar 

  • Hansen, CL., Zwolinski, G., Martin, D. and Williams, J.W. (1984). Bacterial removal of mercury from sewage. Biotech. Bioengin. 26: 1330–1333.

    Article  CAS  Google Scholar 

  • Helmann, J.D., Ballard, B.T. and Walsh, CT. 1990. The Mer Rmetalloregulatory protein binds mercuric ion as a tricoordinate, metal-bridged dimer. Science 247: 946–948.

    Article  PubMed  CAS  Google Scholar 

  • Helmann, J.D. and Walsh, C.T. 1990. Metal dependent transcriptional activation: binding of metal ions by the Bacillus species RC607 MerR protein. Unpublished Manuscript.

    Google Scholar 

  • Horitsu, H., Futo, S., Miyazawa, Y., Ogai, S. and Kawai, K. 1987. Enzymatic reduction of hexavalent chromium by hexavalent chromium tolerant Pseudomonas ambigua G-1. Agric. Biol. Chem. 51: 2417–2420.

    CAS  Google Scholar 

  • Hsu, CM. and Rosen, B.P. 1989. Characterization of the catalytic subunit of an anion pump. J. Biol. Chem. 264: 17349–17354.

    PubMed  CAS  Google Scholar 

  • Hutchins, S.R., Davidson, M.S., Brierley, J.A. and Brierley, C.L 1986. Microorganisms in reclamation of metals. Annu. Rev. Microbiol. 40:311–336.

    Article  PubMed  CAS  Google Scholar 

  • Ishibashi, Y., Cervantes, C. and Silver, S. 1990. Chromium reduction by Pseudomonas putida. Appl. Environ. Microbiol. 56:2268–2270.

    PubMed  CAS  Google Scholar 

  • Karkaria, C.E. and Rosen, B.P. 1990. Mutagenesis of a nucleotide binding site of an aniontranslocating ATPase. J. Biol. Chem. 265: 7832–7836.

    PubMed  CAS  Google Scholar 

  • Karplus, A. and Schulz, G.E. 1987. Refined structure of glutathione reductase at 1.54 Å resolution. J. Mol. Biol. 195: 701–729.

    Article  PubMed  CAS  Google Scholar 

  • Khazaeli, M.B. and R.S. Mitra 1981. Cadmium-binding component in Escherichia coli during accomodation to low levels of this ion. Appl. Environ. Microbiol. 41: 46–50.

    PubMed  CAS  Google Scholar 

  • Komori, K., Wang, P.C., Toda, K. and Ohtake, H. 1989. Factors affecting chromate reduction in Enterobacter cloacae strain HO1. Appl. Microbiol. Biotechnol. 21: 567–570.

    Article  Google Scholar 

  • Komori, K., Rivas, A., Toda, K. and Ohtake, H. 1990a. Biological removal of toxic chromium using Enterobacter cloacae strain that reduces chromate under anaerobic conditions. Biotechnol. Bioengin. 35: 951–954.

    Article  CAS  Google Scholar 

  • Komori, K., Toda, K. and Ohtake, H. 1990b. Effects of oxygen stress on chromate reduction in Enterobacter cloacae. J. Ferment. Bioeng. 69: 67–69.

    Article  CAS  Google Scholar 

  • Komori, K., Rivas, A., Toda, K. and Ohtake, H. 1990c. A method for removal of toxic chromium using dialysis-sac cultures of achromate-reducing strain of Enterobacter cloacae. Appl. Microbiol. Biotechnol. 23: 117–119.

    Google Scholar 

  • Kusano, T., Ji, G., Inoue, C. and Silver, S. 1990. Constitutive synthesis of a transport function encoded by theThiobacillus ferrooxidans merC gene cloned in Escherichia coli. J. Bacteriol. 172: 2688–2692.

    PubMed  CAS  Google Scholar 

  • Kvasnikov, E.I., Stepanyuk, V.V., Klyushnikova, T.M., Serpokrylov, N.S., Simonova, G.A., Kasatkina, T.P. and Pachenko, L.P. 1985. A new chromium-reducing, gram-variable bacterium with mixed type flagellation. Mikrobiologiya 54: 83–88.

    CAS  Google Scholar 

  • Laddaga, R.A., Bessen, R. and Silver, S. 1985. Cadmium-resistant mutant of Bacillus subtilis 168 with reduced cadmium uptake. J. Bacteriol. 162, 1106–1110.

    PubMed  CAS  Google Scholar 

  • Lebedeva, E.V. and Lyalikova, N.N. 1979. Reduction of crocoite by Pseudomonas chromatophila sp. nov. Mikrobiologiya 48: 517–522.

    CAS  Google Scholar 

  • Lee, B.T.O., Brown, N.L., Rogers, S., Bergemann, A., Camakaris, J. and Rouch, D.A., 1991. Bacterial response to copper in the environment: copper resistance in Escherichia coli as a model system. NATO ASI series vol. G23, pp. 625–632. In “Metal Specification in the Environment”, J.A.C. Broekaert, S. Gucer, and F. Adams, eds. Springer Verleg, Berlin.

    Google Scholar 

  • Lund, P.A. and Brown, N.L. 1989. Regulation of transcription from the mer and merR promoters of the transposon Tn501. J. Mol. Biol. 205: 343–353.

    Article  PubMed  CAS  Google Scholar 

  • Meissner, P.S. and Falkinham III, J.O. 1984. Plasmid-encoded mercuric reductase in Mycobacterium scrofulaceum. App. Environ. Microbiol. 157: 669–672.

    CAS  Google Scholar 

  • Mellano, M.A. and Cooksey, D.A. 1988. Nucleotide sequence and organization of copper resistance genes from Pseudomonas syringae pv. tomato. J. Bacteriol. 170:2879–2883.

    PubMed  CAS  Google Scholar 

  • Miller, S.M., Moore, M.J., Massey, V., Williams, C.H. Jr., Distefano, M.D., Ballou, D.P., and Walsh, C.T. 1989. Two-electron reduced mercuric reductase binds Hg(ll) to the active site dithiol but does not catalyze Hg(II) reductase. Biochemistry 28: 1194–1205.

    Article  PubMed  CAS  Google Scholar 

  • Mobley, H.L.T. and Rosen, B.P. 1982. Energetics of plasmid-mediated arsenate resistance in Escherichia coli. Proc. Natl. Acad. Sci. USA 79: 6119–6122.

    Article  PubMed  CAS  Google Scholar 

  • Moore, M.J. and Walsh, C.T. 1989. Mutagenesis of the N-and C-terminal cysteine pairs of Tn501 mercuric ion reductase: consequences for bacterial detoxification of mercurials. Biochemistry 28: 1183–1194.

    Article  PubMed  CAS  Google Scholar 

  • Moore, M.J., Distefano, M.D., Walsh, CT., Schliering, N. and Pai, E.F. 1989. Purification, crystallization, and preliminary x-ray diffraction studies of the flavoprotein mercuric ion reductase from Bacillus sp. strain RC607. J. Biol. Chem. 264: 14386–14388.

    PubMed  CAS  Google Scholar 

  • Nies, A., Nies, D.H. and Silver, S. 1989. Cloning and expression of plasmid genes encoding resistances to chromate and cobalt in Alcaligenes eutrophus. J. Bacteriol. 171:5065–5070.

    PubMed  CAS  Google Scholar 

  • Nies, A., Nies, D.H. and Silver, S. 1990. Nucleotide sequence and expression of a plasmidencoded chromate resistance determinant from Alcaligenes eutrophus. J. Biol. Chem. 265: 5648–5653.

    PubMed  CAS  Google Scholar 

  • Nies, D., Mergeay, M., Friedrich, B. and Schlegel, H.G. 1987. Cloning of plasmid genes encoding resistance to cadmium, zinc and cobalt in Alcaligenes eutrophus CH34. J. Bacteriol. 162: 4865–4868.

    Google Scholar 

  • Nies, D.H., Nies, A., Chu, L. and Silver, S. 1989. Expression and nucleotide sequence of a plasmid-determined divalent cation efflux system from Alcaligenes eutrophus. Proc. Natl. Acad. Sci. USA 86 7351–7355.

    Article  PubMed  CAS  Google Scholar 

  • Nies, D.H. and Silver, S. 1989. Plasmid-determined inducible efflux is responsible for resistance to cadmium, zinc and cobalt in Alcaligenes eutrophus. J. Bacteriol. 171: 896–900.

    PubMed  CAS  Google Scholar 

  • Novick, R.P., Murphy, E., Gryczan, T.J., Baron, E. and Edelman, I. 1979. Penicillinase plasmids of Staphylococcus aureus: restriction-deletion maps. Plasmid 2: 109–129.

    Article  PubMed  CAS  Google Scholar 

  • Nucifora, G., Chu, L, Silver, S. and Misra, T.K. 1989a. Mercury operon regulation by the merR gene of the organomercurial resistance system of plasmid pDU1358. J. Bacteriol. 171: 4241–4247.

    PubMed  CAS  Google Scholar 

  • Nucifora, G., Chu, L, Misra, T.K. and Silver, S. 1989b. Cadmium resistance of Staphylococcus auieus plasmid pl258 results from a Cd2+ efflux ATPase determined by the cadA gene. Proc. Natl. Acad. Sci. USA 86: 3544–3548.

    Article  PubMed  CAS  Google Scholar 

  • O’Halloran, T.V. 1989. Metalloregulatory proteins: metal responsive molecular switches governing gene expression, vol. 25, pp. 105–145 In “Metal Ions in Biological Systems” H. Sigel, ed. Marcel Dekker, New York.

    Google Scholar 

  • O’Halloran, T.V., Frantz, B., Shin, M.K., Ralston, D.M. and Wright, J.G. 1989. The merR heavy metal receptor mediates positive activation in a topologically novel transcription complex. Cell 56: 119–129.

    Article  PubMed  CAS  Google Scholar 

  • Ohtake, H., Fujii, E. and Toda, T. 1990. Reduction of toxic chromate in an industrial effluent by use of a chromate-reducing strain of Enterobacter cloacae. Environ. Technol. Lett., 11: 663–668.

    Article  CAS  Google Scholar 

  • Ohtake, H., Cervantes, C. and Silver, S. 1987. Decreased chromate uptake in Pseudomo nas fluorescens carrying a chromate resistance plasmid. J. Bacteriol. 169:3853–3856.

    PubMed  CAS  Google Scholar 

  • Osborne, F.H. and Ehrlich, H.L. 1976. Oxidation of arsenite by a soil isolate of Alcaligene S. J. Appl. Bacteriol. 41: 295–305.

    PubMed  CAS  Google Scholar 

  • Owolabi, J.B. and Rosen, B.P. 1990. Differential mRNA stability controls relative gene expression within the plasmid-encoded arsenical resistance operon. J. Bacteriol. 172: 2367–2371.

    PubMed  CAS  Google Scholar 

  • Perry, R.D. and Silver, S. 1982. Cadmium and manganese transport in Staphylococcus aureus membrane vesicles. J. Bacteriol. 150: 973–976.

    PubMed  CAS  Google Scholar 

  • Phillips, S.E. and Taylor, M.L 1976. Oxidation of arsenite to arsenate by Alcaligenes faecalis. Appl. Environ. Microbiol. 22: 392–399.

    Google Scholar 

  • Ralston, R.M. and O’Halloran, T.V. 1990. Ultrasensitivity and heavy-metal selectivity of the allosterically modulated MerR transcription complex. Proc. Natl. Acad. Sci. USA 87: 3846–3850.

    Article  PubMed  CAS  Google Scholar 

  • Romanenco, V.I. and Kkoren’kov, V.N. 1977. A pure culture of bacteria utilizing chromates and bichromates as hydrogen acceptors in growth under anaerobic conditions. Mikrobiologiya 46: 414–417.

    Google Scholar 

  • Rosen, B.P., Weigel, U., Karkaria, C. and Gangola, P. 1988. Molecular characterization of an anion pump. The arsA gene product is an arsenite(antimonate)-stimulated ATPase. J. Biol. Chem. 263: 3067–3070.

    PubMed  CAS  Google Scholar 

  • Rosenstein, R. and Götz, F. 1991. Nucleotide sequence and expression of arsenic resistance genes of Staphylococcus xylosus. Molec. Gen. Genet., Submitted.

    Google Scholar 

  • Rouch, D., Camakaris, J., Lee, B.T.O. and Luke, R.K.J. 1985. Inducible plasmid-mediated copper resistance in Escherichia coli. J. Gen. Microbiol. 123: 939–943.

    Google Scholar 

  • Rouch, D., Lee, B.T.O. and Camakaris, J. 1989a. Genetic and molecular basis of copper resistance in Escherichia coli. pp. 439–446. In “Metal lon Homeostasis: Molecular Biology and Chemistry” (eds. D.H. Hamer and D.R. Winge), Alan R. Liss, New York.

    Google Scholar 

  • Rouch, D., Camakaris, J. and Lee, B.T.O. 1989b. Copper transport in Escherichia coli. pp. 469–477. In “Metal lon Homeostasis: Molecular Biology and Chemistry” (eds. D. H. Hamer and D.R. Winge), Alan R. Liss, New York.

    Google Scholar 

  • Sahlman, L., Lamier, A.-M., Lindskog, S. and Dunford, H.B. 1984. The reaction between NADPH and mercuric reductase from Pseudomonas aeruginosa. J. Biol. Chem. 259: 12403–12408.

    PubMed  CAS  Google Scholar 

  • Sahlman, L., Lamier, A.-M. and Lindskog, S. 1986. Rapid-scan stopped-flow studies of the pH dependence of the reaction between mercuric reductase and NADPH. Eur. J. Biochem. 156: 479–488.

    Article  PubMed  CAS  Google Scholar 

  • Sandstrom, A. and Lindskog, S. 1987. Activation of mercuric reductase by the substrate NADPH. Eur. J. Biochem. 164: 243–249.

    Article  PubMed  CAS  Google Scholar 

  • San Francisco, M.J.D., Tisa, L.S. and Rosen, B.P. 1989. Identification of the membrane component of the anion pump encoded by the arsenical resistance operon of plasmid R773. Molec. Microbiol. 3: 15–21.

    Article  CAS  Google Scholar 

  • San Francisco, M.J.D., Hope, C.L., Owolabi, J.B., Tisa, L.S. and Rosen, B.P. 1990. Identification of the metalloregulatory element of the plasmid-encoded arsenical resistance operon. Nucleic Acids Res. 18: 619–624.

    Article  PubMed  CAS  Google Scholar 

  • Shimada, K. and Matsushima, K. 1983. Isolation of potassium chromate-resistant bacterium and reduction of hexavalent chromium by the bacterium. Bull. Faculty Agriculture Mie Univ. 67: 101–106.

    Google Scholar 

  • Silver, S., Budd, K., Leahy, K.M., Shaw, W.V., Hammond, D., Novick, R.P., Willsky, G.R., Malamy, M.H. and Rosenberg, H 1981. Inducible plasmid-determined resistance to arsenate, arsenite and antimony(III) in Escherichia coli and Staphylococcus aureus. J. Bacteriol. 46: 983–996.

    Google Scholar 

  • Silver, S. and Keach, D. 1982. Energy-dependent arsenate efflux: the mechanism of plasmidmediated resistance. Proc. Natl. Acad. Sci. USA 79: 6114–6118.

    Article  PubMed  CAS  Google Scholar 

  • Silver, S. and Laddaga, R.A. 1990. Molecular genetics of heavy metal resistances in Staphylococcus plasmids. In “Molecular Biology of the Staphylococci” (R.P. Novick ed.), VCH Publishers, New York, pp. 531–549.

    Google Scholar 

  • Silver, S. and Misra, T.K. 1988. Plasmid-mediated heavy metal resistances. Annu. Rev. Microbiol. 42: 717–743.

    Article  PubMed  CAS  Google Scholar 

  • Silver, S., Nucifora, G., Chu, L and Misra, T.K. 1989. Bacterial resistance ATPases: primary pumps for exporting toxic cations and anions. Trends Biochem. Sci. 14: 76–80.

    Article  PubMed  CAS  Google Scholar 

  • Strandberg, G.W., Shumate II, S.E. and Parrott Jr., J.R. 1981. Microbial cells as biosorbents for heavy metals: accumulation of uranium by Saccharomyces cerevisiae and Pseudomonas aeruginosa. Appl. Environ. Microbiol. 41: 237–245.

    PubMed  CAS  Google Scholar 

  • Strandberg, G.W. and Arnold Jr., W.D. 1988. Microbial accumulation of neptunium. J. Indus. Microbiol. 3: 329–331.

    Article  CAS  Google Scholar 

  • Summers, A.O. and Silver, S. 1978. Microbial transformations of metals. Annu. Rev. Microbiol. 32: 637–672.

    Article  PubMed  CAS  Google Scholar 

  • Tetaz, T.J. and Luke, R.K.J. 1983. Plasmid-controlled resistance to copper in Escherichia coli. J. Bacteriol. 154: 1263–1268.

    PubMed  CAS  Google Scholar 

  • Thieme, R., Pai, E.F., Schirmer, R.H. and Schulz, G.E. 1981. Three-dimensional structure of glutathione reductase at the 2 Å resolution. J. Mol. Biol. 152: 763–782.

    Article  PubMed  CAS  Google Scholar 

  • Tisa, L.S. and Rosen, B.P. 1989. Molecular characterization of an anion pump: the ArsB protein is the membrane anchor for the ArsA protein. J. Biol. Chem. 265: 190–194.

    Google Scholar 

  • Tisa, L.S. and Rosen, B.P. 1990. Transport systems encoded by bacterial plasmids. J. Bioenerg. Biomembr. 22: 493–507.

    Article  PubMed  CAS  Google Scholar 

  • Trevor, J.T. 1987. Copper resistance in bacteria. Microbiol. Sci. 4: 29–31.

    Google Scholar 

  • Tynecka, Z., Gos, Z., and Zajac, J. 1981. Energy-dependent efflux of cadmium coded by a plasmid resistance determinant in Staphylococcus aureus. J. Bacteriol. 147:313–319.

    PubMed  CAS  Google Scholar 

  • Walsh, CT., Distefano, M.D., Moore, M.J., Shewchuk, L.M. and Verdine, G.L 1988. Molecular basis of bacterial resistance to organomercurial and inorganic mercuric salts. FASEB J. 2: 124–130.

    PubMed  CAS  Google Scholar 

  • Walts, A.E. and Walsh, C.T. 1988. Bacterial organomercurial lyase: novel enzymatic protonolysis of organostannanes. J. Amer. Chem. Soc. 110: 1950–1953.

    Article  CAS  Google Scholar 

  • Wang, P.C., Mori, T., Komori, K., Sasatsu, M., Toda, K. and Ohtake, H. 1989. Isolation and characterization of an Enterobacter cloacae strain that reduces hexavalent chromium under anaerobic conditions. Appl. Environ. Microbiol. 55: 1665–1669.

    PubMed  CAS  Google Scholar 

  • Wang, P.C., Mori, T., Toda, K. and Ohtake, H. 1989. Membrane-associated chromate reductase activity from Enterobacter cloacae. J. Bacteriol. 172: 1670–1672.

    Google Scholar 

  • Weiss, A.A., Silver, S. and Kinscherf, T.G. 1978. Cation transport alteration associated with plasmid-determined resistance to cadmium in Staphylococcus aureus. Antimicrob. Agents Chemother. 14: 856–865.

    PubMed  CAS  Google Scholar 

  • Witte, W., Green, L., Misra, T.K. and Silver, S. 1986. Resistance to mercury and cadmium in chromosomally-resistant Staphylococcus aureus. Antimicrob. Agents Chemother. 29: 663–669.

    PubMed  CAS  Google Scholar 

  • Yoon, K.P. and Silver, S. 1991. A second gene in the cadA cadmium resistance determinant of Staphylococcus aureus plasmid pl258. J. Bacteriol., Submitted.

    Google Scholar 

  • Yoon, K.P., Misra, T.K. and Silver, S. 1991. Regulation of the cadA cadmium resistance determinant of Staphylococcus aureus plasmid pl258. J. Bacteriol., Submitted.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Plenum Press, New York

About this chapter

Cite this chapter

Silver, S. (1992). Bacterial Heavy Metal Detoxification and Resistance Systems. In: Mongkolsuk, S., Lovett, P.S., Trempy, J.E. (eds) Biotechnology and Environmental Science. Springer, Boston, MA. https://doi.org/10.1007/978-0-585-32386-2_14

Download citation

  • DOI: https://doi.org/10.1007/978-0-585-32386-2_14

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-44352-7

  • Online ISBN: 978-0-585-32386-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics