Skip to main content

The need for a coordinated global Hg monitoring network for global and regional models validation

  • Chapter
  • First Online:
Book cover Mercury Fate and Transport in the Global Atmosphere

Summary

Currently, there is not a coordinated observational network for mercury (Hg) that could be used by the modelling community or for establishing recommendations for protecting human and environmental health on a global scale. Current national networks are inadequate as they lack (1) observations of all forms of Hg in the ambient air and in both wet and dry deposition; (2) long-term measurements of Hg and other air pollutants; (3) comprehensive monitoring sites in the free-troposphere; and (4) measurement sites that permit a careful investigation of inter-hemispheric transport and trends in background concentrations. Programs such as the World Meteorological Organization's Global Atmosphere Watch have made substantial efforts to establish data centers and quality control programs to enhance integration of air quality measurements from different national and regional networks, and to establish observational sites in under-sampled, remote regions around the world. Similarly, the International Global Atmospheric Chemistry project (of the International Geosphere-Biosphere Programme) has strongly endorsed the need for international exchange of calibration standards and has helped coordinate multinational field campaigns to address a variety of important issues related to global air quality. Following the lead of these programs and incorporation of a well-defined Hg monitoring component into the existing network sites would be the most expeditious and efficient approach. Close coordination of the global modelling community with the global measurement community would lead to major advances in the global models and advance our understanding of the Hg science while decreasing the uncertainties in global assessments for Hg.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

13.6 References

  • Ariya P, Dastoor A, Amyot M, Schroeder W, Barrie L, Anlauf K, Raofie F, Ryzhkov A, Davignon D, Lalonde J, Steffen A. 2004. Arctic: A sink for mercury. Tellus, 56B: 397–403.

    CAS  Google Scholar 

  • Banic, S.T. Beauchamp, R.J. Tordon, W.H. Schroeder, A. Steffen, K.A. Anlauf and H.K.T. Wong, Vertical distribution of gaseous elemental mercury in Canada. J. Geophys. Res. 108 D9 (2003), p. 4264.

    Article  CAS  Google Scholar 

  • Bergan et al. (1999). L. Gallardo and H. Rodhe, Mercury in the global troposphere: a three-dimensional model study. Atmos. Environ. 33 (1999), pp. 1575–1585.

    Article  CAS  Google Scholar 

  • Bergan T. and H. Rodhe, Oxidation of elemental mercury in the atmosphere; constraints imposed by global scale modeling, Journal of Atmospheric Chemistry 40 (2001), pp. 191–212.

    Article  CAS  Google Scholar 

  • Bergamaschi, P., R. Hein, M. Heimann, and P.J. Crutzen (2000), Inverse modeling of the global CO cycle 1. Inversion of CO mixing ratios, J. Geophys. Res., 105(D2), 1909–1927.

    Article  CAS  Google Scholar 

  • Bey, I., D. Jacob, R. Yantosca, J. Logan, B. Field, A. Fiore, Q. Li, H. Liu, L. Mickley, and M. Schultz (2001), Global modeling of tropospheric chemistry with assimilated meteorology: Model description and evaluation, J. Geophys. Res., 106(D19), 23,073–23,096.

    CAS  Google Scholar 

  • Bullock and Brehme (2002). Atmospheric mercury simulation using the CMAQ model: formulation, description and analysis of wet deposition results. Atmos. Environ. 36 (2002), pp. 2135–2146.

    Article  CAS  Google Scholar 

  • Bullock, R. Jr., Benjey W.G. and Keating, M.H. (1997) The modeling of regional scale atmospheric mercury transport and deposition using RELMAP. In: J.E. Baker, Editor, Atmospheric Deposition of Contaminants to the Great Lakes and Coastal Waters, SETAC, Pensacola, FL (1997), pp. 323–347.

    Google Scholar 

  • Bullock O.R., Brehme KA. 2002. Atmospheric mercury simulation using the CMAQ model: formulation, description, and analysis of wet deposition results. Atmospheric Environment; 36: 2135–2146.

    Article  CAS  Google Scholar 

  • Bullock O. R., (2007) Braverman T., Chapter 2.2 Application of the CMAQ mercury model for U.S. EPA regulatory support Developments in Environmental Sciences, Vol.6 pp. 85–95

    Article  CAS  Google Scholar 

  • A.P. Dastoor, Cloudiness parameterization and verification in a large-scale atmospheric model. Tellus 46A (1994), pp. 615–634.

    Google Scholar 

  • Dastoor AP, Larocque Y. 2004. Global circulation of atmospheric mercury: A modeling study. Atmos. Environ. 38, 147–161.

    Article  CAS  Google Scholar 

  • Daum, P. H., L. I. Kleinman, S. R. Springston, L. J. Nunnermacker, Y.-N. Lee, J. Weinstein-Lloyd, J. Zheng, and C. M. Berkowitz (2004), Origin and properties of plumes of high ozone observed during the Texas 2000 Air Quality Study (TexAQS 2000), J. Geophys. Res., 109, D17306, doi:10.1029/2003JD004311.

    Article  CAS  Google Scholar 

  • Derwent, R. G., P.G. Simmonds, A.J. Manning and T.G. Spain, Trends over a 20-year period from 1987 to 2007 in surface ozone at the atmospheric research station, Mace Head, Ireland, Atmos. Environ., 41, 9091–9098, 2007.

    Article  CAS  Google Scholar 

  • Driscoll, C.T., Han, Y.J., Chen, C.Y., Evers, D.C., Lambert, K.F., Holsen, T.M., Kamman, N.Dvonch, J.T., Graney, J.R., Marsik, F.J., Keeler, G.J., Stevens R.K. (1998) An investigation of source–receptor relationships for mercury in south Florida using event precipitation data. The Science of The Total Environment, Vol. 213, Issues 1-3, Pages 95–108

    Article  Google Scholar 

  • Dvonch, J.T., Graney, J.R., Keeler, G.J., and Stevens, R.K. Utilization of Elemental Tracers to Source Apportion Mercury in South Florida Precipitation. Environmental Science and Technology 33, 4522–4527. 1999.

    Article  CAS  Google Scholar 

  • Dvonch, J.T., Marsik, F.J. and Keeler, G.J. The Use of WSR-88D Radar Data for Source-Apportionment of Wet-Deposition Measurements from the 1995 SoFAMMS. Journal of Climate and Applied Meteorology. 1421-1435, 2005.

    Google Scholar 

  • Ebinghaus R, Slemr F. 2000. Aircraft measurements of atmospheric mercury over southern and eastern Germany. Atmos. Environ., 34(6): 895–903.

    Article  CAS  Google Scholar 

  • Ebinghaus, R, R.M. Tripathi, D. Wallshlager and S.E. Lindberg, Natural and anthropogenic mercury sources and their impact on the air-surface exchange of mercury on regional and global scale. In: R. Ebinghaus et al. Mercury Contaminated Sites, Springer, New York (1999), pp. 1–50.

    Google Scholar 

  • Fitzgerald, W.F., Lamborg, C.H. and Hammerschmidt, C.R., 2007. Marine biogeochemical cycling of mercury. Chemical Reviews, 107(2): 641–662.

    Article  CAS  Google Scholar 

  • Friedli, H.R. et al., 2004. Mercury in the atmosphere around Japan, Korea, and China as observed during the 2001 ACE-Asia field campaign: Measurements, distributions, sources, and implications. J. Geophys. Res.-Atmospheres, 109(D19).

    Google Scholar 

  • Frost G. J., et al. (2006), Effects of changing power plant NO x emissions on ozone in the eastern United States: Proof of concept, J. Geophys. Res., 111, D12306, doi:10.1029/2005JD006354.

    Article  CAS  Google Scholar 

  • Fu, T.-M., D. J. Jacob, P. I. Palmer, K. Chance, Y. X. Wang, B. Barletta, D. R. Blake, J. C. Stanton, and M. J. Pilling (2007), Space-based formaldehyde measurements as constraints on volatile organic compound emissions in east and south Asia and implications for ozone, J. Geophys. Res., 112, D06312, doi:10.1029/2006JD007853.

    Article  CAS  Google Scholar 

  • Gardfeldt, K., and M. Jonsson, Is Bimolecular Reduction of Hg(II) Complexes Possible in Aqueous Systems of Environmental Importance, J. Phys. Chem. A. 107 (22); 4478–4482, 2003

    Article  CAS  Google Scholar 

  • Gildemeister, A.E., Keeler, G.J. and Graney, J.R. Source proximity reflected in spatial and temporal variability in particle and vapor phase Hg concentrations in Detroit, MI. Atmos. Environ. 38, 5227–5236. 2005.

    Google Scholar 

  • Hedgecock, I. M., Trunfio, A., Pirrone, N., Sprovieri, F. (2005) Mercury Chemistry in the MBL: Mediterranean Case and Sensitivity Studies Using the AMCOTS (Atmospheric Mercury Chemistry Over the Sea) Model. Atmospheric Environment, 39, 7217–7230.

    Article  CAS  Google Scholar 

  • Hedgecock, I.M., Pirrone, N., Trunfio, G., Sprovieri, F. (2006) Integrated mercury cycling, transport, and air-water exchange (MECAWEx) model. Journal of Geophysical Research, 111 (D20302), doi: 10.1029/2006JD007117.

    Google Scholar 

  • Horowitz, L. W., A. M. Fiore, G. P. Milly, R. C. Cohen, A. Perring, P. J. Wooldridge, P. G. Hess, L. K. Emmons, and J.-F. Lamarque (2007), Observational constraints on the chemistry of isoprene nitrates over the eastern United States, J. Geophys. Res., 112, D12S08, doi:10.1029/2006JD007747.

    Article  CAS  Google Scholar 

  • Hoyer M, Burke J, Keeler G. 1995. Atmospheric sources, transport and deposition of mercury in Michigan: two years of event precipitation. Water Air Soil Poll., 80: 199–208.

    Article  CAS  Google Scholar 

  • Jaffe, D., H. Price, D. Parrish, A. Goldstein, and J. Harris (2003), Increasing background ozone during spring on the west coast of North America, Geophys. Res. Lett., 30(12), 1613, doi:10.1029/2003GL017024.

    Article  CAS  Google Scholar 

  • Keeler, G.J., Glinsorn, G., Pirrone, N., 1995 Particulate mercury in the atmosphere: Its significance, transport, transformations and sources. Water Air Soil Poll. 80, 159–168.

    Article  CAS  Google Scholar 

  • Keeler, G.J., Hoyer, M. 1997. Recent measurements of atmospheric mercury in the Great Lakes region. In: Atmospheric Deposition of Contaminants to the Great Lakes and Coastal Waters. (Baker JE, editor), SETAC Press, Pensacola, FL, USA, 477pp.

    Google Scholar 

  • Keeler, G.J. and Dvonch, J.T. Atmospheric Mercury: A Decade of Observations in the Great Lakes. In: Dynamics of Mercury Pollution on Regional and Global Scales: Atmospheric Processes and Human Exposures around the World. N. Pirrone and K. Mahaffey Eds. Kluwer Ltd. 2005.

    Google Scholar 

  • Keeler, G.J., Gratz, L. and Al-Wali, K. Influences on the Long-term Atmospheric Mercury Wet Deposition at Underhill, Vermont. Ecotoxicology, 14, 71–83. 2005.

    Article  CAS  Google Scholar 

  • Kellerhals, M., S. Beauchamp, W. Belzer, P. Blanchard, F. Froude, B. Harvey, K. McDonald, M. Pilote, L. Poissant, K. Puckett, B. Schroeder, A. Steffen and R. Tordon, Temporal and spatial variability of total gaseous mercury in Canada: results from the Canadian Atmospheric Mercury Measurement Network (CAMNet). Atmos. Environ. 37 7 (2003), pp. 1003–1011.

    Article  CAS  Google Scholar 

  • Lamborg, C.H. et al., 2002. Modern and historic atmospheric mercury fluxes in both hemispheres: Global and regional mercury cycling implications. Global Biogeochemical Cycles, 16(4): art. no.-1104.

    Google Scholar 

  • Landis MS, Keeler, GJ. 1997. A critical evaluation of an automatic wet-only precipitation collector for mercury and trace element determinations. Environ. Sci. Technol. 31: 2610–2615.

    Article  CAS  Google Scholar 

  • Landis, M.S., Stevens, R.K., Schaedlich, F., Prestbo, E.M., 2002. Development and characterization of an annular denuder methodology for the measurement of divalent inorganic reactive gaseous mercury in ambient air. Environ. Sci. Technol. 36, 3000–30009.

    Article  CAS  Google Scholar 

  • Lei, W., B. de Foy, M. Zavala, R. Volkamer, and L. T. Molina Characterizing ozone production in the Mexico City Metropolitan Area: a case study using a chemical transport model, Atmos. Chem. Phys., 7, 1347–1366, 2007.

    CAS  Google Scholar 

  • Li, Q., D.J. Jacob, I. Bey, P.I. Palmer, B.N. Duncan, B.D. Field, R.V. Martin, A.M. Fiore, R.M. Yantosca, D.D. Parrish, P.G. Simmonds, and S.J. Oltmans, Transatlantic transport of pollution and its effects on surface ozone in Europe and North America, J.Geophys. Res., 107, doi: 10.1029/2001JD001422, 2002.

    Google Scholar 

  • Lin, C., Pehkonen, S.O., 1999. The chemistry of atmospheric mercury: a review. Atmos. Environ. 33, 2067–2079.

    Article  CAS  Google Scholar 

  • Lin, C-J., P. Pongprueksa, S. E. Lindberg, S. O. Pehkonen, D. Byun, C. Jang, Scientific uncertainties in atmospheric mercury models I: Model science evaluation, Atmos. Environ. 40 (2006) 2911–2928.

    Article  CAS  Google Scholar 

  • Lin, C-J., P. Pongprueksa, O.R. Bullock, S.E. Lindberg, S.O. Pehkonen, C. Jang, T. Braverman and T.C. Ho, Scientific uncertainties in atmospheric mercury models II: sensitivity analysis in the CONUS Domain, Atmos. Environ. 41 (2007), pp. 6544–6560.

    Article  CAS  Google Scholar 

  • Liu, B., Keeler, G. J., Dvonch, J. T., Barres, J. A., Lynam, M. M., Marsik, F. J., and Morgan, J.T.: Temporal variability of mercury speciation in urban air, Atmos. Environ., 41, 1911–1923, 2007.

    Article  CAS  Google Scholar 

  • Logan L.A., et al., (1999), Trends in the vertical distribution of ozone: A comparison of two analyses of ozonesonde data, J. Geophys. Res., 104, D21, 26373–26399.

    Article  CAS  Google Scholar 

  • Lynam, M.M. and Keeler, G.J. Automated speciated mercury measurements in Michigan, Environ. Sci. Technol. 39, 3289–3299, 2005.

    Article  CAS  Google Scholar 

  • Mason, R.P., Fitzgerald, W.F. and Morel, F.M.M., 1994. The aquatic biogeochemistry of elemental mercury. Geochim. Cosmochim. Acta, 58: 3191–3198.

    CAS  Google Scholar 

  • Mason, R.P. and Sheu, G.R., 2002. Role of the ocean in the global mercury cycle. Global Biogeochemical Cycles, 16(4): art. no.-1093.

    Google Scholar 

  • Mason, R.R. et al., 2005. Monitoring the response to changing mercury deposition. Environ. Sci. Technol., 39(1): 14A–22A.

    Article  CAS  Google Scholar 

  • Miller, E.K., Van Arsdale, A., Keeler, G. J., Chalmers, A. Poissant, L. and Kammen, N. Estimation and Mapping of Wet and Dry Mercury Deposition Across Northeastern North America. Ecotoxicology, 14, 53–70. 2005.

    Article  CAS  Google Scholar 

  • Müller, J.F. and T Stavrakou (2005), Inversion of CO and NOx emissions, Atmos. Chem. Phys., 5, 1157–1186.

    Article  Google Scholar 

  • Munthe, J., Wangberg, I., Pirrone, N., Iverfeld, A., Ferrara, R., Ebinghaus, R., Feng., R., Gerdfelt, K., Keeler, G.J., Lanzillotta, E., Lindberg, S.E., Lu, J. (2001). Intercomparison of Methods for Sampling and Analysis of Atmospheric Mercury Species. Atmospheric Environment.Vol. 35, 3007–3017.

    Article  CAS  Google Scholar 

  • Munson, C., R.K., 2007. Mercury contamination in remote forest and freshwater ecosystems in the northeastern U.S.: sources, transformations and management options. BioScience 57 (1)

    Google Scholar 

  • Olson, J. R., J. H. Crawford, G. Chen, W. H. Brune, I. C. Faloona, D. Tan, H. Harder, and M. Martinez (2006). A reevaluation of airborne HOx observations from NASA field campaigns, J. Geophys. Res., 111, D10301, doi:10.1029/2005JD006617.

    Article  CAS  Google Scholar 

  • Oltmans, S.J., et al., (2006), Long-term changes in tropospheric ozone, Atmos. Environ., 40, 3156–3173.

    Article  CAS  Google Scholar 

  • Parrish, D. D., et al. (2004), Changes in the photochemical environment of the temperate North Pacific troposphere in response to increased Asian emissions, J. Geophys. Res., 109, D23S18, doi:10.1029/2004JD004978.

    Article  CAS  Google Scholar 

  • Pai, P. P. Karamchandani and C. Seigneur, Simulation of the regional atmospheric transport and fate of mercury using a comprehensive Eulerian model. Atmos. Environ. 31 (1997), pp. 2717–2732.

    Article  CAS  Google Scholar 

  • Parrish, D. D., J. S. Holloway, M. Trainer, P. C. Murphy, G. L. Forbes, and F. C. Fehsenfeld. Export of North American ozone pollution to the North Atlantic Ocean. Science, 259, 1436–1439, 1993.

    Article  CAS  Google Scholar 

  • Pirrone, N., G. J. Keeler, I. Allegrini (1996). Particle size distributions of atmospheric mercury in urban and rural areas. Journal of Aerosol Science,Vol. 27, Suppl. 1,1996, pp.S13–S14.

    Article  Google Scholar 

  • Pleijel K. and J. Munthe, Modelling the atmospheric mercury cycle-chemistry in fog droplet, Atmospheric Environment 29 (1995), pp. 1441–1457.

    Article  CAS  Google Scholar 

  • Pongprueksa, P., C-J. Lin, S.E. Lindberg, C. Jang, T. Braverman, O.R. Bullock, T.C. Ho and H-W. Chu, Scientific uncertainties in atmospheric mercury models III: Boundary and initial conditions, model grid resolution, and Hg(II) reduction mechanism, Atmos. Environ., 2007, in press, doi:10.1016/j.atmosenv.2007.11.020.

    Google Scholar 

  • Poissant L., Pilote, M., Beauvais, C., Constant, P., Zhang, H.H., 2005. A year of continuous measurements of three atmospheric mercury species (GEM, RGM, and Hgp) in southern Quebec, Canada. Atmos. Environ. 39, 1275–1287.

    Article  CAS  Google Scholar 

  • Prospero, J. M., D. L. Savoie, and R. Arimoto, (2003), Long-term record of nss-sulfate and nitrate in aerosols on Midway Island, 1981–2000: Evidence of increased (now decreasing?) anthropogenic emissions from Asia, Journal Geophysical Research 108(D1),4019, doi:10.1029/ 2001JD001524.

    Article  CAS  Google Scholar 

  • Rea, A.W., S.E. Lindberg and G.J. Keeler, Dry deposition and foliar leaching of mercury and selected trace elements in deciduous forest throughfall. Atmos. Environ. 35 (2001), pp. 3453–3462.

    Article  CAS  Google Scholar 

  • Ren, X., et al. (2006), OH, HO2, and OH reactivity during the PMTACS–NY Whiteface Mountain 2002 campaign: Observations and model comparison, J. Geophys. Res., 111, D10S03, doi:10.1029/2005JD006126.

    Article  CAS  Google Scholar 

  • Roberts, J. M. et al., (2004), Measurement of peroxycarboxylic nitric anhydrides (PANs) during the ITCT 2K2 aircraft intensive experiment, J. Geophys. Res., 109(D23S21), doi: 10.1029/2004JD004960.

    Google Scholar 

  • Savoie, D.L., R. Arimoto, W.C. Keene, J.M. Prospero, R.A. Duce and J.N. Galloway, (2002), Marine biogenic and anthropogenic contributions to non-sea-salt-sulfate in the marine boundary layer over the North Atlantic, J. Geophys. Res., 107, 4356, doi:1029/2001JD000970.

    Article  CAS  Google Scholar 

  • Schroeder, W.H., Munthe, J., 1998. Atmospheric mercury --- an overview. Atmos. Environ. 32, 809–822.

    Article  CAS  Google Scholar 

  • Schroeder, W.H. K.G. Anlauf, L.A. Barrie, J.Y. Lu, A. Steffen, D.R. Schneeberger and T. Berg, (1998) Arctic springtime depletion of mercury. Nature 394 (1998), pp. 331–332.

    Article  CAS  Google Scholar 

  • Seigneur C, Karamchandani P, Lohman K, Vijayaraghavan K, Shia R.-L. 2001. Multiscale modeling of the atmospheric fate and transport of mercury. J. Geophys. Res. 106(D21), 27,795–27,809.

    Article  CAS  Google Scholar 

  • Selin, NE, Jacob DJ, Park RJ, Yantosca RM, Strode S, Jaegle L, Jaffe D. 2007. Chemical cycling and deposition of atmospheric mercury: Global constraints from observations. . J. Geophys. Res , 112: D02308, doi:10.1029/2006JD007450.

    Article  CAS  Google Scholar 

  • Selin, N.E. et al., 2008. Global 3-D land-ocean-atmosphere model for mercury: present-day vs. preindustrial cycles and anthropogenic enhancement factors for deposition. Global Biogeochem. Cycles, Accepted.

    Google Scholar 

  • Shia RL, Seigneur C, Pai P, Ko M, Sze ND. 1999. Global simulation of atmospheric mercury concentrations and deposition fluxes. . J. Geophys. Res , 104(D19), 23,747–23,760.

    Article  CAS  Google Scholar 

  • Sheu G, Lee C, Lin N. 2007. Measurements of atmospheric mercury at a high elevation site (Lulin Atmospheric Background Station, LABS). Abstract A53C-1350, AGU Fall meeting, San Francisco, 2005.

    Google Scholar 

  • Sillman, S., D. He, M. Pippin, P. Daum, L. Kleinman, J. H. Lee and J. Weinstein-Lloyd. Model correlations for ozone, reactive nitrogen and peroxides for Nashville in comparison with measurements: implications for VOC-NOx sensitivity. J. Geophys. Res. 103, 22629–22644, 1998.

    Article  CAS  Google Scholar 

  • Sillman, S., F. J. Marsik, K. I. Al-Wali, G J. Keeler, and M. S. Landis (2007), Reactive mercury in the troposphere: Model formation and results for Florida, the northeastern United States, and the Atlantic Ocean, J. Geophys. Res., 112, D23305, doi:10.1029/2006JD008227.

    Article  CAS  Google Scholar 

  • Simmonds P., R. Derwent, A. Manning, and G. Spain, (2004), Significant growth in surface ozone at Mace Head, Ireland, 1987–2003, Atmos. Environ., 38(28), 4769–4778.

    Article  CAS  Google Scholar 

  • Slemr, F. et al., 2003. Worldwide trend of atmospheric mercury since 1977. Geophys. Res. Lett., 30(10).

    Google Scholar 

  • Slemr (1992). F. Slemr and E. Langer, Increase in global atmospheric concentrations of mercury inferred from measurements over the Atlantic Ocean. Nature 355 (1992), pp. 434–437.

    Article  CAS  Google Scholar 

  • Slemr et al (1995). F. Slemr, W. Junkermann, R.W.H. Schmidt and R. Sladkovic, Indication of change in global and regional trends of atmospheric mercury concentrations. Geophysical Research Letters 22 (1995), pp. 2143–2146.

    Article  CAS  Google Scholar 

  • Stevens, R. K.; Zweidinger, R.; Edgerton, E.; Mayhew, W.; Kellog, R.; Keeler, G. Source Characterization in Support of Modeling the Transport of Mercury Emissions in South Florida. Presented at Measurement of Toxic and Related Air Pollutants Symposium, May 7-9, Research Triangle Park, NC, 1996. (25) Dzubay, T.; Stevens, R.; Lewis, C.; Hern, D.; Courtney, W.; Tesch,

    Google Scholar 

  • Streets, D.G., Q. Zhang, L. Wang, K. He, J. Hao, Y. Wu, Y. Tang, and G.R. Carmichael (2006), Revisiting China's CO emissions after the Transport and Chemical Evolution over the Pacific (TRACE-P) mission: Synthesis of inventories, atmospheric modeling, and observations, J. Geophys. Res., 111, D14306.

    Article  CAS  Google Scholar 

  • Strode, S.A. et al., 2008. Trans-Pacific transport of mercury. J. Geophys. Res.-Atmospheres, 113 (D15).

    Google Scholar 

  • Sunderland, E.M. and Mason, R.P., 2007. Human impacts on open ocean mercury concentrations. Global Biogeochem. Cycles, 21: GB4022, doi:10.1029/2006GB002876.

    Article  CAS  Google Scholar 

  • Swartzendruber, P.C. et al., 2008. Vertical distribution of mercury, CO, ozone, and aerosol scattering coefficient in the Pacific Northwest during the spring 2006 INTEX-B campaign. J.Geophys. Res.-Atmospheres, 113 (D10).

    Google Scholar 

  • Talbot, R., Mao, H., Scheuer, E., Dibb, J. and Avery, M., 2007. Total depletion of Hg degrees in the upper troposphere-lower stratosphere. Geophys. Res. Lett., 34 (23).

    Google Scholar 

  • Task Force on Hemispheric Transport of Air Pollution (TF-HTAP), Hemispheric Transport of Air Pollution 2007, United Nations Economic Commission for Europe, Air Pollution Studies No. 16, Report number ECE/EB.AIR/94, 2007. Available at www.htap.org/activities/2007 _interim_report/HTAP 2007 EB version.pdf

  • Trainer, M., D. D. Parrish, M. P. Buhr, R. B. Norton, F. C. Fehsenfeld, K. G. Anlauf, J. W. Bottenheim, Y.Z. Tang, H.A. Wiebe, J.M. Roberts, R.L. Tanner, L. NewmanCorrelation of ozone with NOy in photochemically aged air. J. Geophys. Res., 98, 2917–2926, 1993.

    Article  CAS  Google Scholar 

  • U.S. Environmental Protection Agency. Mercury Study Report to Congress; EPA-452/R-97-003; Office of Air Quality Planning and Standards, Office of Research and Development, U.S. Government Printing Office: Washington, DC, 1998.

    Google Scholar 

  • VanArsdale, A., Weiss, J., Keeler, G.J. and Miller, E. Patterns of mercury deposition in northeastern North America (1996-2002). Ecotoxicology, 14, 84–101. 2005.

    Article  CAS  Google Scholar 

  • Weiss-Penzias, P., D. A. Jaffe, P. Swartzendruber, J. B. Dennison, D. Chand, W. Hafner, and E. Prestbo, Observations of Asian air pollution in the free troposphere at Mt. Bachelor Observatory in the spring of 2004, J. Geophys. Res., 110, D10304, doi:10.1029/2005JD006522, 2006.

    Article  CAS  Google Scholar 

  • Weiss-Penzias, P., D. A. Jaffe, P. Swartzendruber, W. Hafner, D. Chand, and E. Prestbo, Quantifying Asian biomass burning sources of mercury using the Hg/CO ratio in pollution plumes observed at the Mount Bachelor Observatory. Article In-Press, Atmos. Environ., February 2007.

    Google Scholar 

  • Woods JS, Martin MD, Naleway CA, Echeverria D. Urinary porphyrin profiles as a biomarker of mercury exposure: studies in dentists with occupational exposure to mercury vapor. J Toxicol Environ Health. 1993;40:235–246.

    Article  CAS  Google Scholar 

  • Yantosca B. 2005. GEOS-Chem v7-03-06 User's Guide, Atmospheric Chemistry Modeling Group, Harvard University, Cambridge, MA, posted 8 November 2005 at www.as.harvard.edu/chemistry/trop/geos/doc/man/index.html.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag New York

About this chapter

Cite this chapter

Keeler, G., Pirrone, N., Bullock, R., Sillman, S. (2009). The need for a coordinated global Hg monitoring network for global and regional models validation. In: Mason, R., Pirrone, N. (eds) Mercury Fate and Transport in the Global Atmosphere. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-93958-2_13

Download citation

Publish with us

Policies and ethics