Skip to main content

Basic Principles of Cancer Genetics

  • Chapter
  • First Online:
Principles of Clinical Cancer Genetics
  • 1524 Accesses

Abstract

Cancer results from the stepwise accumulation of genetic alterations within a cell. These alterations lead to abnormal proliferation and clonal expansion, and ultimately to invasion of surrounding tissues and metastasis to distant sites. Genetic abnormalities providing a selective advantage are maintained and ultimately become dominant within the population. The accumulation of genetic abnormalities, which in most cases occurs over a period of years, underlies both the process of tumorigenesis (the transition from normal cells to invasive cancer) and tumor progression (the transition to a metastatic and often treatment-resistant cancer). Histologic correlates of the process of tumorigenesis are recognized in a subset of cancers (e.g., colon and bladder cancers), whereas for others such cancer-precursor lesions have not been identified. Dozens of genes involved in tumorigenesis and tumor progression have now been identified. The products of these genes regulate key cellular processes including cell proliferation and survival, cellular motility and differentiation, and the establishment of cellular immortality.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lichtenstein P, Holm NV, Verkasalo PK et al (2000) Environmental and heritable factors in the causation of cancer – analyses of cohorts of twins from Sweden, Denmark, and Finland. N Engl J Med 343(2):78–85

    Article  PubMed  CAS  Google Scholar 

  2. Stehelin D, Varmus HE, Bishop JM, Vogt PK (1976) DNA related to the transforming gene(s) of avian sarcoma viruses is present in normal avian DNA. Nature 260(5547):170–173

    Article  PubMed  CAS  Google Scholar 

  3. Delattre O, Zucman J, Melot T et al (1994) The Ewing family of tumors – a subgroup of small-round-cell tumors defined by specific chimeric transcripts. N Engl J Med 331(5):294–299

    Article  PubMed  CAS  Google Scholar 

  4. Wistuba II, Gazdar AF, Minna JD (2001) Molecular genetics of small cell lung carcinoma. Semin Oncol 28(2 Suppl 4):3–13

    Article  PubMed  CAS  Google Scholar 

  5. Wood LD, Parsons DW, Jones S et al (2007) The genomic landscapes of human breast and colorectal cancers. Science 318(5853): 1108–1113

    Article  PubMed  CAS  Google Scholar 

  6. Lowy DR, Willumsen BM (1993) Function and regulation of Ras. Annu Rev Biochem 62:851–891

    Article  PubMed  CAS  Google Scholar 

  7. Eng C, Clayton D, Schuffenecker I et al (1996) The relationship between specific RET proto-oncogene mutations and disease phenotype in multiple endocrine neoplasia type 2. International RET mutation consortium analysis. JAMA 276(19):1575–1579

    Article  PubMed  CAS  Google Scholar 

  8. Schimke RT (1984) Gene amplification, drug resistance, and cancer. Cancer Res 44(5):1735–1742

    PubMed  CAS  Google Scholar 

  9. Brodeur GM, Seeger RC, Schwab M, Varmus HE, Bishop JM (1984) Amplification of N-Myc in untreated human neuroblastomas correlates with advanced disease stage. Science 224(4653):1121–1124

    Article  PubMed  CAS  Google Scholar 

  10. Rabbitts TH (1994) Chromosomal translocations in human cancer. Nature 372(6502):143–149

    Article  PubMed  CAS  Google Scholar 

  11. Dalla-Favera R, Bregni M, Erikson J, Patterson D, Gallo RC, Croce CM (1982) Human c-Myc onc gene is located on the region of chromosome 8 that is translocated in Burkitt lymphoma cells. Proc Natl Acad Sci U S A 79(24):7824–7827

    Article  PubMed  CAS  Google Scholar 

  12. Taub R, Kirsch I, Morton C et al (1982) Translocation of the c-Myc gene into the immunoglobulin heavy chain locus in human Burkitt lymphoma and murine plasmacytoma cells. Proc Natl Acad Sci U S A 79(24):7837–7841

    Article  PubMed  CAS  Google Scholar 

  13. Ellisen LW, Bird J, West DC et al (1991) TAN-1, the human homolog of the Drosophila notch gene, is broken by chromosomal translocations in T lymphoblastic neoplasms. Cell 66(4):649–661

    Article  PubMed  CAS  Google Scholar 

  14. Weng AP, Ferrando AA, Lee W et al (2004) Activating mutations of NOTCH1 in human T cell acute lymphoblastic leukemia. Science 306(5694):269–271

    Article  PubMed  CAS  Google Scholar 

  15. Shtivelman E, Lifshitz B, Gale RP, Canaani E (1985) Fused transcript of abl and bcr genes in chronic myelogenous leukaemia. Nature 315(6020):550–554

    Article  PubMed  CAS  Google Scholar 

  16. Rowley JD (1984) Biological implications of consistent chromosome rearrangements in leukemia and lymphoma. Cancer Res 44(8):3159–3168

    PubMed  CAS  Google Scholar 

  17. Daley GQ, Van Etten RA, Baltimore D (1990) Induction of chronic myelogenous leukemia in mice by the P210bcr/abl gene of the Philadelphia chromosome. Science 247(4944):824–830

    Article  PubMed  CAS  Google Scholar 

  18. Druker BJ, Sawyers CL, Kantarjian H et al (2001) Activity of a specific inhibitor of the BCR-ABL tyrosine kinase in the blast crisis of chronic myeloid leukemia and acute lymphoblastic leukemia with the Philadelphia chromosome. N Engl J Med 344(14): 1038–1042

    Article  PubMed  CAS  Google Scholar 

  19. Look AT (1997) Oncogenic transcription factors in the human acute leukemias. Science 278(5340):1059–1064

    Article  PubMed  CAS  Google Scholar 

  20. Warrell RP Jr, Frankel SR, Miller WH Jr et al (1991) Differentiation therapy of acute promyelocytic leukemia with tretinoin (all-trans-retinoic acid). N Engl J Med 324(20):1385–1393

    Article  PubMed  Google Scholar 

  21. Golub TR, Barker GF, Bohlander SK et al (1995) Fusion of the TEL gene on 12p13 to the AML1 gene on 21q22 in acute lymphoblastic leukemia. Proc Natl Acad Sci U S A 92(11):4917–4921

    Article  PubMed  CAS  Google Scholar 

  22. Tomlins SA, Rhodes DR, Perner S et al (2005) Recurrent fusion of TMPRSS2 and ETS transcription factor genes in prostate cancer. Science 310(5748):644–648

    Article  PubMed  CAS  Google Scholar 

  23. Tomlins SA, Laxman B, Dhanasekaran SM et al (2007) Distinct classes of chromosomal rearrangements create oncogenic ETS gene fusions in prostate cancer. Nature 448(7153):595–599

    Article  PubMed  CAS  Google Scholar 

  24. Ephrussi B, Davidson RL, Weiss MC, Harris H, Klein G (1969) Malignancy of somatic cell hybrids. Nature 224(5226):1314–1316

    Article  PubMed  CAS  Google Scholar 

  25. Saxon PJ, Srivatsan ES, Stanbridge EJ (1986) Introduction of human chromosome 11 via microcell transfer controls tumorigenic expression of HeLa cells. EMBO J 5(13):3461–3466

    PubMed  CAS  Google Scholar 

  26. Whyte P, Buchkovich KJ, Horowitz JM et al (1988) Association between an oncogene and an anti-oncogene: the adenovirus E1A proteins bind to the retinoblastoma gene product. Nature 334(6178):124–129

    Article  PubMed  CAS  Google Scholar 

  27. Knudson AG Jr (1971) Mutation and cancer: statistical study of retinoblastoma. Proc Natl Acad Sci U S A 68(4):820–823

    Article  PubMed  Google Scholar 

  28. Friend SH, Bernards R, Rogelj S et al (1986) A human DNA segment with properties of the gene that predisposes to retinoblastoma and osteosarcoma. Nature 323(6089):643–646

    Article  PubMed  CAS  Google Scholar 

  29. Call KM, Glaser T, Ito CY et al (1990) Isolation and characterization of a zinc finger polypeptide gene at the human chromosome 11 Wilms’ tumor locus. Cell 60(3):509–520

    Article  PubMed  CAS  Google Scholar 

  30. Cavenee WK, Dryja TP, Phillips RA et al (1983) Expression of recessive alleles by chromosomal mechanisms in retinoblastoma. Nature 305(5937):779–784

    Article  PubMed  CAS  Google Scholar 

  31. Weinberg RA (1995) The retinoblastoma protein and cell cycle control. Cell 81(3):323–330

    Article  PubMed  CAS  Google Scholar 

  32. Foulkes WD, Flanders TY, Pollock PM, Hayward NK (1997) The CDKN2A (p16) gene and human cancer. Mol Med 3(1):5–20

    PubMed  CAS  Google Scholar 

  33. Sherr CJ (1996) Cancer cell cycles. Science 274(5293):1672–1677

    Article  PubMed  CAS  Google Scholar 

  34. Lane DP (1992) Cancer. p53, guardian of the genome. Nature 358(6381):15–16

    Article  PubMed  CAS  Google Scholar 

  35. Harris CC, Hollstein M (1993) Clinical implications of the p53 tumor-suppressor gene. N Engl J Med 329(18):1318–1327

    Article  PubMed  CAS  Google Scholar 

  36. Lang GA, Iwakuma T, Suh YA et al (2004) Gain of function of a p53 hot spot mutation in a mouse model of Li-Fraumeni syndrome. Cell 119(6):861–872

    Article  PubMed  CAS  Google Scholar 

  37. Olive KP, Tuveson DA, Ruhe ZC et al (2004) Mutant p53 gain of function in two mouse models of Li-Fraumeni syndrome. Cell 119(6):847–860

    Article  PubMed  CAS  Google Scholar 

  38. Debbas M, White E (1993) Wild-type p53 mediates apoptosis by E1A, which is inhibited by E1B. Genes Dev 7(4):546–554

    Article  PubMed  CAS  Google Scholar 

  39. Oliner JD, Kinzler KW, Meltzer PS, George DL, Vogelstein B (1992) Amplification of a gene encoding a p53-associated protein in human sarcomas. Nature 358(6381):80–83

    Article  PubMed  CAS  Google Scholar 

  40. Montes de Oca Luna R, Wagner DS, Lozano G (1995) Rescue of early embryonic lethality in mdm2-deficient mice by deletion of p53. Nature 378(6553):203–206

    Article  PubMed  CAS  Google Scholar 

  41. Quelle DE, Zindy F, Ashmun RA, Sherr CJ (1995) Alternative reading frames of the INK4a tumor suppressor gene encode two unrelated proteins capable of inducing cell cycle arrest. Cell 83(6):993–1000

    Article  PubMed  CAS  Google Scholar 

  42. Sherr CJ (1998) Tumor surveillance via the ARF-p53 pathway. Genes Dev 12(19):2984–2991

    Article  PubMed  CAS  Google Scholar 

  43. Matheu A, Maraver A, Klatt P et al (2007) Delayed ageing through damage protection by the Arf/p53 pathway. Nature 448(7151):375–379

    Article  PubMed  CAS  Google Scholar 

  44. Malkin D, Li FP, Strong LC et al (1990) Germ line p53 mutations in a familial syndrome of breast cancer, sarcomas, and other neoplasms. Science 250(4985):1233–8

    Article  PubMed  CAS  Google Scholar 

  45. Meijers-Heijboer H, van den Ouweland A, Klijn J et al (2002) Low-penetrance susceptibility to breast cancer due to CHEK2(*)1100delC in noncarriers of BRCA1 or BRCA2 mutations. Nat Genet 31(1): 55–59

    Article  PubMed  CAS  Google Scholar 

  46. Savitsky K, Bar-Shira A, Gilad S et al (1995) A single ataxia telangiectasia gene with a product similar to PI-3 kinase. Science 268(5218):1749–1753

    Article  PubMed  CAS  Google Scholar 

  47. Featherstone C, Jackson SP (1998) DNA repair: the Nijmegen breakage syndrome protein. Curr Biol 8(17):R622–R625

    Article  PubMed  CAS  Google Scholar 

  48. Miki Y, Swensen J, Shattuck-Eidens D et al (1994) A strong candidate for the breast and ovarian cancer susceptibility gene BRCA1. Science 266(5182):66–71

    Article  PubMed  CAS  Google Scholar 

  49. Wooster R, Bignell G, Lancaster J et al (1995) Identification of the breast cancer susceptibility gene BRCA2. Nature 378(6559): 789–792

    Article  PubMed  CAS  Google Scholar 

  50. Joenje H, Patel KJ (2001) The emerging genetic and molecular basis of Fanconi anaemia. Nat Rev 2(6):446–457

    Article  CAS  Google Scholar 

  51. Lynch HT, Smyrk T, Lynch JF (1998) Molecular genetics and clinical-pathology features of hereditary nonpolyposis colorectal carcinoma (Lynch syndrome): historical journey from pedigree anecdote to molecular genetic confirmation. Oncology 55(2):103–108

    Article  PubMed  CAS  Google Scholar 

  52. Kolodner RD (1995) Mismatch repair: mechanisms and relationship to cancer susceptibility. Trends Biochem Sci 20(10):397–401

    Article  PubMed  CAS  Google Scholar 

  53. Aaltonen LA, Salovaara R, Kristo P et al (1998) Incidence of hereditary nonpolyposis colorectal cancer and the feasibility of molecular screening for the disease. N Engl J Med 338(21):1481–1487

    Article  PubMed  CAS  Google Scholar 

  54. Markowitz S, Wang J, Myeroff L et al (1995) Inactivation of the type II TGF-beta receptor in colon cancer cells with microsatellite instability. Science 268(5215):1336–1338

    Article  PubMed  CAS  Google Scholar 

  55. Inoki K, Corradetti MN, Guan KL (2005) Dysregulation of the TSC-mTOR pathway in human disease. Nat Genet 37(1):19–24

    Article  PubMed  CAS  Google Scholar 

  56. Sansal I, Sellers WR (2004) The biology and clinical relevance of the PTEN tumor suppressor pathway. J Clin Oncol 22(14):2954–2963

    Article  PubMed  CAS  Google Scholar 

  57. Crino PB, Nathanson KL, Henske EP (2006) The tuberous sclerosis complex. N Engl J Med 355(13):1345–1356

    Article  PubMed  CAS  Google Scholar 

  58. Hemminki A, Markie D, Tomlinson I et al (1998) A serine/threonine kinase gene defective in Peutz-Jeghers syndrome. Nature 391(6663):184–187

    Article  PubMed  CAS  Google Scholar 

  59. Iliopoulos O, Kaelin WG Jr (1997) The molecular basis of von Hippel-Lindau disease. Mol Med 3(5):289–293

    PubMed  CAS  Google Scholar 

  60. McCormick F (1995) Ras signaling and NF1. Curr Opin Genet Dev 5(1):51–55

    Article  PubMed  CAS  Google Scholar 

  61. Gusella JF, Ramesh V, MacCollin M, Jacoby LB (1996) Neurofibromatosis 2: loss of merlin’s protective spell. Curr Opin Genet Dev 6(1):87–92

    Article  PubMed  CAS  Google Scholar 

  62. Fearnhead NS, Britton MP, Bodmer WF (2001) The ABC of APC. Hum Mol Genet 10(7):721–733

    Article  PubMed  CAS  Google Scholar 

  63. Hahn SA, Schutte M, Hoque AT et al (1996) DPC4, a candidate tumor suppressor gene at human chromosome 18q21.1. Science 271(5247):350–353

    Article  PubMed  CAS  Google Scholar 

  64. Hahn H, Wicking C, Zaphiropoulous PG et al (1996) Mutations of the human homolog of Drosophila patched in the nevoid basal cell carcinoma syndrome. Cell 85(6):841–851

    Article  PubMed  CAS  Google Scholar 

  65. Rivera MN, Kim WJ, Wells J et al (2007) An X chromosome gene, WTX, is commonly inactivated in Wilms tumor. Science 315(5812): 642–645

    Article  PubMed  CAS  Google Scholar 

  66. Kinzler KW, Vogelstein B (1996) Lessons from hereditary colorectal cancer. Cell 87(2):159–170

    Article  PubMed  CAS  Google Scholar 

  67. Ting AH, McGarvey KM, Baylin SB (2006) The cancer epigenome – components and functional correlates. Genes Dev 20(23):3215–3231

    Article  PubMed  CAS  Google Scholar 

  68. Esteller M (2007) Cancer epigenomics: DNA methylomes and histone-modification maps. Nat Rev 8(4):286–298

    Article  CAS  Google Scholar 

  69. Wiemer EA (2007) The role of microRNAs in cancer: no small matter. Eur J Cancer 43(10):1529–1544

    Article  PubMed  CAS  Google Scholar 

  70. Calin GA, Dumitru CD, Shimizu M et al (2002) Frequent deletions and down-regulation of micro-RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci U S A 99(24):15524–15529

    Article  PubMed  CAS  Google Scholar 

  71. Johnson SM, Grosshans H, Shingara J et al (2005) Ras is regulated by the let-7 microRNA family. Cell 120(5):635–647

    Article  PubMed  CAS  Google Scholar 

  72. Voorhoeve PM, le Sage C, Schrier M et al (2006) A genetic screen implicates miRNA-372 and miRNA-373 as oncogenes in testicular germ cell tumors. Cell 124(6):1169–1181

    Article  PubMed  CAS  Google Scholar 

  73. Korsmeyer SJ (1995) Regulators of cell death. Trends Genet 11(3): 101–105

    Article  PubMed  CAS  Google Scholar 

  74. Cleary ML, Smith SD, Sklar J (1986) Cloning and structural analysis of cDNAs for bcl-2 and a hybrid bcl-2/immunoglobulin transcript resulting from the t(14;18) translocation. Cell 47(1):19–28

    Article  PubMed  CAS  Google Scholar 

  75. Hayflick L, Moorhead PS (1961) The serial cultivation of human diploid cell strains. Exp Cell Res 25:585–621

    Article  PubMed  CAS  Google Scholar 

  76. Greider CW (1998) Telomeres and senescence: the history, the experiment, the future. Curr Biol 8(5):R178–R181

    Article  PubMed  CAS  Google Scholar 

  77. Artandi SE, DePinho RA (2000) Mice without telomerase: what can they teach us about human cancer? Nat Med 6(8):852–855

    Article  PubMed  CAS  Google Scholar 

  78. Meyerson M, Counter CM, Eaton EN et al (1997) hEST2, the putative human telomerase catalytic subunit gene, is up-regulated in tumor cells and during immortalization. Cell 90(4):785–795

    Article  PubMed  CAS  Google Scholar 

  79. Nakamura TM, Morin GB, Chapman KB et al (1997) Telomerase catalytic subunit homologs from fission yeast and human. Science 277(5328):955–9

    Article  PubMed  CAS  Google Scholar 

  80. Liotta LA, Tryggvason K, Garbisa S, Hart I, Foltz CM, Shafie S (1980) Metastatic potential correlates with enzymatic degradation of basement membrane collagen. Nature 284(5751):67–68

    Article  PubMed  CAS  Google Scholar 

  81. Bierie B, Moses HL (2006) Tumour microenvironment: TGFbeta: the molecular Jekyll and Hyde of cancer. Nat Rev 6(7):506–520

    Article  CAS  Google Scholar 

  82. Folkman J (1996) Fighting cancer by attacking its blood supply. Sci Am 275(3):150–154

    Article  PubMed  CAS  Google Scholar 

  83. Gottlieb E, Tomlinson IP (2005) Mitochondrial tumour suppressors: a genetic and biochemical update. Nat Rev 5(11):857–866

    Article  CAS  Google Scholar 

  84. Chow LQ, Eckhardt SG (2007) Sunitinib: from rational design to clinical efficacy. J Clin Oncol 25(7):884–896

    Article  PubMed  CAS  Google Scholar 

  85. Jain RK (2005) Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy. Science 307(5706):58–62

    Article  PubMed  CAS  Google Scholar 

  86. Ling V (1997) Multidrug resistance: molecular mechanisms and clinical relevance. Cancer Chemother Pharmacol 40(Suppl):S3–S8

    Article  PubMed  CAS  Google Scholar 

  87. Kinsella AR, Smith D (1998) Tumor resistance to antimetabolites. Gen Pharmacol 30(5):623–626

    Article  PubMed  CAS  Google Scholar 

  88. Quintas-Cardama A, Cortes J (2008) Therapeutic options against BCR-ABL1 T315I-positive chronic myelogenous leukemia. Clin Cancer Res 14(14):4392–4399

    Article  PubMed  CAS  Google Scholar 

  89. Jabbour E, Cortes J, O’Brien S, Giles F, Kantarjian H (2007) New targeted therapies for chronic myelogenous leukemia: opportunities to overcome imatinib resistance. Semin Hematol 44(1 Suppl 1):S25–S31

    Article  PubMed  CAS  Google Scholar 

  90. Karapetis CS, Khambata-Ford S, Jonker DJ et al (2008) K-Ras mutations and benefit from cetuximab in advanced colorectal cancer. N Engl J Med 359(17):1757–1765

    Article  PubMed  CAS  Google Scholar 

  91. Edwards SL, Brough R, Lord CJ et al (2008) Resistance to therapy caused by intragenic deletion in BRCA2. Nature 451(7182): 1111–1115

    Article  PubMed  CAS  Google Scholar 

  92. Rosenwald A, Wright G, Chan WC et al (2002) The use of molecular profiling to predict survival after chemotherapy for diffuse large-B-cell lymphoma. N Engl J Med 346(25):1937–1947

    Article  PubMed  Google Scholar 

  93. Sotiriou C, Pusztai L (2009) Gene-expression signatures in breast cancer. N Engl J Med 360(8):790–800

    Article  PubMed  CAS  Google Scholar 

  94. Brown PO, Botstein D (1999) Exploring the new world of the genome with DNA microarrays. Nat Genet 21(1 Suppl):33–37

    Article  PubMed  CAS  Google Scholar 

  95. Fan JB, Chee MS, Gunderson KL (2006) Highly parallel genomic assays. Nat Rev 7(8):632–644

    Article  CAS  Google Scholar 

  96. Kim SY, Hahn WC (2007) Cancer genomics: integrating form and function. Carcinogenesis 28(7):1387–1392

    Article  PubMed  CAS  Google Scholar 

  97. Lakhani SR, Ashworth A (2001) Microarray and histopathological analysis of tumours: the future and the past? Nat Rev 1(2):151–157

    Article  CAS  Google Scholar 

  98. Gibbs JR, Singleton A (2006) Application of genome-wide single nucleotide polymorphism typing: simple association and beyond. PLoS Genet 2(10):e150

    Article  PubMed  Google Scholar 

  99. Gold B, Kirchhoff T, Stefanov S et al (2008) Genome-wide association study provides evidence for a breast cancer risk locus at 6q22.33. Proc Natl Acad Sci U S A 105(11):4340–4345

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leif W. Ellisen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Ellisen, L.W., Haber, D.A. (2010). Basic Principles of Cancer Genetics. In: Chung, D., Haber, D. (eds) Principles of Clinical Cancer Genetics. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-93846-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-93846-2_1

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-93844-8

  • Online ISBN: 978-0-387-93846-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics