Skip to main content

Modeling Superconformal Electrodeposition Using an Open Source PDE Solver

  • Chapter
  • First Online:
  • 1881 Accesses

Abstract

A critical aspect in the manufacturing of semiconductor devices is the filling of trenches and vias using metal electrodeposition. This filling process has been characterized extensively with semi-empirical mathematical and computational models, although much work is still required in order to employ less empirical models. However, these models have not been used in a predictive capacity in industry due to the time frame required for code development and experimental design and lack of available modeling software. To overcome these issues, an open source tool called FiPy [1] was developed for solving PDEs that commonly occur in materials science problems. It seeks to address the issues of coding practice and open source development by employing modern coding techniques and providing a flexible coding framework to rapidly pose, prototype, and share models of superfill and general deposition processes.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Gyyer, J. E.; Wheeler, D.; and Warren. J. A.: FiPy: Partial differential Equations with Python, Comput. Sci. Eny. 11(3), 6–15 (2004)

    Google Scholar 

  2. Dukovic, J. O.; and Tobias, C. W.: Simulation of Leveling in Electrodeposition. J. Electrochem. Soc. 137(12), 3748 (1990)

    Article  CAS  Google Scholar 

  3. Madore, C.; Matlosz, M.; and Landolt, D.: Blocking inhibitors in cathodic leveling 1. Theoretical analysis. J. Electrochem. Soc. 143(12), 3927 (1996)

    Article  CAS  Google Scholar 

  4. Andricacos, P. C.; Uzoh, C.; Dukovic, J. O.; Horkans, J.; and Deligianni, H.: Damascene Copper Electroplating for Chip Interconnections. IBM J. Res. Dev. 42(5), 567 (1998)

    Article  CAS  Google Scholar 

  5. Vereecken, P. M.; BinsteadR. A.; Deligianni, H.; and Andricacos, P. C.: The chemistry of additives in damascene copper plating. IBM J. Res. Dev. 49(1), 3 (2005)

    Article  CAS  Google Scholar 

  6. West, A. C.: Theory of filling of high-aspect ratio trenches and vias in presence of additives. J. Electrochem. Soc. 147(1), 227 (2000)

    Article  CAS  Google Scholar 

  7. Alkire, R.; Bergh, T.; and Sani, R. L.: Predicting electrode shape change with use of finite-element methods. J. Electrochem. Soc. 125(12), 1981 (1978)

    Article  Google Scholar 

  8. Hume, E. C.; Deen, W. M.; and Brown, R. A.: Mass-transfer analysis of electrodeposition through polymeric masks. J. Electrochem. Soc. 131(6), 1251 (1984)

    Article  CAS  Google Scholar 

  9. Moffat, T. P.; Wheeler, D.; Huber, W. H.; and Josell, D.: Superconformal electrodeposition of copper. Electrochem. Solid State Lett. 4(4), C26 (2001)

    Article  CAS  Google Scholar 

  10. West, A. C.; Mayer, S.; and ReidJ.: A superfilling model that predicts bump formation. Electrochem. Solid State Lett. 4(7),C50 (2001)

    Article  CAS  Google Scholar 

  11. Adalsteinsson, D. and Sethian, J. A.: A level set approach to a unified model for etching, deposition, and lithography I: Algorithms and two-dimensional simulations. J. Comput. Phys. 120, 128 (1995)

    Article  Google Scholar 

  12. Adalsteinsson, D. and Sethian, J. A.: A level set approach to a unified model for etching, deposition, and lithography II: Three-dimensional simulations. J. Comput. Phys. 122, 348 (1995)

    Article  Google Scholar 

  13. Adalsteinsson, D. and Sethian, J. A.: A level set approach to a unified model for etching, deposition, and lithography III: Redeposition, reemission, surface diffusion and complex simulations. J. Comput. Phys. 138, 193 (1997)

    Article  CAS  Google Scholar 

  14. Josell, D.; Wheeler, D.; Huber, W. H.; and Moffat, T. P.: Superconformal electrodeposition in submicron features. Phys. Rev. Lett. 87(1), 016102 (2001)

    Article  CAS  Google Scholar 

  15. Wheeler, D.; Josell, D.; and Moffat, T. P.: Modeling superconformal electrodeposition using the level set method. J. Electrochem. Soc. 150(5), C302 (2003)

    Article  CAS  Google Scholar 

  16. Moffat, T. P.; Baker, B.; Wheeler, D.; Bonevich, J. E.; Edelstein, M.; Kelly, D. R.; Gan, L.; Stafford G. R.; Chen, P. J.; Egelhoff, W. F.; and Josell, D.: Superconformal electrodeposition of silver in submicrometer features. J. Electrochem. Soc. 149(8), C423 (2002)

    Article  CAS  Google Scholar 

  17. Josell, D.; Wheeler, D.; and Moffat, T. P.: Gold superfill in submicrometer trenches: Experiment and prediction. J. Electrochem. Soc. 153(1), C11 (2006)

    Article  CAS  Google Scholar 

  18. Josell, D.; Wheeler, D.; and Moffat, T. P.; Superconformal deposition by surfactant-catalyzed chemical vapor deposition. Electrochem. Solid State Lett. 5(3), C44 (2002)

    Article  CAS  Google Scholar 

  19. Moffat, T. P.; Wheeler, D.; Kim, S. K.; and Josell, D.; Curvature Enhanced Adsorbate Coverage Model for Electrodeposition. J. Electrochem. Soc. 153(2), C127 (2006)

    Article  CAS  Google Scholar 

  20. Moffat, T. P.; Josell, D.; and Wheeler, D.: Superfilling when adsorbed accelerators are mobile. J. Electrochem. Soc. 154(4), D208 (2007)

    Article  Google Scholar 

  21. Wheeler, D.; Moffat, T. P.; McFadden, G. B.; Coriell, S.; and Josell, D.: Influence of a catalytic surfactant on roughness evolution during film growth. J. Electrochem. Soc. 151(8), C538 (2004)

    Article  CAS  Google Scholar 

  22. Moffat, T. P.; Wheeler, D.; Edelstein, M. D.; and Josell, D.: Superconformal film growth: Mechanism and quantification. IBM J. Res. Dev. 49(1), 19 (2005)

    Article  CAS  Google Scholar 

  23. Moffat, T. P.; Wheeler, D.; and Josell, D.: Quantifying Competitive Adsorption Dynamics in Superfilling Electrolytes. In Deligianni, H.; Mayer, S. T.; Moffat, T. P.; and Stafford, G. R. (eds): Electrodeposition in ULSI and MEMS Fabrication, The Electrochemical Society, Inc., 23 (2005)

    Google Scholar 

  24. Stone, H. A.: A simple derivation of the time-dependent convective-diffusion equation for surfactant transport along a deforming interface. Phys Fluids A-Fluid Dyn. 2(1), 111 (1990)

    Article  CAS  Google Scholar 

  25. Guyer, J. E.; Boettinger, W. J.; Warren, J. A.; and McFadden, G. B.: Phase field modeling of electrochemistry I: Equilibrium. Phys. Rev. E 69, 021603 (2004)

    Article  CAS  Google Scholar 

  26. Guyer, J. E.; Boettinger, W. J.; Warren, J. A.; and McFadden, G. B.: Phase field modeling of electrochemistry II: Kinetics. Phys. Rev. E 69, 0216016 (2004)

    Google Scholar 

  27. Sethian, J. A.: Level Set Methods and Fast Marching Methods. Cambridge University Press (1996)

    Google Scholar 

  28. van Rossum, G.: Python Tutorial. URL http://docs.python.org/tut/.

  29. Jordan, K. G. and Tobias, C. W.: The effect of inhibitor transport on leveling in electrodeposition. J. Electrochem. Soc. 138(5), 1251 (1991)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Wheeler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Wheeler, D., Guyer, J. (2009). Modeling Superconformal Electrodeposition Using an Open Source PDE Solver. In: Shacham-Diamand, Y., Osaka , T., Datta, M., Ohba, T. (eds) Advanced Nanoscale ULSI Interconnects: Fundamentals and Applications. Springer, New York, NY. https://doi.org/10.1007/978-0-387-95868-2_16

Download citation

Publish with us

Policies and ethics