Skip to main content

Abstract

The grounding problem is, generally speaking, the problem of how to embed an artificial agent into its environment such that its behaviour, as well as the mechanisms, representations, etc. underlying it, can be intrinsic and meaningful to the agent itself, rather than dependent on an external designer or observer. This paper briefly reviews Searle’s and Harnad’s analyses of the grounding problem, and then evaluates cognitivist and enactive approaches to overcoming it. It is argued that, although these two categories of approaches differ in their nature and the problems they have to face, both, so far, fall short of solving the grounding problem for similar reasons. Further it is concluded that the reason the problem is still somewhat underestimated lies in the fact that modern situated and embodied AI, despite its emphasis of agent-environment interaction, still fails to fully acknowledge the historically rooted integrated nature of living organisms and their environmental embedding.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Agre, P. E. & Chapman (1987) Pengi: An Implementation of a Theory of Activity. Proceedings of AAAI-87. Menlo Park, CA: AAAI, pp. 268–272.

    Google Scholar 

  • Beer, R. D. (1995) A dynamical systems perspective on agent-environment interaction. Artificial Intelligence 72: 173–215.

    Article  Google Scholar 

  • Beer, R. A. (1996) Toward the Evolution of Dynamical Neural Networks for Minimally Cognitive Behaviour. In: Maes, P., Mataric, M., Meyer, J. A., Pollack J. & Wilson, S. (eds.) From Animals to Animals 4. Proceedings of the Fourth International Conference on Simulation of Adaptive Behavior. Cambridge, MA: MIT Press, pp. 421–429.

    Google Scholar 

  • Bickhard, M. & Terveen, L. (1995) Foundational Issues in Artificial Intelligence and Cognitive Science. Impasse and Solution. New York: Elsevier.

    Google Scholar 

  • Biro, Z. & Ziemke, T. (1998) Evolution of visually-guided approach behaviour in recurrent artificial neural network robot controllers. In: Pfeifer, R., Blumberg, B. Meyer, J.-A. & Wilson, S. W (eds.) From Animals to Animats 5. Proceedings of the Fifth International Conference on Simulation of Adaptive Behavior. Cambridge, MA: MIT Press, pp. 73–76.

    Google Scholar 

  • Brooks, R. A. (1986) A Robust Layered Control System for a Mobile Robot. IEEE Journal of Robotics and Automation 2: 14–23.

    Google Scholar 

  • Brooks, R. A. (1989) A Robot that Walks: Emergent Behavior from a Carefully Evolved Network. Neural Computation 1(2): 253–262.

    Google Scholar 

  • Brooks, R. A. (1990) Elephants Don’t Play Chess. Robotics and Autonomous Systems 6(1–2): 1–16.

    Google Scholar 

  • Brooks, R. A. (1991a) Intelligence Without Representation. Artificial Intelligence 47: 139–160.

    Article  Google Scholar 

  • Brooks, R. A. (1991b) Intelligence Without Reason. Proceedings of the Twelfth International Joint Conference on Artificial Intelligence (IJCAI-91). San Mateo, CA: Morgan Kauffmann, pp. 569–595.

    Google Scholar 

  • Brooks, R. A. (1993) The Engineering of Physical Grounding. Proceedings of the Fifteenth Annual Meeting of the Cognitive Science Society. Hillsdale, NJ: Lawrence Erlbaum, pp. 153–154.

    Google Scholar 

  • Chalmers, D. J. (1992) Subsymbolic computation and the Chinese room. In: Dinsmore, J. (ed.) The Symbolic and Connectionist Paradigms: Closing the Gap. Hillsdale, NJ: Lawrence Erlbaum.

    Google Scholar 

  • Chiel, H. J. & Beer, R. A. (1997) The brain has a body: Adaptive Behavior emerges from interactions of nervous system, body, and environment. Trends in Neurosciences 20:553–557.

    Article  PubMed  CAS  Google Scholar 

  • Clark, A. (1997) Being There. Putting Brain, Body and World Together Again. Cambridge, MA: MIT Press.

    Google Scholar 

  • Clark, A. & Wheeler, M. (1998) Bringing Representation Back to Life. In: Pfeifer, R., Blumberg, B. Meyer, J.-A. & Wilson, S. W (eds.) From Animals to Animats 5. Proceedings of the Fifth International Conference on Simulation of Adaptive Behavior. Cambridge, MA: MIT Press, pp. 3–12.

    Google Scholar 

  • Cliff, D. & Miller, G. F. (1996) Co-evolution of Pursuit and Evasion II: Simulation Methods and Results. In: Maes, P., Mataric, M., Meyer, J.-A., Pollack J. & Wilson, S. (eds.) From Animals to Animats 4. Proceedings of the Fourth International. Conference on Simulation of Adaptive Behavior. Cambridge, MA: MIT Press, pp. 506–515.

    Google Scholar 

  • Cottrell, G. W., Bartell, B. & Haupt, C. (1990) Grounding Meaning in Perception. Proceedings of the German Workshop on Artificial Intelligence (GWAI), pp. 307–321.

    Google Scholar 

  • Dorffner, G. & Prem, E. (1993) Connectionism, Symbol Grounding, and Autonomous Agents. Proceedings of the Fifteenth Annual Meeting of the Cognitive Science Society. Hillsdale, NJ: Lawrence Erlbaum, pp. 144–148.

    Google Scholar 

  • Floreano, D. (1997) Reducing Human Design and Increasing Adaptability in Evolutionary Robotics. In: Gomi, T. (ed.) Evolutionary Robotics. From Intelligent Robots to Artificial Life. Kanata, Canada: AAI Books.

    Google Scholar 

  • Fodor, J. A. (1980) Methodological solipsism considered as a research strategy in cognitive science. Behavioral and Brain Sciences 3: 63–110.

    Article  Google Scholar 

  • Fodor, J. A. (1981) Representations: philosophical essays on the foundations of cognitive science. Cambridge, MA: MIT Press.

    Google Scholar 

  • Fodor, J. A. (1983) The Modularity of Mind. Cambridge, MA: MIT Press.

    Google Scholar 

  • Fodor, J. A. & Pylyshyn, Z. (1988) Connectionism and cognitive architecture: A critical analysis. Cognition 28:3–71.

    Article  PubMed  CAS  Google Scholar 

  • Funes, P. & Pollack, J. B. (1997) Computer evolution of buildable objects. In: Husbands, P. & Harvey, I. (eds.) Proceedings of the Fourth European Conference on Artificial Life. Cambridge, MA: MIT Press, pp. 358–367.

    Google Scholar 

  • Globus, G. G. (1992) Toward a Noncomputational Cognitive Neuroscience. Journal of Cognitive Neuroscience 4(4):299–310.

    Article  Google Scholar 

  • Gruau, F. (1995) Automatic definition of modular neural networks. Adaptive Behavior 2: 151–183.

    Google Scholar 

  • Harnad, S. (1989) Minds, machines and Searle. Journal of Experimental and Theoretical Artificial Intelligence 1: 5–25.

    Article  Google Scholar 

  • Harnad, S. (1990) The Symbol Grounding Problem. Physica D 42: 335–346.

    Article  Google Scholar 

  • Harnad, S. (1993) Symbol Grounding is an Empirical Problem: Neural Nets are Just a Candidate Component. Proceedings of the Fifteenth Annual Meeting of the Cognitive Science Society. Hillsdale, NJ: Lawrence Erlbaum, pp. 169–174.

    Google Scholar 

  • Harnad, S. (1995) Grounding Symbolic Capacity in Robotic Capacity. In: Steels, L. & Brooks, R. A. (eds.) The “artificial life” route to “artificial intelligence”. Building Situated Embodied Agents. New Haven: Lawrence Erlbaum, pp. 276–286.

    Google Scholar 

  • Lakoff, G. (1993) Grounded Concepts Without Symbols. Proceedings of the Fifteenth Annual Meeting of the Cognitive Science Society. Hillsdale, NJ: Lawrence Erlbaum, pp. 161–164.

    Google Scholar 

  • Law, D. and Miikkulainen, R. (1994) Grounding Robotic Control with Genetic Neural Networks. Tech. Rep. AI94-223. Austin: Dept. of Computer Sciences, The University of Texas at Austin.

    Google Scholar 

  • Loeb, J. (1918) Forced movements, tropisms, and animal conduct. Philadelphia: Lippincott Company.

    Google Scholar 

  • Lund, H. H.; Hallam, J. & Lee, W. (1997) Evolving robot morphology. Proceedings of the IEEE Fourth International Conference on Evolutionary Computation. IEEE Press.

    Google Scholar 

  • Maturana, H. and Varela, F. (1987) The Tree of Knowledge: The Biological Roots of Human Understanding. Boston, MA: Shambhala.

    Google Scholar 

  • Mondada, F. & Floreano, D. (1995) Evolution of neural control structures: Some experiments on mobile robots. Robotics and Autonomous Systems 16(2–4):183–196.

    Article  Google Scholar 

  • Newell, A. (1980) Physical Symbol Systems. Cognitive Science A: 135-183.

    Google Scholar 

  • Newell, A. & Simon, H. (1976) Computer science as empirical inquiry: Symbols and search. Communications of the ACM 19: 113–126.

    Article  Google Scholar 

  • Nolfi, S. (1997a) Using emergent modularity to develop control systems for mobile robots. Adaptive Behavior 5(3): 343–363.

    Article  Google Scholar 

  • Nolfi, S. (1997b) Evolving Non-Trivial Behavior on Autonomous Robots: Adaptation is More Powerful Than Decomposition and Integration. In: Gomi, T. (ed.) Evolutionary Robotics. From Intelligent Robots to Artificial Life. Kanata, Canada: AAI Books.

    Google Scholar 

  • Peschl, M. F. (1996) The Representational Relation Between Environmental Structures and Neural Systems: Autonomy and Environmental Dependency in Neural Knowledge Representation. Nonlinear Dynamics, Psychology and Life Sciences 1 (3).

    Google Scholar 

  • Pfeifer, R. (1995) Cognition. Perspectives from autonomous agents. Robotics and Autonomous Systems 15: 47–70.

    Article  Google Scholar 

  • Pfeifer, R. & Scheier, C. (1998) Understanding Intelligence. Cambridge, MA: MIT Press.

    Google Scholar 

  • Port, R. & van Gelder, T. (1995) Mind as Motion: Explorations in the Dynamics of Cognition. Cambridge, MA: MIT Press.

    Google Scholar 

  • Regier, T. (1992) The Acquisition of Lexical Semantics for Spatial Terms: A Connectionist Model of Perceptual Categorization. PhD Thesis / Tech. Rep. TR-92-062. Berkeley: Dept. of Computer Science, University of California at Berkeley.

    Google Scholar 

  • Roeder, K. & Treat, A. (1957) Ultrasonic reception by the tympanic organs of noctoid moths. Journal of Experimental Zoology 134:127–158.

    Article  PubMed  CAS  Google Scholar 

  • Rutkowska, J. C. (1996) Reassessing Piaget’s Theory of Sensorimotor Intelligence: A View from Cognitive Science. In: Bremner, J. G. (ed.) Infant Development: Recent Advances. Hillsdale, NJ: Lawrence Erlbaum.

    Google Scholar 

  • Rylatt, M. & Czarnecki, C. (1998) Beyond Physical Grounding and Naive Time: Investigations into Short-Term Memory. In: Pfeifer, R., Blumberg, B., Meyer, J.-A. & Wilson, S. W (eds.) From Animals to Animats 5. Proceedings of the Fifth International Conference on Simulation of Adaptive Behavior. Cambridge, MA: MIT Press, pp. 22–31.

    Google Scholar 

  • Schank, R. C. & Abelson, R. P. (1977) Scripts, Plans, Goals, and Understanding. Lawrence Erlbaum.

    Google Scholar 

  • Searle, J. (1980) Minds, brains and programs. Behavioral and Brain Sciences 3: 417–457.

    Google Scholar 

  • Sharkey, N. E. (1997) Neural networks for coordination and control: The portability of experiential representations. Robotics and Autonomous Systems 22(3–4): 345–359.

    Article  Google Scholar 

  • Sharkey, N. E. & Heemskerk, J. H. (1997) The Neural Mind and the Robot. In: Browne, A. J. (Ed.) Neural Perspectives on Cognition and Adaptive Robotics. Bristol, UK: IOP Press.

    Google Scholar 

  • Sharkey, N. E. & Jackson, S. A. (1994) Three Horns of the Representational Trilemma. In: Honavar, V. & Uhr, L. (eds.) Symbol Processing and Connectionist Models for Artificial Intelligence and Cognitive Modeling: Steps towards Integration. Academic Press, pp. 155–189.

    Google Scholar 

  • Sharkey, N. E. & Jackson, S. A. (1996) Grounding Computational Engines. Artificial Intelligence Review 10:65–82.

    Article  Google Scholar 

  • Sharkey, N. E. & Ziemke, T. (1998) A consideration of the biological and psychological foundations of autonomous robotics. Connection Science 10(3–4): 361–391.

    Article  Google Scholar 

  • Sherrington, C. S. (1906) The integrative action of the nervous system. New York: C. Scribner’s Sons.

    Google Scholar 

  • Tani, J. (1996) Does Dynamics Solve the Symbol Grounding Problem of Robots? An Experiment in Navigation Learning. Learning in Robots and Animals. Working Notes. AISB’96 workshop, Brighton, UK.

    Google Scholar 

  • van Gelder, T.J. (1995) What might cognition be if not computation? Journal of Philosophy 91: 345–381.

    Article  Google Scholar 

  • van Gelder, T.J. (1998) The Dynamical Hypothesis in Cognitive Science. Behavioral and Brain Sciences.

    Google Scholar 

  • Varela, E, Thompson, E. & Rosch, E. (1991) The Embodied Mind. Cognitive Science and Human Experience. Cambridge, MA: MIT Press.

    Google Scholar 

  • von Uexküll, J. (1928) Theoretische Biologie. Frankfurt/Main, Germany: Suhrkamp Verlag.

    Google Scholar 

  • Wilson, S. W. (1991) The Animat Path to AI. From Animals to Animats: Proceedings of the First International Conference on Simulation of Adaptive Behavior. Cambridge, MA: MIT Press.

    Google Scholar 

  • Ziemke, T. (1996a) Towards Adaptive Behaviour System Integration using Connectionist Infinite State Automata. In: Maes, P., Mataric, M., Meyer, J.-A., Pollack J. & Wilson, S. (eds.) From Animals to Animats 4. Proceedings of the Fourth International Conference on Simulation of Adaptive Behavior. Cambridge, MA: MIT Press, pp. 145–154.

    Google Scholar 

  • Ziemke, T. (1996b) Towards Autonomous Robot Control via Self-Adapting Recurrent Networks. Artificial Neural Networks ICANN 96. Berlin/Heidelberg, Germany: Springer Verlag, pp. 611–616.

    Google Scholar 

  • Ziemke, T. (1996c) Towards Adaptive Perception in Autonomous Robots using Second-Order Recurrent Networks. Proceedings of the First Euromicro Workshop on Advanced Mobile Robots (EUROBOT’ 96). Los Alamitos, CA: IEEE Computer Society Press, pp. 89–98.

    Chapter  Google Scholar 

  • Ziemke, T. (1997) The ‘Environmental Puppeteer’ Revisited: A Connectionist Perspective on ‘Autonomy’. Proceedings of the 6th European Workshop on Learning Robots (EWLR-6). Brighton, UK, August 1997.

    Google Scholar 

  • Ziemke, T. (1998) Adaptive Behavior in Autonomous Agents. Presence 7(6):564–587.

    Article  Google Scholar 

  • Ziemke, T. & Sharkey, N. E. (eds.) (1998) Biorobotics. Special issue of Connection Science 10(3–4).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Kluwer Academic/Plenum Publishers

About this chapter

Cite this chapter

Ziemke, T. (1999). Rethinking Grounding. In: Riegler, A., Peschl, M., von Stein, A. (eds) Understanding Representation in the Cognitive Sciences. Springer, Boston, MA. https://doi.org/10.1007/978-0-585-29605-0_20

Download citation

  • DOI: https://doi.org/10.1007/978-0-585-29605-0_20

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-46286-3

  • Online ISBN: 978-0-585-29605-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics