Skip to main content

Familial Atypical Mole Melanoma (FAMM) Syndrome

  • Chapter
  • First Online:
Book cover Principles of Clinical Cancer Genetics

Abstract

The incidence of cutaneous melanoma continues to increase rapidly worldwide. In the United States alone, the incidence of melanoma has been roughly doubling each decade, and according to the most recent projections by the American Cancer Society and the National Cancer Institute Surveillance, Epidemiology, and End Results (SEER), it was estimated that 1 in 41 Americans would develop melanoma in their lifetime. In 2009, 68,720 new cases of melanoma were diagnosed, with 8,650 deaths attributable to the disease [1].

Keywords

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jemal A, Siegel R, Ward E, Hao Y, Xu J, Thun MJ (2009) Cancer statistics, 2009. CA Cancer J Clin 59(4):225–249

    PubMed  Google Scholar 

  2. Goldstein AM, Fraser MC, Struewing JP, Hussussian CJ, Ranade K, Zametkin DP, Fontaine LS, Organic SM, Dracopoli NC, Clark WH Jr et al (1995) Increased risk of pancreatic cancer in melanoma-prone kindreds with p16INK4 mutations. N Engl J Med 333:970–974

    PubMed  CAS  Google Scholar 

  3. Goldstein AM, Tucker MA (1995) Genetic epidemiology of familial melanoma. Dermatol Clin 13:605–612

    PubMed  CAS  Google Scholar 

  4. Goldstein AM, Tucker MA (2001) Genetic epidemiology of cutaneous melanoma: a global perspective. Arch Dermatol 137:1493–1496

    PubMed  CAS  Google Scholar 

  5. Greene MH, Clark WH Jr, Tucker MA, Kraemer KH, Elder DE, Fraser MC (1985) High risk of malignant melanoma in melanoma-prone families with dysplastic nevi. Ann Intern Med 102:458–465

    PubMed  CAS  Google Scholar 

  6. Lynch HT, Fusaro RM, Lynch J (1995) Hereditary cancer in adults. Cancer Detect Prev 19:219–233

    PubMed  CAS  Google Scholar 

  7. Norris W (1820) Case of Fungoid Disease. Edinb Med Surg J 16:562–565

    Google Scholar 

  8. Norris W (1857) Eight cases of melanosis with pathological and therapeautical remarks on that disease, vol 1. Longman, Brown, Green, Longmans, and Roberts, London

    Google Scholar 

  9. Cawley EP, Kruse WT, Pinkus HK (1952) Genetic aspects of malignant melanoma. AMA Arch Derm Syphilol 65:440–450

    PubMed  CAS  Google Scholar 

  10. Frichot BC 3rd, Lynch HT, Guirgis HA, Harris RE, Lynch JF (1977) New cutaneous phenotype in familial malignant melanoma. Lancet 1:864–865

    PubMed  Google Scholar 

  11. Clark WH Jr, Reimer RR, Greene M, Ainsworth AM, Mastrangelo MJ (1978) Origin of familial malignant melanomas from heritable melanocytic lesions. ’The B-K mole syndrome’. Arch Dermatol 114:732–738

    PubMed  Google Scholar 

  12. Lynch HT, Frichot BC 3rd, Lynch JF (1978) Familial atypical multiple mole-melanoma syndrome. J Med Genet 15:352–356

    PubMed  CAS  Google Scholar 

  13. Clark WH Jr (1988) The dysplastic nevus syndrome. Arch Dermatol 124:1207–1210

    PubMed  Google Scholar 

  14. Kopf AW, Friedman RJ, Rigel DS (1990) Atypical mole syndrome. J Am Acad Dermatol 22:117–118

    PubMed  CAS  Google Scholar 

  15. NIH Consensus Development Conference Panel on Early Melanoma (1992) Diagnosis and treatment of early melanoma. In: Consens Statement, January 27–29, 1992, 1–25

    Google Scholar 

  16. Ackerman AB (1988) What naevus is dysplastic, a syndrome and the commonest precursor of malignant melanoma? A riddle and an answer. Histopathology 13:241–256

    PubMed  CAS  Google Scholar 

  17. Clark WH Jr, Elder DE, Guerry D, Epstein MN, Greene MH, Van Horn M (1984) A study of tumor progression: the precursor lesions of superficial spreading and nodular melanoma. Hum Pathol 15:1147–1165

    PubMed  Google Scholar 

  18. Duray PH, Ernstoff MS (1987) Dysplastic nevus in histologic contiguity with acquired nonfamilial melanoma. Clinicopathologic experience in a 100-bed hospital. Arch Dermatol 123:80–84

    PubMed  CAS  Google Scholar 

  19. Greene MH, Clark WH Jr, Tucker MA, Elder DE, Kraemer KH, Guerry D, Witmer WK, Thompson J, Matozzo I, Fraser MC (1985) Acquired precursors of cutaneous melanoma The familial dysplastic nevus syndrome. N Engl J Med 312:91–97

    PubMed  CAS  Google Scholar 

  20. Greene MH, Fraser MC, Clark WH Jr, Elder DE, Guerry D, Kraemer KH (1984) For the record: the history of precursors to malignant melanoma. Arch Dermatol 120:18–21

    PubMed  CAS  Google Scholar 

  21. Rhodes AR, Harrist TJ, Day CL, Mihm MC Jr, Fitzpatrick TB, Sober AJ (1983) Dysplastic melanocytic nevi in histologic association with 234 primary cutaneous melanomas. J Am Acad Dermatol 9:563–574

    PubMed  CAS  Google Scholar 

  22. Rivers JK, Kopf AW, Vinokur AF, Rigel DS, Friedman RJ, Heilman ER, Levenstein M (1990) Clinical characteristics of malignant melanomas developing in persons with dysplastic nevi. Cancer 65:1232–1236

    PubMed  CAS  Google Scholar 

  23. Skender-Kalnenas TM, English DR, Heenan PJ (1995) Benign melanocytic lesions: risk markers or precursors of cutaneous melanoma? J Am Acad Dermatol 33:1000–1007

    PubMed  CAS  Google Scholar 

  24. Greene MH (1999) The genetics of hereditary melanoma and nevi. 1998 update. Cancer 86:2464–2477

    PubMed  CAS  Google Scholar 

  25. Halpern AC, Guerry D, Elder DE, Clark WH Jr, Synnestvedt M, Norman S, Ayerle R (1991) Dysplastic nevi as risk markers of sporadic (nonfamilial) melanoma. A case-control study. Arch Dermatol 127:995–999

    PubMed  CAS  Google Scholar 

  26. Holly EA, Kelly JW, Shpall SN, Chiu SH (1987) Number of melanocytic nevi as a major risk factor for malignant melanoma. J Am Acad Dermatol 17:459–468

    PubMed  CAS  Google Scholar 

  27. Rigel DS, Rivers JK, Kopf AW, Friedman RJ, Vinokur AF, Heilman ER, Levenstein M (1989) Dysplastic nevi. Markers for increased risk for melanoma. Cancer 63:386–389

    PubMed  CAS  Google Scholar 

  28. Roush GC, Nordlund JJ, Forget B, Gruber SB, Kirkwood JM (1988) Independence of dysplastic nevi from total nevi in determining risk for nonfamilial melanoma. Prev Med 17:273–279

    PubMed  CAS  Google Scholar 

  29. Slade J, Marghoob AA, Salopek TG, Rigel DS, Kopf AW, Bart RS (1995) Atypical mole syndrome: risk factor for cutaneous melanoma and implications for management. J Am Acad Dermatol 32:479–494

    PubMed  CAS  Google Scholar 

  30. Swerdlow AJ, English J, MacKie RM, O’Doherty CJ, Hunter JA, Clark J (1984) Benign naevi associated with high risk of melanoma. Lancet 2:168

    PubMed  CAS  Google Scholar 

  31. Swerdlow AJ, English J, MacKie RM, O’Doherty CJ, Hunter JA, Clark J, Hole DJ (1986) Benign melanocytic naevi as a risk factor for malignant melanoma. Br Med J (Clin Res Ed) 292: 1555–1559

    CAS  Google Scholar 

  32. Titus-Ernstoff L, Duray PH, Ernstoff MS, Barnhill RL, Horn PL, Kirkwood JM (1988) Dysplastic nevi in association with multiple primary melanoma. Cancer Res 48:1016–1018

    PubMed  CAS  Google Scholar 

  33. Tsao H, Sober AJ, Niendorf KB, Zembowicz A (2004) Case records of the Massachusetts General Hospital. Weekly clinicopathological exercises. Case 7-2004. A 48-year-old woman with multiple pigmented lesions and a personal and family history of melanoma. N Engl J Med 350:924–932

    PubMed  CAS  Google Scholar 

  34. Annessi G, Cattaruzza MS, Abeni D, Baliva G, Laurenza M, Macchini V, Melchi F, Ruatti P, Puddu P, Faraggiana T (2001) Correlation between clinical atypia and histologic dysplasia in acquired melanocytic nevi. J Am Acad Dermatol 45:77–85

    PubMed  CAS  Google Scholar 

  35. Barnhill RL (1991) Current status of the dysplastic melanocytic nevus. J Cutan Pathol 18:147–159

    PubMed  CAS  Google Scholar 

  36. Barnhill RL (2004) Pathology of melanocytic nevi and malignant melanoma. Springer, New York

    Google Scholar 

  37. Barnhill RL, Roush GC, Ernstoff MS, Kirkwood JM (1992) Interclinician agreement on the recognition of selected gross morphologic features of pigmented lesions. Studies of melanocytic nevi V. J Am Acad Dermatol 26:185–190

    PubMed  CAS  Google Scholar 

  38. Grob JJ, Andrac L, Romano MH, Davin D, Collet-Villette AM, Munoz MH, Bonerandi JJ (1988) Dysplastic naevus in non-familial melanoma. A clinicopathological study of 101 cases. Br J Dermatol 118:745–752

    PubMed  CAS  Google Scholar 

  39. Meyer LJ, Piepkorn M, Goldgar DE, Lewis CM, Cannon-Albright LA, Zone JJ, Skolnick MH (1996) Interobserver concordance in discriminating clinical atypia of melanocytic nevi, and correlations with histologic atypia. J Am Acad Dermatol 34:618–625

    PubMed  CAS  Google Scholar 

  40. Tripp JM, Kopf AW, Marghoob AA, Bart RS (2002) Management of dysplastic nevi: a survey of fellows of the American Academy of Dermatology. J Am Acad Dermatol 46:674–682

    PubMed  Google Scholar 

  41. Williams ML, Sagebiel RW (1994) Melanoma risk factors and atypical moles. West J Med 160:343–350

    PubMed  CAS  Google Scholar 

  42. Florell SR, Boucher KM, Garibotti G, Astle J, Kerber R, Mineau G, Wiggins C, Noyes RD, Tsodikov A, Cannon-Albright LA et al (2005) Population-based analysis of prognostic factors and survival in familial melanoma. J Clin Oncol 23:7168–7177

    PubMed  Google Scholar 

  43. Platz A, Ringborg U, Hansson J (2000) Hereditary cutaneous melanoma. Semin Cancer Biol 10:319–326

    PubMed  CAS  Google Scholar 

  44. de Snoo FA, Kroon MW, Bergman W, ter Huurne JA, Houwing-Duistermaat JJ, van Mourik L, Snels DG, Breuning MH, Willemze R, Frants RR et al (2007) From sporadic atypical nevi to familial melanoma: risk analysis for melanoma in sporadic atypical nevus patients. J Am Acad Dermatol 56:748–752

    PubMed  Google Scholar 

  45. Kraemer KH, Greene MH, Tarone R, Elder DE, Clark WH Jr, Guerry D (1983) Dysplastic naevi and cutaneous melanoma risk. Lancet 2:1076–1077

    PubMed  CAS  Google Scholar 

  46. Kraemer KH, Tucker M, Tarone R, Elder DE, Clark WH Jr (1986) Risk of cutaneous melanoma in dysplastic nevus syndrome types A and B. N Engl J Med 315:1615–1616

    PubMed  CAS  Google Scholar 

  47. Garbe C, Buttner P, Weiss J, Soyer HP, Stocker U, Kruger S, Roser M, Weckbecker J, Panizzon R, Bahmer F et al (1994) Risk factors for developing cutaneous melanoma and criteria for identifying persons at risk: multicenter case-control study of the Central Malignant Melanoma Registry of the German Dermatological Society. J Invest Dermatol 102:695–699

    PubMed  CAS  Google Scholar 

  48. Garbe C, Kruger S, Stadler R, Guggenmoos-Holzmann I, Orfanos CE (1989) Markers and relative risk in a German population for developing malignant melanoma. Int J Dermatol 28:517–523

    PubMed  CAS  Google Scholar 

  49. Grob JJ, Gouvernet J, Aymar D, Mostaque A, Romano MH, Collet AM, Noe MC, Diconstanzo MP, Bonerandi JJ (1990) Count of benign melanocytic nevi as a major indicator of risk for nonfamilial nodular and superficial spreading melanoma. Cancer 66:387–395

    PubMed  CAS  Google Scholar 

  50. Slade J, Salopek TG, Marghoob AA, Kopf AW, Rigel DS (1995) Risk of developing cutaneous melanoma in atypical-mole syndrome: New York University experience and literature review. Recent Results Cancer Res 139:87–104

    PubMed  CAS  Google Scholar 

  51. Tucker MA, Halpern A, Holly EA, Hartge P, Elder DE, Sagebiel RW, Guerry D, Clark WH Jr (1997) Clinically recognized dysplastic nevi. A central risk factor for cutaneous melanoma. JAMA 277:1439–1444

    PubMed  CAS  Google Scholar 

  52. Armstrong BK, de Klerk NH, Holman CD (1986) Etiology of common acquired melanocytic nevi: constitutional variables, sun exposure, and diet. J Natl Cancer Inst 77:329–335

    PubMed  CAS  Google Scholar 

  53. Piepkorn MW (1994) Genetic basis of susceptibility to melanoma. J Am Acad Dermatol 31:1022–1039

    PubMed  CAS  Google Scholar 

  54. Goldgar DE, Cannon-Albright LA, Meyer LJ, Piepkorn MW, Zone JJ, Skolnick MH (1991) Inheritance of nevus number and size in melanoma and dysplastic nevus syndrome kindreds. J Natl Cancer Inst 83:1726–1733

    PubMed  CAS  Google Scholar 

  55. Goldgar DE, Cannon-Albright LA, Meyer LJ, Piepkorn MW, Zone JJ, Skolnick MH (1992) Inheritance of nevus number and size in melanoma/DNS kindreds. Cytogenet Cell Genet 59:200–202

    PubMed  CAS  Google Scholar 

  56. Meyer LJ, Goldgar DE, Cannon-Albright LA, Piepkorn MW, Zone JJ, Risman MB, Skolnick MH (1992) Number, size, and histopathology of nevi in Utah kindreds. Cytogenet Cell Genet 59:167–169

    PubMed  CAS  Google Scholar 

  57. Cannon-Albright LA, Kamb A, Skolnick M (1996) A review of inherited predisposition to melanoma. Semin Oncol 23:667–672

    PubMed  CAS  Google Scholar 

  58. Dracopoli NC, Houghton AN, Old LJ (1985) Loss of polymorphic restriction fragments in malignant melanoma: implications for tumor heterogeneity. Proc Natl Acad Sci U S A 82:1470–1474

    PubMed  CAS  Google Scholar 

  59. Nancarrow DJ, Mann GJ, Holland EA, Walker GJ, Beaton SC, Walters MK, Luxford C, Palmer JM, Donald JA, Weber JL et al (1993) Confirmation of chromosome 9p linkage in familial melanoma. Am J Hum Genet 53:936–942

    PubMed  CAS  Google Scholar 

  60. MacGeoch C, Bishop JA, Bataille V, Bishop DT, Frischauf AM, Meloni R, Cuzick J, Pinney E, Spurr NK (1994) Genetic hetero-geneity in familial malignant melanoma. Hum Mol Genet 3:2195–2200

    PubMed  CAS  Google Scholar 

  61. Cannon-Albright LA, Goldgar DE, Meyer LJ, Lewis CM, Anderson DE, Fountain JW, Hegi ME, Wiseman RW, Petty EM, Bale AE et al (1992) Assignment of a locus for familial melanoma, MLM, to chromosome 9p13-p22. Science 258:1148–1152

    PubMed  CAS  Google Scholar 

  62. Gruis NA, Sandkuijl LA, Weber JL, van der Zee A, Borgstein AM, Bergman W, Frants RR (1993) Linkage analysis in Dutch familial atypical multiple mole-melanoma (FAMMM) syndrome families. Effect of naevus count. Melanoma Res 3:271–277

    PubMed  CAS  Google Scholar 

  63. Cannon-Albright LA, Meyer LJ, Goldgar DE, Lewis CM, McWhorter WP, Jost M, Harrison D, Anderson DE, Zone JJ, Skolnick MH (1994) Penetrance and expressivity of the chromosome 9p melanoma susceptibility locus (MLM). Cancer Res 54:6041–6044

    PubMed  CAS  Google Scholar 

  64. Kamb A, Gruis NA, Weaver-Feldhaus J, Liu Q, Harshman K, Tavtigian SV, Stockert E, Day RS 3rd, Johnson BE, Skolnick MH (1994) A cell cycle regulator potentially involved in genesis of many tumor types. Science 264:436–440

    PubMed  CAS  Google Scholar 

  65. Kamb A, Shattuck-Eidens D, Eeles R, Liu Q, Gruis NA, Ding W, Hussey C, Tran T, Miki Y, Weaver-Feldhaus J et al (1994) Analysis of the p16 gene (CDKN2) as a candidate for the chromosome 9p melanoma susceptibility locus. Nat Genet 8:23–26

    PubMed  CAS  Google Scholar 

  66. Meyer LJ, Zone JH (1994) Genetics of cutaneous melanoma. J Invest Dermatol 103:112S–116S

    PubMed  CAS  Google Scholar 

  67. Hussussian CJ, Struewing JP, Goldstein AM, Higgins PA, Ally DS, Sheahan MD, Clark WH Jr, Tucker MA, Dracopoli NC (1994) Germline p16 mutations in familial melanoma. Nat Genet 8:15–21

    PubMed  CAS  Google Scholar 

  68. Nobori T, Miura K, Wu DJ, Lois A, Takabayashi K, Carson DA (1994) Deletions of the cyclin-dependent kinase-4 inhibitor gene in multiple human cancers. Nature 368:753–756

    PubMed  CAS  Google Scholar 

  69. Serrano M, Hannon GJ, Beach D (1993) A new regulatory motif in cell-cycle control causing specific inhibition of cyclin D/CDK4. Nature 366:704–707

    PubMed  CAS  Google Scholar 

  70. Motokura T, Arnold A (1993) Cyclin D and oncogenesis. Curr Opin Genet Dev 3:5–10

    PubMed  CAS  Google Scholar 

  71. Nigg EA (1993) Targets of cyclin-dependent protein kinases. Curr Opin Cell Biol 5:187–193

    PubMed  CAS  Google Scholar 

  72. Sharpless NE, Kannan K, Xu J, Bosenberg MW, Chin L (2003) Both products of the mouse Ink4a/Arf locus suppress melanoma formation in vivo. Oncogene 22:5055–5059

    PubMed  CAS  Google Scholar 

  73. Sherr CJ (1993) Mammalian G1 cyclins. Cell 73:1059–1065

    PubMed  CAS  Google Scholar 

  74. Solomon MJ (1993) Activation of the various cyclin/cdc2 protein kinases. Curr Opin Cell Biol 5:180–186

    PubMed  CAS  Google Scholar 

  75. Ewen ME, Sluss HK, Sherr CJ, Matsushime H, Kato J, Livingston DM (1993) Functional interactions of the retinoblastoma protein with mammalian D-type cyclins. Cell 73:487–497

    PubMed  CAS  Google Scholar 

  76. Eliason MJ, Larson AA, Florell SR, Zone JJ, Cannon-Albright LA, Samlowski WE, Leachman SA (2006) Population-based prevalence of CDKN2A mutations in Utah melanoma families. J Invest Dermatol 126:660–666

    PubMed  CAS  Google Scholar 

  77. Goldstein AM, Chan M, Harland M, Hayward NK, Demenais F, Bishop DT, Azizi E, Bergman W, Bianchi-Scarra G, Bruno W et al (2007) Features associated with germline CDKN2A mutations: a GenoMEL study of melanoma-prone families from three continents. J Med Genet 44:99–106

    PubMed  CAS  Google Scholar 

  78. Begg CB, Orlow I, Hummer AJ, Armstrong BK, Kricker A, Marrett LD, Millikan RC, Gruber SB, Anton-Culver H, Zanetti R et al (2005) Lifetime risk of melanoma in CDKN2A mutation carriers in a population-based sample. J Natl Cancer Inst 97:1507–1515

    PubMed  CAS  Google Scholar 

  79. Aitken J, Welch J, Duffy D, Milligan A, Green A, Martin N, Hayward N (1999) CDKN2A variants in a population-based sample of Queensland families with melanoma. J Natl Cancer Inst 91:446–452

    PubMed  CAS  Google Scholar 

  80. Auroy S, Avril MF, Chompret A, Pham D, Goldstein AM, Bianchi-Scarra G, Frebourg T, Joly P, Spatz A, Rubino C et al (2001) Sporadic multiple primary melanoma cases: CDKN2A germline mutations with a founder effect. Genes Chromosomes Cancer 32:195–202

    PubMed  CAS  Google Scholar 

  81. Blackwood MA, Holmes R, Synnestvedt M, Young M, George C, Yang H, Elder DE, Schuchter LM, Guerry D, Ganguly A (2002) Multiple primary melanoma revisited. Cancer 94:2248–2255

    PubMed  CAS  Google Scholar 

  82. Hashemi J, Platz A, Ueno T, Stierner U, Ringborg U, Hansson J (2000) CDKN2A germ-line mutations in individuals with multiple cutaneous melanomas. Cancer Res 60:6864–6867

    PubMed  CAS  Google Scholar 

  83. Helsing P, Nymoen DA, Ariansen S, Steine SJ, Maehle L, Aamdal S, Langmark F, Loeb M, Akslen LA, Molven A et al (2008) Population-based prevalence of CDKN2A and CDK4 mutations in patients with multiple primary melanomas. Genes Chromosomes Cancer 47:175–184

    PubMed  CAS  Google Scholar 

  84. Monzon J, Liu L, Brill H, Goldstein AM, Tucker MA, From L, McLaughlin J, Hogg D, Lassam NJ (1998) CDKN2A mutations in multiple primary melanomas. N Engl J Med 338:879–887

    PubMed  CAS  Google Scholar 

  85. Puig S, Malvehy J, Badenas C, Ruiz A, Jimenez D, Cuellar F, Azon A, Gonzalez U, Castel T, Campoy A et al (2005) Role of the CDKN2A locus in patients with multiple primary melanomas. J Clin Oncol 23:3043–3051

    PubMed  CAS  Google Scholar 

  86. Orlow I, Begg CB, Cotignola J, Roy P, Hummer AJ, Clas BA, Mujumdar U, Canchola R, Armstrong BK, Kricker A et al (2007) CDKN2A germline mutations in individuals with cutaneous melanoma. J Invest Dermatol 127:1234–1243

    PubMed  CAS  Google Scholar 

  87. Harland M, Taylor CF, Chambers PA, Kukalizch K, Randerson-Moor JA, Gruis NA, de Snoo FA, ter Huurne JA, Goldstein AM, Tucker MA et al (2005) A mutation hotspot at the p14ARF splice site. Oncogene 24:4604–4608

    PubMed  CAS  Google Scholar 

  88. Soufir N, Avril MF, Chompret A, Demenais F, Bombled J, Spatz A, Stoppa-Lyonnet D, Benard J, Bressac-de Paillerets B (1998) Prevalence of p16 and CDK4 germline mutations in 48 melanoma-prone families in France. The French Familial Melanoma Study Group. Hum Mol Genet 7:209–216

    PubMed  CAS  Google Scholar 

  89. Zuo L, Weger J, Yang Q, Goldstein AM, Tucker MA, Walker GJ, Hayward N, Dracopoli NC (1996) Germline mutations in the p16INK4a binding domain of CDK4 in familial melanoma. Nat Genet 12:97–99

    PubMed  CAS  Google Scholar 

  90. Gruis NA, Sandkuijl LA, van der Velden PA, Bergman W, Frants RR (1995) CDKN2 explains part of the clinical phenotype in Dutch familial atypical multiple-mole melanoma (FAMMM) syndrome families. Melanoma Res 5:169–177

    PubMed  CAS  Google Scholar 

  91. Borg A, Johannsson U, Johannsson O, Hakansson S, Westerdahl J, Masback A, Olsson H, Ingvar C (1996) Novel germline p16 mutation in familial malignant melanoma in southern Sweden. Cancer Res 56:2497–2500

    PubMed  CAS  Google Scholar 

  92. Hashemi J, Bendahl PO, Sandberg T, Platz A, Linder S, Stierner U, Olsson H, Ingvar C, Hansson J, Borg A (2001) Haplotype analysis and age estimation of the 113insR CDKN2A founder mutation in Swedish melanoma families. Genes Chromosomes Cancer 31:107–116

    PubMed  CAS  Google Scholar 

  93. Harland M, Meloni R, Gruis N, Pinney E, Brookes S, Spurr NK, Frischauf AM, Bataille V, Peters G, Cuzick J et al (1997) Germline mutations of the CDKN2 gene in UK melanoma families. Hum Mol Genet 6:2061–2067

    PubMed  CAS  Google Scholar 

  94. Liu L, Dilworth D, Gao L, Monzon J, Summers A, Lassam N, Hogg D (1999) Mutation of the CDKN2A 5′ UTR creates an aberrant initiation codon and predisposes to melanoma. Nat Genet 21:128–132

    PubMed  Google Scholar 

  95. MacKie RM, Andrew N, Lanyon WG, Connor JM (1998) CDKN2A germline mutations in U.K. patients with familial melanoma and multiple primary melanomas. J Invest Dermatol 111:269–272

    PubMed  CAS  Google Scholar 

  96. Mistry SH, Taylor C, Randerson-Moor JA, Harland M, Turner F, Barrett JH, Whitaker L, Jenkins RB, Knowles MA, Bishop JA et al (2005) Prevalence of 9p21 deletions in UK melanoma families. Genes Chromosomes Cancer 44:292–300

    PubMed  CAS  Google Scholar 

  97. Peric B, Cerkovnik P, Novakovic S, Zgajnar J, Besic N, Hocevar M (2008) Prevalence of variations in melanoma susceptibility genes among Slovenian melanoma families. BMC Med Genet 9:86

    PubMed  Google Scholar 

  98. Pollock PM, Spurr N, Bishop T, Newton-Bishop J, Gruis N, van der Velden PA, Goldstein AM, Tucker MA, Foulkes WD, Barnhill R et al (1998) Haplotype analysis of two recurrent CDKN2A mutations in 10 melanoma families: evidence for common founders and independent mutations. Hum Mutat 11:424–431

    PubMed  CAS  Google Scholar 

  99. Ciotti P, Struewing JP, Mantelli M, Chompret A, Avril MF, Santi PL, Tucker MA, Bianchi-Scarra G, Bressac-de Paillerets B, Goldstein AM (2000) A single genetic origin for the G101W CDKN2A mutation in 20 melanoma-prone families. Am J Hum Genet 67:311–319

    PubMed  CAS  Google Scholar 

  100. Yakobson E, Shemesh P, Azizi E, Winkler E, Lassam N, Hogg D, Brookes S, Peters G, Lotem M, Zlotogorski A et al (2000) Two p16 (CDKN2A) germline mutations in 30 Israeli melanoma families. Eur J Hum Genet 8:590–596

    PubMed  CAS  Google Scholar 

  101. Yakobson EA, Zlotogorski A, Shafir R, Cohen M, Icekson M, Landau M, Brenner S, Usher S, Peretz H (1998) Screening for tumour suppressor p16(CDKN2A) germline mutations in Israeli melanoma families. Clin Chem Lab Med 36:645–648

    PubMed  CAS  Google Scholar 

  102. Bishop DT, Demenais F, Goldstein AM, Bergman W, Bishop JN, Bressac-de Paillerets B, Chompret A, Ghiorzo P, Gruis N, Hansson J et al (2002) Geographical variation in the penetrance of CDKN2A mutations for melanoma. J Natl Cancer Inst 94:894–903

    PubMed  CAS  Google Scholar 

  103. Walker GJ, Hussussian CJ, Flores JF, Glendening JM, Haluska FG, Dracopoli NC, Hayward NK, Fountain JW (1995) Mutations of the CDKN2/p16INK4 gene in Australian melanoma kindreds. Hum Mol Genet 4:1845–1852

    PubMed  CAS  Google Scholar 

  104. Box NF, Duffy DL, Chen W, Stark M, Martin NG, Sturm RA, Hayward NK (2001) MC1R genotype modifies risk of melanoma in families segregating CDKN2A mutations. Am J Hum Genet 69:765–773

    PubMed  CAS  Google Scholar 

  105. Hoiom V, Tuominen R, Kaller M, Linden D, Ahmadian A, Mansson-Brahme E, Egyhazi S, Sjoberg K, Lundeberg J, Hansson J (2009) MC1R variation and melanoma risk in the Swedish population in relation to clinical and pathological parameters. Pigment Cell Melanoma Res 22:196–204

    PubMed  Google Scholar 

  106. Kennedy C, ter Huurne J, Berkhout M, Gruis N, Bastiaens M, Bergman W, Willemze R, Bavinck JN (2001) Melanocortin 1 receptor (MC1R) gene variants are associated with an increased risk for cutaneous melanoma which is largely independent of skin type and hair color. J Invest Dermatol 117:294–300

    PubMed  CAS  Google Scholar 

  107. Palmer JS, Duffy DL, Box NF, Aitken JF, O’Gorman LE, Green AC, Hayward NK, Martin NG, Sturm RA (2000) Melanocortin-1 receptor polymorphisms and risk of melanoma: is the association explained solely by pigmentation phenotype? Am J Hum Genet 66:176–186

    PubMed  CAS  Google Scholar 

  108. Blanchard SG, Harris CO, Ittoop OR, Nichols JS, Parks DJ, Truesdale AT, Wilkison WO (1995) Agouti antagonism of melanocortin binding and action in the B16F10 murine melanoma cell line. Biochemistry 34:10406–10411

    PubMed  CAS  Google Scholar 

  109. Voisey J, Kelly G, Van Daal A (2003) Agouti signal protein regulation in human melanoma cells. Pigment Cell Res 16:65–71

    PubMed  CAS  Google Scholar 

  110. Rouzaud F, Kadekaro AL, Abdel-Malek ZA, Hearing VJ (2005) MC1R and the response of melanocytes to ultraviolet radiation. Mutat Res 571:133–152

    PubMed  CAS  Google Scholar 

  111. Box NF, Wyeth JR, O’Gorman LE, Martin NG, Sturm RA (1997) Characterization of melanocyte stimulating hormone receptor variant alleles in twins with red hair. Hum Mol Genet 6:1891–1897

    PubMed  CAS  Google Scholar 

  112. Valverde P, Healy E, Jackson I, Rees JL, Thody AJ (1995) Variants of the melanocyte-stimulating hormone receptor gene are associated with red hair and fair skin in humans. Nat Genet 11:328–330

    PubMed  CAS  Google Scholar 

  113. Goldstein AM, Chidambaram A, Halpern A, Holly EA, Guerry ID, Sagebiel R, Elder DE, Tucker MA (2002) Rarity of CDK4 germline mutations in familial melanoma. Melanoma Res 12:51–55

    PubMed  CAS  Google Scholar 

  114. Gillanders E, Juo SH, Holland EA, Jones M, Nancarrow D, Freas-Lutz D, Sood R, Park N, Faruque M, Markey C et al (2003) Localization of a novel melanoma susceptibility locus to 1p22. Am J Hum Genet 73:301–313

    PubMed  CAS  Google Scholar 

  115. Brown KM, Macgregor S, Montgomery GW, Craig DW, Zhao ZZ, Iyadurai K, Henders AK, Homer N, Campbell MJ, Stark M et al (2008) Common sequence variants on 20q11.22 confer melanoma susceptibility. Nat Genet 40:838–840

    PubMed  CAS  Google Scholar 

  116. Goldstein AM, Struewing JP, Chidambaram A, Fraser MC, Tucker MA (2000) Genotype-phenotype relationships in U.S. melanoma-prone families with CDKN2A and CDK4 mutations. J Natl Cancer Inst 92:1006–1010

    PubMed  CAS  Google Scholar 

  117. Shennan MG, Badin AC, Walsh S, Summers A, From L, McKenzie M, Goldstein AM, Tucker MA, Hogg D, Lassam N (2000) Lack of germline CDK6 mutations in familial melanoma. Oncogene 19:1849–1852

    PubMed  CAS  Google Scholar 

  118. Walker GJ, Indsto JO, Sood R, Faruque MU, Hu P, Pollock PM, Duray P, Holland EA, Brown K, Kefford RF et al (2004) Deletion mapping suggests that the 1p22 melanoma susceptibility gene is a tumor suppressor localized to a 9-Mb interval. Genes Chromosomes Cancer 41:56–64

    PubMed  CAS  Google Scholar 

  119. Bemis LT, Chen R, Amato CM, Classen EH, Robinson SE, Coffey DG, Erickson PF, Shellman YG, Robinson WA (2008) MicroRNA-137 targets microphthalmia-associated transcription factor in melanoma cell lines. Cancer Res 68:1362–1368

    PubMed  CAS  Google Scholar 

  120. Jonsson G, Bendahl PO, Sandberg T, Kurbasic A, Staaf J, Sunde L, Cruger DG, Ingvar C, Olsson H, Borg A (2005) Mapping of a novel ocular and cutaneous melanoma susceptibility locus to chromosome 9q21.32. J Natl Cancer Inst 97:1377–1382

    PubMed  Google Scholar 

  121. Bergman W, Gruis N (1996) Familial melanoma and pancreatic cancer. N Engl J Med 334:471–472

    PubMed  CAS  Google Scholar 

  122. Bergman W, Watson P, de Jong J, Lynch HT, Fusaro RM (1990) Systemic cancer and the FAMMM syndrome. Br J Cancer 61:932–936

    PubMed  CAS  Google Scholar 

  123. Borg A, Sandberg T, Nilsson K, Johannsson O, Klinker M, Masback A, Westerdahl J, Olsson H, Ingvar C (2000) High frequency of multiple melanomas and breast and pancreas carcinomas in CDKN2A mutation-positive melanoma families. J Natl Cancer Inst 92:1260–1266

    PubMed  CAS  Google Scholar 

  124. Goldstein AM (2004) Familial melanoma, pancreatic cancer and germline CDKN2A mutations. Hum Mutat 23:630

    PubMed  Google Scholar 

  125. Hruban RH, Petersen GM, Goggins M, Tersmette AC, Offerhaus GJ, Falatko F, Yeo CJ, Kern SE (1999) Familial pancreatic cancer. Ann Oncol 10(Suppl 4):69–73

    PubMed  Google Scholar 

  126. Landi S (2009) Genetic predisposition and environmental risk factors to pancreatic cancer: A review of the literature. Mutat Res 681:299–307

    PubMed  CAS  Google Scholar 

  127. Lynch HT, Fusaro RM (1991) Pancreatic cancer and the familial atypical multiple mole melanoma (FAMMM) syndrome. Pancreas 6:127–131

    PubMed  CAS  Google Scholar 

  128. Parker JF, Florell SR, Alexander A, DiSario JA, Shami PJ, Leachman SA (2003) Pancreatic carcinoma surveillance in patients with familial melanoma. Arch Dermatol 139:1019–1025

    PubMed  CAS  Google Scholar 

  129. Vasen HF, Gruis NA, Frants RR, van Der Velden PA, Hille ET, Bergman W (2000) Risk of developing pancreatic cancer in families with familial atypical multiple mole melanoma associated with a specific 19 deletion of p16 (p16-Leiden). Int J Cancer 87:809–811

    PubMed  CAS  Google Scholar 

  130. Lynch HT, Krush AJ (1968) Heredity and malignant melanoma: implications for early cancer detection. Can Med Assoc J 99:17–21

    PubMed  CAS  Google Scholar 

  131. Whelan AJ, Bartsch D, Goodfellow PJ (1995) Brief report: a familial syndrome of pancreatic cancer and melanoma with a mutation in the CDKN2 tumor-suppressor gene. N Engl J Med 333:975–977

    PubMed  CAS  Google Scholar 

  132. Mantelli M, Barile M, Ciotti P, Ghiorzo P, Lantieri F, Pastorino L, Catricala C, Torre GD, Folco U, Grammatico P et al (2002) High prevalence of the G101W germline mutation in the CDKN2A (P16(ink4a)) gene in 62 Italian malignant melanoma families. Am J Med Genet 107:214–221

    PubMed  Google Scholar 

  133. Mantelli M, Pastorino L, Ghiorzo P, Barile M, Bruno W, Gargiulo S, Sormani MP, Gliori S, Vecchio S, Ciotti P et al (2004) Early onset may predict G101W CDKN2A founder mutation carrier status in Ligurian melanoma patients. Melanoma Res 14:443–448

    PubMed  CAS  Google Scholar 

  134. Goldstein AM, Chan M, Harland M, Gillanders EM, Hayward NK, Avril MF, Azizi E, Bianchi-Scarra G, Bishop DT, Bressac-de Paillerets B et al (2006) High-risk melanoma susceptibility genes and pancreatic cancer, neural system tumors, and uveal melanoma across GenoMEL. Cancer Res 66:9818–9828

    PubMed  CAS  Google Scholar 

  135. Bartsch DK, Sina-Frey M, Lang S, Wild A, Gerdes B, Barth P, Kress R, Grutzmann R, Colombo-Benkmann M, Ziegler A et al (2002) CDKN2A germline mutations in familial pancreatic cancer. Ann Surg 236:730–737

    PubMed  Google Scholar 

  136. Lynch HT, Brand RE, Hogg D, Deters CA, Fusaro RM, Lynch JF, Liu L, Knezetic J, Lassam NJ, Goggins M et al (2002) Phenotypic variation in eight extended CDKN2A germline mutation familial atypical multiple mole melanoma-pancreatic carcinoma-prone families: the familial atypical mole melanoma-pancreatic carcinoma syndrome. Cancer 94:84–96

    PubMed  CAS  Google Scholar 

  137. Ciotti P, Strigini P, Bianchi-Scarra G (1996) Familial melanoma and pancreatic cancer. Ligurian Skin Tumor Study Group. N Engl J Med 334:469–470; author reply 471–462

    PubMed  CAS  Google Scholar 

  138. Ghiorzo P, Ciotti P, Mantelli M, Heouaine A, Queirolo P, Rainero ML, Ferrari C, Santi PL, De Marchi R, Farris A et al (1999) Characterization of ligurian melanoma families and risk of occurrence of other neoplasia. Int J Cancer 83:441–448

    PubMed  CAS  Google Scholar 

  139. Lal G, Liu G, Schmocker B, Kaurah P, Ozcelik H, Narod SA, Redston M, Gallinger S (2000) Inherited predisposition to pancreatic adenocarcinoma: role of family history and germ-line p16, BRCA1, and BRCA2 mutations. Cancer Res 60:409–416

    PubMed  CAS  Google Scholar 

  140. Lal G, Liu L, Hogg D, Lassam NJ, Redston MS, Gallinger S (2000) Patients with both pancreatic adenocarcinoma and melanoma may harbor germline CDKN2A mutations. Genes Chromosomes Cancer 27:358–361

    PubMed  CAS  Google Scholar 

  141. Moskaluk CA, Hruban H, Lietman A, Smyrk T, Fusaro L, Fusaro R, Lynch J, Yeo CJ, Jackson CE, Lynch HT et al (1998) Novel germline p16(INK4) allele (Asp145Cys) in a family with multiple pancreatic carcinomas. Mutations in brief no. 148. Online. Hum Mutat 12:70

    PubMed  CAS  Google Scholar 

  142. Bahuau M, Vidaud D, Jenkins RB, Bieche I, Kimmel DW, Assouline B, Smith JS, Alderete B, Cayuela JM, Harpey JP et al (1998) Germ-line deletion involving the INK4 locus in familial proneness to melanoma and nervous system tumors. Cancer Res 58:2298–2303

    PubMed  CAS  Google Scholar 

  143. Hewitt C, Lee Wu C, Evans G, Howell A, Elles RG, Jordan R, Sloan P, Read AP, Thakker N (2002) Germline mutation of ARF in a melanoma kindred. Hum Mol Genet 11:1273–1279

    PubMed  CAS  Google Scholar 

  144. Petronzelli F, Sollima D, Coppola G, Martini-Neri ME, Neri G, Genuardi M (2001) CDKN2A germline splicing mutation affecting both p16(ink4) and p14(arf) RNA processing in a melanoma/neurofibroma kindred. Genes Chromosomes Cancer 31:398–401

    PubMed  CAS  Google Scholar 

  145. Randerson-Moor JA, Harland M, Williams S, Cuthbert-Heavens D, Sheridan E, Aveyard J, Sibley K, Whitaker L, Knowles M, Bishop JN et al (2001) A germline deletion of p14(ARF) but not CDKN2A in a melanoma-neural system tumour syndrome family. Hum Mol Genet 10:55–62

    PubMed  CAS  Google Scholar 

  146. Rizos H, Puig S, Badenas C, Malvehy J, Darmanian AP, Jimenez L, Mila M, Kefford RF (2001) A melanoma-associated germline mutation in exon 1beta inactivates p14ARF. Oncogene 20:5543–5547

    PubMed  CAS  Google Scholar 

  147. Bataille V, Pinney E, Hungerford JL, Cuzick J, Bishop DT, Newton JA (1993) Five cases of coexistent primary ocular and cutaneous melanoma. Arch Dermatol 129:198–201

    PubMed  CAS  Google Scholar 

  148. Bellet RE, Shields JA, Soll DB, Bernardino EA (1980) Primary choroidal and cutaneous melanomas occurring in a patient with the B-K mole syndrome phenotype. Am J Ophthalmol 89:567–570

    PubMed  CAS  Google Scholar 

  149. Greene MH, Sanders RJ, Chu FC, Clark WH Jr, Elder DE, Cogan DG (1983) The familial occurrence of cutaneous melanoma, intraocular melanoma, and the dysplastic nevus syndrome. Am J Ophthalmol 96:238–245

    PubMed  CAS  Google Scholar 

  150. Hurst EA, Harbour JW, Cornelius LA (2003) Ocular melanoma: a review and the relationship to cutaneous melanoma. Arch Dermatol 139:1067–1073

    PubMed  Google Scholar 

  151. Richtig E, Langmann G, Mullner K, Smolle J (2004) Ocular melanoma: epidemiology, clinical presentation and relationship with dysplastic nevi. Ophthalmologica 218:111–114

    PubMed  CAS  Google Scholar 

  152. Rodriguez-Sains RS (1986) Ocular findings in patients with dysplastic nevus syndrome. Ophthalmology 93:661–665

    PubMed  CAS  Google Scholar 

  153. Singh AD, Shields CL, Shields JA, Eagle RC, De Potter P (1995) Uveal melanoma and familial atypical mole and melanoma (FAM-M) syndrome. Ophthalmic Genet 16:53–61

    PubMed  CAS  Google Scholar 

  154. Singh AD, Shields JA, Eagle RC, Shields CL, Marmor M, De Potter P (1994) Iris melanoma in a ten-year-old boy with familial atypical mole-melanoma (FAM-M) syndrome. Ophthalmic Genet 15:145–149

    PubMed  CAS  Google Scholar 

  155. Smith JH, Padnick-Silver L, Newlin A, Rhodes K, Rubinstein WS (2007) Genetic study of familial uveal melanoma: association of uveal and cutaneous melanoma with cutaneous and ocular nevi. Ophthalmology 114:774–779

    PubMed  Google Scholar 

  156. Vajdic CM, Kricker A, Giblin M, McKenzie J, Aitken J, Giles GG, Armstrong BK (2001) Eye color and cutaneous nevi predict risk of ocular melanoma in Australia. Int J Cancer 92:906–912

    PubMed  CAS  Google Scholar 

  157. van Hees CL, Jager MJ, Bleeker JC, Kemme H, Bergman W (1998) Occurrence of cutaneous and uveal melanoma in patients with uveal melanoma and their first degree relatives. Melanoma Res 8:175–180

    PubMed  Google Scholar 

  158. Vink J, Crijns MB, Mooy CM, Bergman W, Oosterhuis JA, Went LN (1990) Ocular melanoma in families with dysplastic nevus syndrome. J Am Acad Dermatol 23:858–862

    PubMed  CAS  Google Scholar 

  159. Taylor MR, Guerry D, Bondi EE, Shields JA, Augsburger JJ, Lusk EJ, Elder DE, Clark WH Jr, Van Horn M (1984) Lack of association between intraocular melanoma and cutaneous dysplastic nevi. Am J Ophthalmol 98:478–482

    PubMed  CAS  Google Scholar 

  160. Wang X, Egan KM, Gragoudas ES, Kelsey KT (1996) Constitutional alterations in p16 in patients with uveal melanoma. Melanoma Res 6:405–410

    PubMed  CAS  Google Scholar 

  161. Duffy DL, Box NF, Chen W, Palmer JS, Montgomery GW, James MR, Hayward NK, Martin NG, Sturm RA (2004) Interactive effects of MC1R and OCA2 on melanoma risk phenotypes. Hum Mol Genet 13:447–461

    PubMed  CAS  Google Scholar 

  162. Jannot AS, Meziani R, Bertrand G, Gerard B, Descamps V, Archimbaud A, Picard C, Ollivaud L, Basset-Seguin N, Kerob D et al (2005) Allele variations in the OCA2 gene (pink-eyed-dilution locus) are associated with genetic susceptibility to melanoma. Eur J Hum Genet 13:913–920

    PubMed  CAS  Google Scholar 

  163. Kefford R, Bishop JN, Tucker M, Bressac-de Paillerets B, Bianchi-Scarra G, Bergman W, Goldstein A, Puig S, Mackie R, Elder D et al (2002) Genetic testing for melanoma. Lancet Oncol 3:653–654

    PubMed  Google Scholar 

  164. Kefford RF, Newton Bishop JA, Bergman W, Tucker MA (1999) Counseling and DNA testing for individuals perceived to be genetically predisposed to melanoma: A consensus statement of the Melanoma Genetics Consortium. J Clin Oncol 17:3245–3251

    PubMed  CAS  Google Scholar 

  165. Niendorf KB, Tsao H (2006) Cutaneous melanoma: family screening and genetic testing. Dermatol Ther 19:1–8

    PubMed  Google Scholar 

  166. Niendorf KB, Goggins W, Yang G, Tsai KY, Shennan M, Bell DW, Sober AJ, Hogg D, Tsao H (2006) MELPREDICT: a logistic regression model to estimate CDKN2A carrier probability. J Med Genet 43:501–506

    PubMed  CAS  Google Scholar 

  167. Wang W, Niendorf KB, Patel D, Blackford A, Marroni F, Sober AJ, Parmigiani G, Tsao H (2010) Estimating CDKN2A carrier probability and personalizing cancer risk assessments in hereditary melanoma using MelaPRO. Cancer Res 70:552–559

    PubMed  CAS  Google Scholar 

  168. Berg P, Wennberg AM, Tuominen R, Sander B, Rozell BL, Platz A, Hansson J (2004) Germline CDKN2A mutations are rare in child and adolescent cutaneous melanoma. Melanoma Res 14:251–255

    PubMed  CAS  Google Scholar 

  169. Tsao H, Zhang X, Kwitkiwski K, Finkelstein DM, Sober AJ, Haluska FG (2000) Low prevalence of germline CDKN2A and CDK4 mutations in patients with early-onset melanoma. Arch Dermatol 136:1118–1122

    PubMed  CAS  Google Scholar 

  170. Holland EA, Schmid H, Kefford RF, Mann GJ (1999) CDKN2A (P16(INK4a)) and CDK4 mutation analysis in 131 Australian melanoma probands: effect of family history and multiple primary melanomas. Genes Chromosomes Cancer 25:339–348

    PubMed  CAS  Google Scholar 

  171. Tsao H, Niendorf K (2004) Genetic testing in hereditary melanoma. J Am Acad Dermatol 51:803–808

    PubMed  Google Scholar 

  172. Kasparian NA, Meiser B, Butow PN, Simpson JM, Mann GJ (2009) Genetic testing for melanoma risk: a prospective cohort study of uptake and outcomes among Australian families. Genet Med 11:265–278

    PubMed  Google Scholar 

  173. Mesters I, Jonkman L, Vasen H, de Vries H (2009) Skin self-examination of persons from families with familial atypical multiple mole melanoma (FAMMM). Patient Educ Couns 75:251–255

    PubMed  Google Scholar 

  174. Bergenmar M, Hansson J, Brandberg Y (2009) Family members’ perceptions of genetic testing for malignant melanoma – a prospective interview study. Eur J Oncol Nurs 13:74–80

    PubMed  Google Scholar 

  175. Kimmey MB, Bronner MP, Byrd DR, Brentnall TA (2002) Screening and surveillance for hereditary pancreatic cancer. Gastrointest Endosc 56:S82–S86

    PubMed  Google Scholar 

  176. Rulyak SJ, Kimmey MB, Veenstra DL, Brentnall TA (2003) Cost-effectiveness of pancreatic cancer screening in familial pancreatic cancer kindreds. Gastrointest Endosc 57:23–29

    PubMed  Google Scholar 

  177. Brentnall TA (2000) Cancer surveillance of patients from familial pancreatic cancer kindreds. Med Clin North Am 84:707–718

    PubMed  CAS  Google Scholar 

  178. Barnhill RL, Hurwitz S, Duray PH, Arons MS (1988) The dysplastic nevus: recognition and management. Plast Reconstr Surg 81:280–289

    PubMed  CAS  Google Scholar 

  179. Crutcher WA (1988) The dysplastic nevus and its clinical management. Adv Dermatol 3:187–203

    PubMed  CAS  Google Scholar 

  180. Sober AJ, Burstein JM (1995) Precursors to skin cancer. Cancer 75:645–650

    PubMed  CAS  Google Scholar 

  181. Bafounta ML, Beauchet A, Aegerter P, Saiag P (2001) Is dermoscopy (epiluminescence microscopy) useful for the diagnosis of melanoma? Results of a meta-analysis using techniques adapted to the evaluation of diagnostic tests. Arch Dermatol 137:1343–1350

    PubMed  CAS  Google Scholar 

  182. Carli P, de Giorgi V, Chiarugi A, Nardini P, Weinstock MA, Crocetti E, Stante M, Giannotti B (2004) Addition of dermoscopy to conventional naked-eye examination in melanoma screening: a randomized study. J Am Acad Dermatol 50:683–689

    PubMed  Google Scholar 

  183. Carli P, De Giorgi V, Crocetti E, Mannone F, Massi D, Chiarugi A, Giannotti B (2004) Improvement of malignant/benign ratio in excised melanocytic lesions in the ‘dermoscopy era’: a retrospective study 1997-2001. Br J Dermatol 150:687–692

    PubMed  CAS  Google Scholar 

  184. Haenssle HA, Vente C, Bertsch HP, Rupprecht R, Abuzahra F, Junghans V, Ellinghaus B, Emmert S, Hallermann C, Rosenberger A et al (2004) Results of a surveillance programme for patients at high risk of malignant melanoma using digital and conventional dermoscopy. Eur J Cancer Prev 13:133–138

    PubMed  CAS  Google Scholar 

  185. Kittler H, Pehamberger H, Wolff K, Binder M (2000) Follow-up of melanocytic skin lesions with digital epiluminescence microscopy: patterns of modifications observed in early melanoma, atypical nevi, and common nevi. J Am Acad Dermatol 43:467–476

    PubMed  CAS  Google Scholar 

  186. Menzies SW, Gutenev A, Avramidis M, Batrac A, McCarthy WH (2001) Short-term digital surface microscopic monitoring of atypical or changing melanocytic lesions. Arch Dermatol 137:1583–1589

    PubMed  CAS  Google Scholar 

  187. Berwick M, Begg CB, Fine JA, Roush GC, Barnhill RL (1996) Screening for cutaneous melanoma by skin self-examination. J Natl Cancer Inst 88:17–23

    PubMed  CAS  Google Scholar 

  188. U.S. Preventative Services Task Force (2009) Screening for skin cancer: U.S. Preventative Services Task Force recommendation statement. Ann Intern Med 150:188–193

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Chao, E.D., Gabree, M.J., Tsao, H. (2010). Familial Atypical Mole Melanoma (FAMM) Syndrome. In: Chung, D., Haber, D. (eds) Principles of Clinical Cancer Genetics. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-93846-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-93846-2_10

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-93844-8

  • Online ISBN: 978-0-387-93846-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics