Skip to main content

Biomarker Targets and Novel Therapeutics

  • Chapter
  • First Online:
Book cover Ovarian Cancer

Part of the book series: Cancer Treatment and Research ((CTAR,volume 149))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Harries M, Gore M. Part I. Chemotherapy for epithelial ovarian cancer-treatment at first diagnosis. Lancet Oncol. 2002;3(9):529–536.

    Article  CAS  PubMed  Google Scholar 

  2. Jemal A, Siegel R, Ward E, et al. Cancer statistics, 2008. CA Cancer J Clin. 2008;58(2):71–96.

    Article  PubMed  Google Scholar 

  3. Jemal A, Siegel R, Ward E, et al. Cancer statistics, 2008. CA Cancer J Clin. 2008;58:71–96.

    Google Scholar 

  4. Goodman MT, Correa CN, Tung KH, et al. Stage at diagnosis of ovarian cancer in the United States, 1992–1997. Cancer. 2003;97(10 Suppl):2648–2659.

    Article  PubMed  Google Scholar 

  5. Bristow RE, Tomacruz RS, Armstrong DK, Trimble EL, Montz FJ. Survival effect of maximal cytoreductive surgery for advanced ovarian carcinoma during the platinum era: a meta-analysis. J Clin Oncol. 2002;20(5):1248–1259.

    Article  PubMed  Google Scholar 

  6. McGuire WP, Hoskins WJ, Brady MF, et al. Cyclophosphamide and cisplatin compared with paclitaxel and cisplatin in patients with stage III and stage IV ovarian cancer. N Engl J Med. 1996;334(1):1–6.

    Article  CAS  PubMed  Google Scholar 

  7. Ozols RF, Bundy BN, Greer BE, et al. Phase III trial of carboplatin and paclitaxel compared with cisplatin and paclitaxel in patients with optimally resected stage III ovarian cancer: a Gynecologic Oncology Group study. J Clin Oncol. 2003;21(17):3194–3200.

    Article  CAS  PubMed  Google Scholar 

  8. Alberts DS, Liu PY, Hannigan EV, et al. Intraperitoneal cisplatin plus intravenous cyclophosphamide versus intravenous cisplatin plus intravenous cyclophosphamide for stage III ovarian cancer. N Engl J Med. 1996;335(26):1950–1955.

    Article  CAS  PubMed  Google Scholar 

  9. Armstrong DK, Bundy B, Wenzel L, et al. Intraperitoneal cisplatin and paclitaxel in ovarian cancer. N Engl J Med. 2006;354(1):34–43.

    Article  CAS  PubMed  Google Scholar 

  10. Markman M, Bundy BN, Alberts DS, et al. Phase III trial of standard-dose intravenous cisplatin plus paclitaxel versus moderately high-dose carboplatin followed by intravenous paclitaxel and intraperitoneal cisplatin in small-volume stage III ovarian carcinoma: an intergroup study of the Gynecologic Oncology Group, Southwestern Oncology Group, and Eastern Cooperative Oncology Group. J Clin Oncol. 2001;19(4):1001–1007.

    CAS  PubMed  Google Scholar 

  11. Hess LM, Benham-Hutchins M, Herzog TJ, et al. A meta-analysis of the efficacy of intraperitoneal cisplatin for the front-line treatment of ovarian cancer. Int J Gynecol Cancer. 2007;17(3):561–570.

    Article  CAS  PubMed  Google Scholar 

  12. Markman M, Liu PY, Wilczynski S, et al. Phase III randomized trial of 12 versus 3 months of maintenance paclitaxel in patients with advanced ovarian cancer after complete response to platinum and paclitaxel-based chemotherapy: a Southwest Oncology Group and Gynecologic Oncology Group trial. J Clin Oncol. 2003;21(13):2460–2465.

    Article  CAS  PubMed  Google Scholar 

  13. Demetri GD, von Mehren M, Blanke CD, et al. Efficacy and safety of imatinib mesylate in advanced gastrointestinal stromal tumors. N Engl J Med. 2002;347(7):472–480.

    Article  CAS  PubMed  Google Scholar 

  14. Miller K, Wang M, Gralow J, et al. Paclitaxel plus bevacizumab versus paclitaxel alone for metastatic breast cancer. N Engl J Med. 2007;357(26):2666–2676.

    Article  CAS  PubMed  Google Scholar 

  15. Landen CN Jr, Birrer MJ, Sood AK. Early events in the pathogenesis of epithelial ovarian cancer. J Clin Oncol. 2008;26(6):995–1005.

    Article  PubMed  Google Scholar 

  16. Wong KK, Lu KH, Malpica A, Bodurka DC, Shvartsman HS, Schmandt RE, et al. Significantly greater expression of ER, PR, and ECAD in advanced-stage low-grade ovarian serous carcinoma as revealed by immunohistochemical analysis. Int J Gynecol Pathol. 2007;26(4):404–409.

    Article  PubMed  Google Scholar 

  17. Kar R, Sen S, Singh A, et al. Role of apoptotic regulators in human epithelial ovarian cancer. Cancer Biol Ther. 2007;6(7):1101–5.

    Google Scholar 

  18. Nakanishi Y, Kodama J, Yoshinouchi M, et al. The expression of vascular endothelial growth factor and transforming growth factor-beta associates with angiogenesis in epithelial ovarian cancer. Int J Gynecol Pathol. 1997;16(3):256–262.

    Article  CAS  PubMed  Google Scholar 

  19. Yoneda J, Kuniyasu H, Crispens MA, Price JE, Bucana CD, Fidler IJ. Expression of angiogenesis-related genes and progression of human ovarian carcinomas in nude mice. J Natl Cancer Inst. 1998;90(6):447–454.

    Article  CAS  PubMed  Google Scholar 

  20. Conejo-Garcia JR, Benencia F, Courreges MC, et al. Tumor-infiltrating dendritic cell precursors recruited by a beta-defensin contribute to vasculogenesis under the influence of Vegf-A. Nat Med. 2004;10(9):950–958.

    Article  CAS  PubMed  Google Scholar 

  21. Fischer-Colbrie J, Witt A, Heinzl H, et al. EGFR and steroid receptors in ovarian carcinoma: comparison with prognostic parameters and outcome of patients. Anticancer Res. 1997;17(1B):613–619.

    CAS  PubMed  Google Scholar 

  22. Berchuck A, Kamel A, Whitaker R, et al. Overexpression of HER-2/neu is associated with poor survival in advanced epithelial ovarian cancer. Cancer Res. 1990;50(13):4087–4091.

    CAS  PubMed  Google Scholar 

  23. Vermeij J, Teugels E, Bourgain C, et al. Genomic activation of the EGFR and HER2-neu genes in a significant proportion of invasive epithelial ovarian cancers. BMC Cancer. 2008;8:3.

    Google Scholar 

  24. Rubin SC, Finstad CL, Wong GY, Almadrones L, Plante M, Lloyd KO. Prognostic significance of HER-2/neu expression in advanced epithelial ovarian cancer: a multivariate analysis. Am J Obstet Gynecol. 1993;168(1 Pt 1):162–169.

    CAS  PubMed  Google Scholar 

  25. Dabrow MB, Francesco MR, McBrearty FX, Caradonna S. The effects of platelet-derived growth factor and receptor on normal and neoplastic human ovarian surface epithelium. Gynecol Oncol. 1998;71(1):29–37.

    Article  CAS  PubMed  Google Scholar 

  26. Dewar AL, Zannettino AC, Hughes TP, Lyons AB. Inhibition of c-fms by imatinib: expanding the spectrum of treatment. Cell Cycle. 2005;4(7):851–853.

    CAS  PubMed  Google Scholar 

  27. Dewar AL, Cambareri AC, Zannettino AC, et al. Macrophage colony-stimulating factor receptor c-fms is a novel target of imatinib. Blood. 2005;105(8):3127–3132.

    Article  CAS  PubMed  Google Scholar 

  28. Garcia AA, Hirte H, Fleming G, et al. Phase II clinical trial of bevacizumab and low-dose metronomic oral cyclophosphamide in recurrent ovarian cancer: a trial of the California, Chicago, and Princess Margaret Hospital phase II consortia. J Clin Oncol. 2008;26(1):76–82.

    Article  CAS  PubMed  Google Scholar 

  29. Chura JC, Van Iseghem K, Downs LSJ, Carson LF, Judson PL. Bevacizumab plus cyclophosphamide in heavily pretreated patients with recurrent ovarian cancer. Gynecol Oncol. 2007;107:326–330.

    Article  CAS  PubMed  Google Scholar 

  30. Cannistra SA, Matulonis UA, Penson RT, et al. Phase II study of bevacizumab in patients with platinum-resistant ovarian cancer or peritoneal serous cancer. J Clin Oncol. 2007;25(33):5180–5186.

    Article  CAS  PubMed  Google Scholar 

  31. Burger RA, Sill MW, Monk BJ, Greer BE, Sorosky JI. Phase II trial of bevacizumab in persistent or recurrent epithelial ovarian cancer or primary peritoneal cancer: a Gynecologic Oncology Group Study. J Clin Oncol. 2007;25:5150–5152.

    Article  Google Scholar 

  32. Herbst RS. (Tarceva): an update on the clinical trial program. Semin Oncol. 2003;30:34–46.

    CAS  PubMed  Google Scholar 

  33. Schilder RJ, Sill MW, Chen X, et al. Phase II study of gefitinib in patients with relapsed or persistent ovarian or primary peritoneal carcinoma and evaluation of epidermal growth factor receptor mutations and immunohistochemical expression: a Gynecologic Oncology Group Study. Clin Cancer Res. 2005;11(15):5539–5548.

    Article  CAS  PubMed  Google Scholar 

  34. Secord AA, Blessing JA, Armstrong DK, et al. Phase II trial of cetuximab and carboplatin in relapsed platinum-sensitive ovarian cancer and evaluation of epidermal growth factor receptor expression: a Gynecologic Oncology Group study. Gynecol Oncol. 2008;108(3):493–499.

    Article  CAS  PubMed  Google Scholar 

  35. Alberts DS, Liu PY, Wilczynski SP, et al. Phase II trial of imatinib mesylate in recurrent, biomarker positive, ovarian cancer (Southwest Oncology Group Protocol S0211). Int J Gynecol Cancer. 2007;17(4):784–788.

    Article  CAS  PubMed  Google Scholar 

  36. Gordon MS, Matei D, Aghajanian C, et al. Clinical activity of pertuzumab (rhuMAb 2C4), a HER dimerization inhibitor, in advanced ovarian cancer: potential predictive relationship with tumor HER2 activation status. J Clin Oncol. 2006;24(26):4324–4332.

    Article  CAS  PubMed  Google Scholar 

  37. Makhija S, Glenn D, Ueland F, et al. Results from a phase II randomized, placebo-controlled, double-blind trial suggest improved PFS with the additon of pertuzumab to gemcitabine in patients with platinum-resistant ovarian, fallopian tube, or primary peritoneal cancer. J Clin Oncol. 2007;25(18S).

    Google Scholar 

  38. Palayekar MJ, Herzog TJThe emerging role of epidermal growth factor receptor inhibitors in ovarian cancer. Int J Gynecol Cancer. 2008;18(5):879–90.

    Google Scholar 

  39. Minami H, Nakagawa K, Kawada K, et al A phase I study of GW572016 in patients with solid tumors. J Clin Oncol. 2004;22(14S).

    Google Scholar 

  40. Chu Q, Goldstein L, Murray N, et al A phase I, open-label study of the safety, tolerability and pharmacokinetics of lapatinib (GW572016) in combination with letrozole in cancer patients. J Clin Oncol. 2005;16S.

    Google Scholar 

  41. Kimball KJ, Numnum TN, Estes JM, Kirby TO, Barnes MN, Alvarez RD A phase I trial of lapatinib in combination with carboplatin in patients with platinum sensitive recurrent epithelial ovarian cancer. J Clin Oncol. 2007;25(18S).

    Google Scholar 

  42. Wong KK, Fracasso PM, Bukowski RM, et al HKI-272, an irreversible pan erbB rceptor tyrosine kinase inhibitor: preliminary phase 1 results in patients with solid tumors: ASCO Annual Meeting Proceedings Part I. J Clin Oncol. 2006;24(18S).

    Google Scholar 

  43. Campos S, Hamid O, Seiden MV, et al. Multicenter, randomized phase II trial of oral CI-1033 for previously treated advanced ovarian cancer. J Clin Oncol. 2005;23(24):5597–5604.

    Article  CAS  PubMed  Google Scholar 

  44. Madhusudan S, Tamir A, Bates N, et al. A multicenter phase I gene therapy clinical trial involving intraperitoneal administration of E1A-lipid complex in patients with recurrent epithelial ovarian cancer overexpressing HER-2/neu oncogene. Clin Cancer Res. 2004;10(9):2986–2996.

    Article  CAS  PubMed  Google Scholar 

  45. Lee CP, Attard G, Poupard L, et al. A phase I study of BIBF 1120, an orally active triple angiokinase inhibitor (VEGFR, PDGFR, FGFR) in patients with advanced solid malignancies: ASCO Annual Meeting Proceedings. J Clin Oncol. 2005;23(16S).

    Google Scholar 

  46. Seiden MV, Burris HA, Matulonis U, et al. A phase II trial of EMD72000 (matuzumab), a humanized anti-EGFR monoclonal antibody, in patients with platinum-resistant ovarian and primary peritoneal malignancies. Gynecol Oncol. 2007;104(3):727–731.

    Article  CAS  PubMed  Google Scholar 

  47. Woenckhaus J, Steger K, Sturm K, Munstedt K, Franke FE, Fenic I. Prognostic value of PIK3CA and phosphorylated AKT expression in ovarian cancer. Virchows Arch. 2007;450(4):387–395.

    Article  CAS  PubMed  Google Scholar 

  48. Lee S, Choi EJ, Jin C, Kim DH. Activation of PI3K/AKT pathway by PTEN reduction and PIK3CA mRNA amplification contributes to cisplatin resistance in an ovarian cancer cell line. Gynecol Oncol. 2005;97(1):26–34.

    Article  CAS  PubMed  Google Scholar 

  49. Zhang L, Huang J, Yang N, Greshock J, Liang S, Hasegawa K, et al. Integrative genomic analysis of phosphatidylinositol 3'-kinase family identifies PIK3R3 as a potential therapeutic target in epithelial ovarian cancer. Clin Cancer Res. 2007;13(18 Pt 1):5314–5321.

    Article  CAS  PubMed  Google Scholar 

  50. Ramirez PT, Landen CN Jr, Coleman RL, Milam MR, Levenback C, Johnston TA, et al. Phase I trial of the proteasome inhibitor bortezomib in combination with carboplatin in patients with platinum- and taxane-resistant ovarian cancer. Gynecol Oncol. 2008;108(1):68–71.

    Article  CAS  PubMed  Google Scholar 

  51. Frankel A, Man S, Elliott P, Adams J, Kerbel RS. Lack of multicellular drug resistance observed in human ovarian and prostate carcinoma treated with the proteasome inhibitor PS-341. Clin Cancer Res. 2000;6(9):3719–3728.

    CAS  PubMed  Google Scholar 

  52. Aghajanian C, Dizon DS, Sabbatini P, Raizer JJ, Dupont J, Spriggs DR. Phase I trial of bortezomib and carboplatin in recurrent ovarian or primary peritoneal cancer. J Clin Oncol. 2005;23(25):5943–5949.

    Article  CAS  PubMed  Google Scholar 

  53. Kavan P, Melnychuk D, Langleben A, et al. Phase I study of ECO-4601, a novel Ras pathway inhibitor. ASCO Annual Meeting Proceedings Part I. J Clin Oncol 2007;25(18S).

    Google Scholar 

  54. Kuhn W, Schmalfeldt B, Reuning U, et al. Prognostic significance of urokinase (uPA) and its inhibitor PAI-1 for survival in advanced ovarian carcinoma stage FIGO IIIc. Br J Cancer. 1999;79(11–12):1746–1751.

    Article  CAS  PubMed  Google Scholar 

  55. Chambers SK, Ivins CM, Carcangiu ML. Plasminogen activator inhibitor-1 is an independent poor prognostic factor for survival in advanced stage epithelial ovarian cancer patients. Int J Cancer. 1998;79(5):449–454.

    Article  CAS  PubMed  Google Scholar 

  56. Chambers SK, Ivins CM, Carcangiu ML. Urokinase-type plasminogen activator in epithelial ovarian cancer: a poor prognostic factor, associated with advanced stage. Int J Gynecol Cancer. 1998;8:242–250.

    Article  Google Scholar 

  57. van der Burg ME, Henzen-Logmans SC, Berns EM, van Putten WL, Klijn JG, Foekens JA. Expression of urokinase-type plasminogen activator (uPA) and its inhibitor PAI-1 in benign, borderline, malignant primary and metastatic ovarian tumors. Int J Cancer. 1996;69(6):475–479.

    Article  PubMed  Google Scholar 

  58. Saldanha RG, Molloy MP, Bdeir K, et al. Proteomic identification of lynchpin urokinase plasminogen activator receptor protein interactions associated with epithelial cancer malignancy. J Proteome Res. 2007;6(3):1016–1028.

    Article  CAS  PubMed  Google Scholar 

  59. Chambers SK, Wang Y, Gertz RE, Kacinski BM. Macrophage colony-stimulating factor mediates invasion of ovarian cancer cells through urokinase. Cancer Res. 1995;55(7):1578–1585.

    CAS  PubMed  Google Scholar 

  60. Hussain MM, Kotz H, Minasian L, et al. Phase II trial of carboxyamidotriazole in patients with relapsed epithelial ovarian cancer. J Clin Oncol. 2003;21(23):4356–4363.

    Article  CAS  PubMed  Google Scholar 

  61. Berkenblit A, Matulonis UA, Kroener JF, et al. A6, a urokinase plasminogen activator (uPA)-derived peptide in patients with advanced gynecologic cancer: a phase I trial. Gynecol Oncol. 2005;99(1):50–7.

    Article  CAS  PubMed  Google Scholar 

  62. Ghamande S, Silverman MH, Gold MA, et al. A phase II randomized, double-blind, placebo-controlled trial of clinical activity and safety of Å6 in patients with asymptomatic CA 125 progression of epithelial ovarian, fallopian tube, or primary peritoneal cancer. ASCO Annual Meeting Proceedings Part I. J Clin Oncol 2007;25(18S).

    Google Scholar 

  63. Odunsi K, Sabbatini P. Harnessing the immune system for ovarian cancer therapy. Am J Reprod Immunol. 2008;59(1):62–74.

    Article  CAS  PubMed  Google Scholar 

  64. Hung CF, Wu TC, Monie A, Roden R. Antigen-specific immunotherapy of cervical and ovarian cancer. Immunol Rev. 2008;222:43–69.

    Article  CAS  PubMed  Google Scholar 

  65. Odunsi K, Qian F, Matsuzaki J, et al. Vaccination with an NY-ESO-1 peptide of HLA class I/II specificities induces integrated humoral and T cell responses in ovarian cancer. Proc Natl Acad Sci USA. 2007;104(31):12837–12842.

    Article  CAS  PubMed  Google Scholar 

  66. Zhang L, Conejo-Garcia JR, Katsaros D, et al. Intratumoral T cells, recurrence, and survival in epithelial ovarian cancer. N Engl J Med. 2003;348(3):203–213.

    Article  CAS  PubMed  Google Scholar 

  67. Wang Y, Kristensen GB, Borresen-Dale AL, Helland A. TP53 mutations and codon 72 genotype -- impact on survival among ovarian cancer patients. Ann Oncol. 2007;18(5):964–966.

    Article  CAS  PubMed  Google Scholar 

  68. Bennett M, Macdonald K, Chan SW, Luzio JP, Simari R, Weissberg P. Cell surface trafficking of Fas: a rapid mechanism of p53-mediated apoptosis. Science. 1998;282(5387):290–293.

    Article  CAS  PubMed  Google Scholar 

  69. Zeimet AG, Marth C. Why did p53 gene therapy fail in ovarian cancer? Lancet Oncol. 2003;4(7):415–422.

    Article  CAS  PubMed  Google Scholar 

  70. Lambeck A, Leffers N, Hoogeboom BN, et al. P53-specific T cell responses in patients with malignant and benign ovarian tumors: implications for p53 based immunotherapy. Int J Cancer. 2007;121(3):606–614.

    Article  CAS  PubMed  Google Scholar 

  71. Hassan R, Ho M. Mesothelin targeted cancer immunotherapy. Eur J Cancer. 2008;44(1):46–53.

    Article  CAS  PubMed  Google Scholar 

  72. Oregovomab: anti-CA-125 monoclonal antibody B43.13 -- AltaRex, B43.13, MAb B43.13, monoclonal antibody B43.13. Drugs R D. 2006;7(6):379–383.

    Google Scholar 

  73. Berek JS, Taylor PT, Nicodemus CF. CA125 velocity at relapse is a highly significant predictor of survival post relapse: results of a 5-year follow-up survey to a randomized placebo-controlled study of maintenance oregovomab immunotherapy in advanced ovarian cancer. J Immunother. 2008;31(2):207–214.

    Article  PubMed  Google Scholar 

  74. Sabbatini P, Odunsi K. Immunologic approaches to ovarian cancer treatment. J Clin Oncol. 2007;25(20):2884–2893.

    Article  CAS  PubMed  Google Scholar 

  75. Odunsi K, Jungbluth AA, Stockert E, et al. NY-ESO-1 and LAGE-1 cancer-testis antigens are potential targets for immunotherapy in epithelial ovarian cancer. Cancer Res. 2003;63(18):6076–6083.

    CAS  PubMed  Google Scholar 

  76. Merritt WM, Thaker PH, Landen CN Jr, et al. Analysis of EphA2 expression and mutant p53 in ovarian carcinoma. Cancer Biol Ther. 2006;5(10):1357–1360.

    CAS  PubMed  Google Scholar 

  77. Lu C, Shahzad MM, Wang H, et al. EphA2 overexpression promotes ovarian cancer growth. Cancer Biol Ther. 2008;7(7):1098–103.

    Google Scholar 

  78. Li AJ, Karlan BY. Genetic factors in ovarian carcinoma. Curr Oncol Rep. 2001;3(1):27–32.

    Article  CAS  PubMed  Google Scholar 

  79. Jasonni VM, Amadori A, Gentile G, Alesi L. Potential role of growth factors in ovarian cancer. Front Biosci. 1996;1:g24--g29.

    Google Scholar 

  80. Chambers SK, Kacinski BM, Ivins CM, Carcangiu ML. Overexpression of epithelial macrophage colony-stimulating factor (CSF-1) and CSF-1 receptor: a poor prognostic factor in epithelial ovarian cancer, contrasted with a protective effect of stromal CSF-1. Clin Cancer Res. 1997;3(6):999–1007.

    CAS  PubMed  Google Scholar 

  81. Arbel R, Rojansky N, Klein BY, et al. Inhibitors that target protein kinases for the treatment of ovarian carcinoma. Am J Obstet Gynecol. 2003;188(5):1283–1290.

    Article  CAS  PubMed  Google Scholar 

  82. Posadas EM, Kwitkowski V, Kotz HL, et al. A prospective analysis of imatinib-induced c-KIT modulation in ovarian cancer: a phase II clinical study with proteomic profiling. Cancer. 2007;110(2):309–317.

    Article  CAS  PubMed  Google Scholar 

  83. Marks JR, Davidoff AM, Kerns BJ, et al. Overexpression and mutation of p53 in epithelial ovarian cancer. Cancer Res. 1991;51(11):2979–2984.

    CAS  PubMed  Google Scholar 

  84. Eltabbakh GH, Belinson JL, Kennedy AW, et al. p53 overexpression is not an independent prognostic factor for patients with primary ovarian epithelial cancer. Cancer. 1997;80(5):892–898.

    Article  CAS  PubMed  Google Scholar 

  85. Bartel F, Jung J, Bohnke A, et al. Both germ line and somatic genetics of the p53 pathway affect ovarian cancer incidence and survival. Clin Cancer Res. 2008;14(1):89–96.

    Article  CAS  PubMed  Google Scholar 

  86. Giordano G, Azzoni C, D'Adda T, Merisio C. P16(INK4a) overexpression independent of human papilloma virus (HPV) infection in rare subtypes of endometrial carcinomas. Pathol Res Pract. 2007;203(7):533–538.

    Article  PubMed  Google Scholar 

  87. Meade-Tollin L, Martinez JD. Loss of p53 and overexpression of EphA2 predict poor prognosis for ovarian cancer patients. Cancer Biol Ther. 2007;6(2):288–289.

    Article  CAS  PubMed  Google Scholar 

  88. Tuefferd M, Couturier J, Penault-Llorca F, et al. HER2 status in ovarian carcinomas: a multicenter GINECO study of 320 patients. PLoSONE. 2007;2(11):e1138.

    Google Scholar 

  89. Pils D, Pinter A, Reibenwein J, et al. In ovarian cancer the prognostic influence of HER2/neu is not dependent on the CXCR4/SDF-1 signalling pathway. Br J Cancer. 2007;96(3):485–491.

    Article  CAS  PubMed  Google Scholar 

  90. Steffensen KD, Waldstrom M, Jeppesen U, Jakobsen E, Brandslund I, Jakobsen A. The prognostic importance of cyclooxygenase 2 and HER2 expression in epithelial ovarian cancer. Int J Gynecol Cancer. 2007;17(4):798–807.

    Article  CAS  PubMed  Google Scholar 

  91. Kommoss F, Wolfle J, Bauknecht T, et al. Co-expression of M-CSF transcripts and protein, FMS (M-CSF receptor) transcripts and protein, and steroid receptor content in adenocarcinomas of the ovary. J Pathol. 1994;174(2):111–119.

    Article  CAS  PubMed  Google Scholar 

  92. Kacinski BM, Carter D, Mittal K, et al. Ovarian adenocarcinomas express fms-complementary transcripts and fms antigen, often with coexpression of CSF-1. Am J Pathol. 1990;137(1):135–147.

    CAS  PubMed  Google Scholar 

  93. Toy EP, Azodi M, Folk NL, Zito CM, Zeiss CJ, Chambers SK. Enhanced ovarian cancer tumorigenesis and metastasis by the macrophage colony-stimulating factor. Neoplasisa. 2005;11(2):136–44.

    Article  CAS  PubMed  Google Scholar 

  94. Kacinski BM, Carter D, Kohorn EI, et al. Oncogene expression in vivo by ovarian adenocarcinomas and mixed-mullerian tumors. Yale J Biol Med. 1989;62(4):379–392.

    CAS  PubMed  Google Scholar 

  95. Moser TL, Young TN, Rodriguez GC, Pizzo SV, Bast RC Jr, Stack MS. Secretion of extracellular matrix-degrading proteinases is increased in epithelial ovarian carcinoma. Int J Cancer. 1994;56(4):552–559.

    Article  CAS  PubMed  Google Scholar 

  96. Konecny G, Untch M, Pihan A, et al. Association of urokinase-type plasminogen activator and its inhibitor with disease progression and prognosis in ovarian cancer. Clin Cancer Res. 2001;7(6):1743–1749.

    CAS  PubMed  Google Scholar 

  97. Bruening W, Prowse AH, Schultz DC, Holgado-Madruga M, Wong A, Godwin AK. Expression of OVCA1, a candidate tumor suppressor, is reduced in tumors and inhibits growth of ovarian cancer cells. Cancer Res. 1999;59(19):4973–4983.

    CAS  PubMed  Google Scholar 

  98. Jensen MR, Helin K. OVCA1: emerging as a bona fide tumor suppressor. Genes Dev. 2004;18(3):245–248.

    Article  CAS  PubMed  Google Scholar 

  99. Schultz DC, Vanderveer L, Berman DB, Hamilton TC, Wong AJ, Godwin AK. Identification of two candidate tumor suppressor genes on chromosome 17p13.3. Cancer Res. 1996;56(9):1997–2002.

    CAS  PubMed  Google Scholar 

  100. Yu Y, Xu F, Peng H, et al. NOEY2 (ARHI), an imprinted putative tumor suppressor gene in ovarian and breast carcinomas. Proc Natl Acad Sci USA. 1999;96(1):214–219.

    Article  CAS  PubMed  Google Scholar 

  101. Lu Z, Luo RZ, Peng H, et al. Transcriptional and posttranscriptional down-regulation of the imprinted tumor suppressor gene ARHI (DRAS3) in ovarian cancer. Clin Cancer Res. 2006;12(8):2404–2413.

    Article  CAS  PubMed  Google Scholar 

  102. Feng W, Marquez RT, Lu Z, et al. Imprinted tumor suppressor genes ARHI and PEG3 are the most frequently down-regulated in human ovarian cancers by loss of heterozygosity and promoter methylation. Cancer. 2008;112(7):1489–1502.

    Article  CAS  PubMed  Google Scholar 

  103. Cvetkovic D, Pisarcik D, Lee C, Hamilton TC, Abdollahi A. Altered expression and loss of heterozygosity of the LOT1 gene in ovarian cancer. Gynecol Oncol. 2004;95(3):449–455.

    Article  CAS  PubMed  Google Scholar 

  104. Mok SC, Chan WY, Wong KK, et al. DOC-2, a candidate tumor suppressor gene in human epithelial ovarian cancer. Oncogene. 1998;16(18):2381–2387.

    Article  CAS  PubMed  Google Scholar 

  105. Paley PJ, Goff BA, Gown AM, Greer BE, Sage EH. Alterations in SPARC and VEGF immunoreactivity in epithelial ovarian cancer. Gynecol Oncol. 2000;78(3 Pt 1):336–341.

    Article  CAS  PubMed  Google Scholar 

  106. Brown TJ, Shaw PA, Karp X, Huynh MH, Begley H, Ringuette MJ. Activation of SPARC expression in reactive stroma associated with human epithelial ovarian cancer. Gynecol Oncol. 1999;75(1):25–33.

    Article  CAS  PubMed  Google Scholar 

  107. Kolasa IK, Rembiszewska A, Janiec-Jankowska A, et al. PTEN mutation, expression and LOH at its locus in ovarian carcinomas. Relation to TP53, K-RAS and BRCA1 mutations. Gynecol Oncol. 2006;103(2):692–697.

    Article  CAS  PubMed  Google Scholar 

  108. Obata K, Morland SJ, Watson RH, et al. Frequent PTEN/MMAC mutations in endometrioid but not serous or mucinous epithelial ovarian tumors. Cancer Res. 1998;58(10):2095–2097.

    CAS  PubMed  Google Scholar 

  109. Lee JS, Choi YD, Choi C, Lee MC, Park CS, Min KW. Expression of PTEN in ovarian epithelial tumors and its relation to tumor behavior and growth. Anal Quant Cytol Histol. 2005;27(4):202–210.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Setsuko K. Chambers .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Clouser, M., Hess, L.M., Chambers, S.K. (2009). Biomarker Targets and Novel Therapeutics. In: Stack, M., Fishman, D. (eds) Ovarian Cancer. Cancer Treatment and Research, vol 149. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-98094-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-98094-2_4

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-98093-5

  • Online ISBN: 978-0-387-98094-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics