Skip to main content

Responses of Lactic Acid Bacteria to Cell Envelope Stresses

  • Chapter
  • First Online:
Stress Responses of Lactic Acid Bacteria

Part of the book series: Food Microbiology and Food Safety ((FMFS))

  • 2599 Accesses

Abstract

The bacterial cell envelope is an essential structure required for cellular viability. Because it is the target of many forms of environmental aggressions, bacteria have developed strategies to monitor the integrity of the cell envelope and to minimize possible damage inflicted on it. These responses can be roughly divided into two main categories: those that directly target the source of aggression and those that correct the physiological consequences that result from it. Lactic acid bacteria (LAB) have developed particular strategies as a consequence of the specific ecological niches in which they thrive. A thorough understanding of the responses of LAB to cell envelope stresses is required not only to understand their lifestyle but also because of the implications these responses might have with respect to, for instance, antibiotic resistance development and interactions of pathogenic LAB with their hosts, the applicability of certain strains of LAB as probiotics, and the use of LAB in novel advanced applications, such as oral vaccines or the production of (medically relevant) proteins. Here we present an overview of the current knowledge of cell envelope stress responses in LAB.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Avall-Jääskeläinen S, Palva A (2005) Lactobacillus surface layers and their applications. FEMS Microbiol Rev 29:511–529

    Article  Google Scholar 

  • Benachour A, Muller C, Dabrowski-Coton M, Le Breton Y, Giard J, Rincé A, Auffray Y, Hartke A (2005) The Enterococcus faecalis sigV protein is an extracytoplasmic function sigma factor contributing to survival following heat, acid, and ethanol treatments. J Bacteriol 187:1022–1035

    Article  CAS  Google Scholar 

  • Bernard R, Guiseppi A, Chippaux M, Foglino M, Denizot F (2007) Resistance to bacitracin in Bacillus subtilis: unexpected requirement of the BceAB ABC transporter in the control of expression of its own structural genes. J Bacteriol 189:8636–8642

    Article  CAS  Google Scholar 

  • Bowie JU (2005) Solving the membrane protein folding problem. Nature 438:581–589

    Article  CAS  Google Scholar 

  • Brissette JL, Weiner L, Ripmaster TL, Model P (1991) Characterization and sequence of the Escherichia coli stress-induced psp operon. J Mol Biol 220:35–48

    Article  CAS  Google Scholar 

  • Bugg TD, Wright GD, Dutka-Malen S, Arthur M, Courvalin P, Walsh CT (1991) Molecular basis for vancomycin resistance in Enterococcus faecium BM4147: biosynthesis of a depsipeptide peptidoglycan precursor by vancomycin resistance proteins VanH and VanA. Biochemistry 30:10408–10415

    Article  CAS  Google Scholar 

  • Carballido-López R, Formstone A (2007) Shape determination in Bacillus subtilis. Curr Opin Microbiol 10:611–616

    Article  Google Scholar 

  • Cerning J (1990) Exocellular polysaccharides produced by lactic acid bacteria. FEMS Microbiol Rev 7:113–130

    CAS  Google Scholar 

  • Chambers HF (1999) Penicillin-binding protein-mediated resistance in pneumococci and staphylococci. J Infect Dis 179 Suppl 2:S353–S359

    Article  CAS  Google Scholar 

  • Chapot-Chartier M, Vinogradov E, Sadovskaya I, Andre G, Mistou M, Trieu-Cuot P, Furlan S, Bidnenko E, Courtin P, Pechoux C, Hols P, Dufrene YF, Kulakauskas S (2010) The cell surface of Lactococcus lactis is covered by a protective polysaccharide pellicle. J Biol Chem 285:10464–10471

    Article  CAS  Google Scholar 

  • Chong P, Drake L, Biswas I (2008) LiaS regulates virulence factor expression in Streptococcus mutans. Infect Immun 76:3093–3099

    Article  CAS  Google Scholar 

  • Comenge Y, Quintiliani R, Li L, Dubost L, Brouard J, Hugonnet J, Arthur M (2003) The CroRS two-component regulatory system is required for intrinsic beta-lactam resistance in Enterococcus faecalis. J Bacteriol 185:7184–7192

    Article  CAS  Google Scholar 

  • Cotter PD, Hill C, Ross RP (2005) Bacteriocins: developing innate immunity for food. Nat Rev Microbiol 3:777–788

    Article  CAS  Google Scholar 

  • Dagkessamanskaia A, Moscoso M, Hénard V, Guiral S, Overweg K, Reuter M, Martin B, Wells J, Claverys J (2004) Interconnection of competence, stress and CiaR regulons in Streptococcus pneumoniae: competence triggers stationary phase autolysis of ciaR mutant cells. Mol Microbiol 51:1071–1086

    Article  CAS  Google Scholar 

  • Dawid S, Sebert ME, Weiser JN (2009) Bacteriocin activity of Streptococcus pneumoniae is controlled by the serine protease HtrA via posttranscriptional regulation. J Bacteriol 191:1509–1518

    Article  CAS  Google Scholar 

  • de Kruijff B, van Dam V, Breukink E (2008) Lipid II: a central component in bacterial cell wall synthesis and a target for antibiotics. Prostaglandins Leukot Essent Fatty Acids 79:117–121

    Article  Google Scholar 

  • De Vuyst L, Leroy F (2007) Bacteriocins from lactic acid bacteria: production, purification, and food applications. J Mol Microbiol Biotechnol 13:194–199

    Article  Google Scholar 

  • Delcour J, Ferain T, Deghorain M, Palumbo E, Hols P (1999) The biosynthesis and functionality of the cell-wall of lactic acid bacteria. Antonie van Leeuwenhoek 76:159–184

    Article  CAS  Google Scholar 

  • Driessen AJM, Nouwen N (2008) Protein translocation across the bacterial cytoplasmic membrane. Annu Rev Biochem 77:643–667

    Article  CAS  Google Scholar 

  • Eldholm V, Johnsborg O, Haugen K, Ohnstad HS, Håvarstein LS (2009) Fratricide in Streptococcus pneumoniae: contributions and role of the cell wall hydrolases CbpD, LytA and LytC. Microbiology (Reading, Engl) 155:2223–2234

    Article  CAS  Google Scholar 

  • Eldholm V, Gutt B, Johnsborg O, Brückner R, Maurer P, Hakenbeck R, Mascher T, Håvarstein LS (2010) The pneumococcal cell envelope stress-sensing system LiaFSR is activated by murein hydrolases and lipid II-interacting antibiotics. J Bacteriol 192:1761–1773

    Article  CAS  Google Scholar 

  • Engelhardt H (2007) Are S-layers exoskeletons? The basic function of protein surface layers revisited. J Struct Biol 160:115–124

    Article  CAS  Google Scholar 

  • Engelman DM (2005) Membranes are more mosaic than fluid. Nature 438:578–580

    Article  CAS  Google Scholar 

  • Fontana R, Canepari P, Lleò MM, Satta G (1990) Mechanisms of resistance of enterococci to beta-lactam antibiotics. Eur J Clin Microbiol Infect Dis 9:103–105

    Article  CAS  Google Scholar 

  • Gauntlett JC, Gebhard S, Keis S, Manson JM, Pos KM, Cook GM (2008) Molecular analysis of BcrR, a membrane-bound bacitracin sensor and DNA-binding protein from Enterococcus faecalis. J Biol Chem 283:8591–8600

    Article  CAS  Google Scholar 

  • Gram H (1884) Über die isolierte Färbung der Schizomyceten in Schnitt- und Trockenpräparaten. Fortschritte der Medizin 2:185–189

    Google Scholar 

  • Grisshammer R (2006) Understanding recombinant expression of membrane proteins. Curr Opin Biotechnol 17:337–340

    Article  CAS  Google Scholar 

  • Guenzi E, Gasc AM, Sicard MA, Hakenbeck R (1994) A two-component signal-transducing system is involved in competence and penicillin susceptibility in laboratory mutants of Streptococcus pneumoniae. Mol Microbiol 12:505–515

    Article  CAS  Google Scholar 

  • Haas W, Kaushal D, Sublett J, Obert C, Tuomanen EI (2005) Vancomycin stress response in a sensitive and a tolerant strain of Streptococcus pneumoniae. J Bacteriol 187:8205–8210

    Article  CAS  Google Scholar 

  • Hancock LE, Perego M (2004) Systematic inactivation and phenotypic characterization of two-component signal transduction systems of Enterococcus faecalis V583. J Bacteriol 186:7951–7958

    Article  CAS  Google Scholar 

  • Helmann JD (2002) The extracytoplasmic function (ECF) sigma factors. Adv Microb Physiol 46:47–110

    Article  CAS  Google Scholar 

  • Hong H, Hutchings MI, Buttner MJ (2008) Vancomycin resistance VanS/VanR two-component systems. Adv Exp Med Biol 631:200–213

    Article  CAS  Google Scholar 

  • Ibrahim YM, Kerr AR, McCluskey J, Mitchell TJ (2004) Control of virulence by the two-component system CiaR/H is mediated via HtrA, a major virulence factor of Streptococcus pneumoniae. J Bacteriol 186:5258–5266

    Article  CAS  Google Scholar 

  • Irisawa T, Okada S (2009) Lactobacillus sucicola sp. nov., a motile lactic acid bacterium isolated from oak tree (Quercus sp.) sap. Int J Syst Evol Microbiol 59:2662–2665

    Article  CAS  Google Scholar 

  • Jordan S, Junker A, Helmann JD, Mascher T (2006) Regulation of LiaRS-dependent gene expression in Bacillus subtilis: identification of inhibitor proteins, regulator binding sites, and target genes of a conserved cell envelope stress-sensing two-component system. J Bacteriol 188:5153–5166

    Article  CAS  Google Scholar 

  • Jordan S, Rietkotter E, Strauch MA, Kalamorz F, Butcher BG, Helmann JD, Mascher T (2007) LiaRS-dependent gene expression is embedded in transition state regulation in Bacillus subtilis. Microbiology 153:2530–2540

    Article  CAS  Google Scholar 

  • Jordan S, Hutchings MI, Mascher T (2008) Cell envelope stress response in Gram-positive bacteria. FEMS Microbiol Rev 32:107–146

    Article  CAS  Google Scholar 

  • Kankainen M, Paulin L, Tynkkynen S, von Ossowski I, Reunanen J, Partanen P, Satokari R, Vesterlund S, Hendrickx APA, Lebeer S, De Keersmaecker SCJ, Vanderleyden J, Hämäläinen T, Laukkanen S, Salovuori N, Ritari J, Alatalo E, Korpela R, Mattila-Sandholm T, Lassig A, Hatakka K, Kinnunen KT, Karjalainen H, Saxelin M, Laakso K, Surakka A, Palva A, Salusjärvi T, Auvinen P, de Vos WM (2009) Comparative genomic analysis of Lactobacillus rhamnosus GG reveals pili containing a human- mucus binding protein. Proc Natl Acad Sci USA 106:17193–17198

    Article  CAS  Google Scholar 

  • Kemper MA, Urrutia MM, Beveridge TJ, Koch AL, Doyle RJ (1993) Proton motive force may regulate cell wall-associated enzymes of Bacillus subtilis. J Bacteriol 175:5690–5696

    CAS  Google Scholar 

  • Koch AL, Doyle RJ (1985) Inside-to-outside growth and turnover of the wall of Gram-positive rods. J Theor Biol 117:137–157

    Article  CAS  Google Scholar 

  • Konings WN (2002) The cell membrane and the struggle for life of lactic acid bacteria. Antonie van Leeuwenhoek 82:3–27

    Article  CAS  Google Scholar 

  • Kramer NE, van Hijum SAFT, Knol J, Kok J, Kuipers OP (2006) Transcriptome analysis reveals mechanisms by which Lactococcus lactis acquires nisin resistance. Antimicrob Agents Chemother 50:1753–1761

    Article  CAS  Google Scholar 

  • Kristich CJ, Wells CL, Dunny GM (2007) A eukaryotic-type Ser/Thr kinase in Enterococcus faecalis mediates antimicrobial resistance and intestinal persistence. Proc Natl Acad Sci USA 104:3508–3513

    Article  CAS  Google Scholar 

  • Kunji ERS, Chan KW, Slotboom DJ, Floyd S, O’Connor R, Monné M (2005) Eukaryotic membrane protein overproduction in Lactococcus lactis. Curr Opin Biotechnol 16:546–551

    Article  CAS  Google Scholar 

  • Kuroda M, Kuroda H, Oshima T, Takeuchi F, Mori H, Hiramatsu K (2003) Two-component system VraSR positively modulates the regulation of cell-wall biosynthesis pathway in Staphylococcus aureus. Mol Microbiol 49:807–821

    Article  CAS  Google Scholar 

  • Lancefield RC (1933) A serological differentiation of human and other groups of hemolytic streptococci. J Exp Med 57:571–595

    Article  CAS  Google Scholar 

  • Le Breton Y, Boël G, Benachour A, Prévost H, Auffray Y, Rincé A (2003) Molecular characterization of Enterococcus faecalis two-component signal transduction pathways related to environmental stresses. Environ Microbiol 5:329–337

    Article  Google Scholar 

  • Le Breton Y, Muller C, Auffray Y, Rincé A (2007) New insights into the Enterococcus faecalis CroRS two-component system obtained using a differential-display random arbitrarily primed PCR approach. Appl Environ Microbiol 73:3738–3741

    Article  Google Scholar 

  • Le Jeune A, Torelli R, Sanguinetti M, Giard J, Hartke A, Auffray Y, Benachour A (2010) The extracytoplasmic function sigma factor SigV plays a key role in the original model of lysozyme resistance and virulence of Enterococcus faecalis. PLoS One 5: e9658

    Article  Google Scholar 

  • Macnab RM (2003) How bacteria assemble flagella. Annu Rev Microbiol 57:77–100

    Article  CAS  Google Scholar 

  • MacRitchie DM, Buelow DR, Price NL, Raivio TL (2008) Two-component signaling and gram negative envelope stress response systems. Adv Exp Med Biol 631:80–110

    Article  CAS  Google Scholar 

  • Maillard J (2002) Bacterial target sites for biocide action. J Appl Microbiol 92 Suppl:16S–27S

    Article  Google Scholar 

  • Mandlik A, Swierczynski A, Das A, Ton-That H (2008) Pili in Gram-positive bacteria: assembly, involvement in colonization and biofilm development. Trends Microbiol 16:33–40

    Article  CAS  Google Scholar 

  • Mandon EC, Trueman SF, Gilmore R (2009) Translocation of proteins through the Sec61 and SecYEG channels. Curr Opin Cell Biol 21:501–507

    Article  CAS  Google Scholar 

  • Manson JM, Keis S, Smith JMB, Cook GM (2004) Acquired bacitracin resistance in Enterococcus faecalis is mediated by an ABC transporter and a novel regulatory protein, BcrR. Antimicrob Agents Chemother 48:3743–3748

    Article  CAS  Google Scholar 

  • Marreddy RKR, Pinto JPC, Wolters JC, Geertsma ER, Fusetti F, Permentier HP, Kuipers OP, Kok J, Poolman B (2010) The response of Lactococcus lactis to membrane protein production. Submitted

    Google Scholar 

  • Martínez B, Zomer AL, Rodríguez A, Kok J, Kuipers OP (2007) Cell envelope stress induced by the bacteriocin Lcn972 is sensed by the Lactococcal two-component system CesSR. Mol Microbiol 64:473–486

    Article  Google Scholar 

  • Martínez JL (2008) Antibiotics and antibiotic resistance genes in natural environments. Science 321:365–367

    Article  Google Scholar 

  • Mascher T (2006) Intramembrane-sensing histidine kinases: a new family of cell envelope stress sensors in Firmicutes bacteria. FEMS Microbiol Lett 264:133–144

    Article  CAS  Google Scholar 

  • Massova I, Mobashery S (1998) Kinship and diversification of bacterial penicillin-binding proteins and beta-lactamases. Antimicrob Agents Chemother 42:1–17

    Article  CAS  Google Scholar 

  • Matos R, Pinto VV, Ruivo M, Lopes MDFS (2009) Study on the dissemination of the bcrABDR cluster in Enterococcus spp. reveals that the BcrAB transporter is sufficient to confer high-level bacitracin resistance. Int J Antimicrob Agents 34:142–147

    Article  CAS  Google Scholar 

  • Maurer SE, Deamer DW, Boncella JM, Monnard P (2009) Chemical evolution of amphiphiles: glycerol monoacyl derivatives stabilize plausible prebiotic membranes. Astrobiology 9:979–987

    Article  CAS  Google Scholar 

  • Morello E, Bermúdez-Humarán LG, Llull D, Solé V, Miraglio N, Langella P, Poquet I (2008) Lactococcus lactis, an efficient cell factory for recombinant protein production and secretion. J Mol Microbiol Biotechnol 14:48–58

    Article  CAS  Google Scholar 

  • Muller C, Le Breton Y, Morin T, Benachour A, Auffray Y, Rincé A (2006) The response regulator CroR modulates expression of the secreted stress-induced SalB protein in Enterococcus faecalis. J Bacteriol 188:2636–2645

    Article  CAS  Google Scholar 

  • Myhre AE, Aasen AO, Thiemermann C, Wang JE (2006) Peptidoglycan – an endotoxin in its own right? Shock 25:227–235

    Article  CAS  Google Scholar 

  • Nielsen DS, Schillinger U, Franz CMAP, Bresciani J, Amoa-Awua W, Holzapfel WH, Jakobsen M (2007) Lactobacillus ghanensis sp. nov., a motile lactic acid bacterium isolated from Ghanaian cocoa fermentations. Int J Syst Evol Microbiol 57:1468–1472

    Article  CAS  Google Scholar 

  • O’Connell-Motherway M, van Sinderen D, Morel-Deville F, Fitzgerald GF, Ehrlich SD, Morel P (2000) Six putative two-component regulatory systems isolated from Lactococcus lactis subsp. cremoris MG1363. Microbiology 146 (Pt 4):935–947

    Google Scholar 

  • Osborn MJ, Rothfield L (2007) Cell shape determination in Escherichia coli. Curr Opin Microbiol 10:606–610

    Article  CAS  Google Scholar 

  • Panno J (2004) The cell: evolution of the first organism. Facts on File, New York

    Google Scholar 

  • Perry JA, Lévesque CM, Suntharaligam P, Mair RW, Bu M, Cline RT, Peterson SN, Cvitkovitch DG (2008) Involvement of Streptococcus mutans regulator RR11 in oxidative stress response during biofilm growth and in the development of genetic competence. Lett Appl Microbiol 47:439–444

    Article  CAS  Google Scholar 

  • Pietiäinen M, François P, Hyyryläinen H, Tangomo M, Sass V, Sahl H, Schrenzel J, Kontinen VP (2009) Transcriptome analysis of the responses of Staphylococcus aureus to antimicrobial peptides and characterization of the roles of vraDE and vraSR in antimicrobial resistance. BMC Genomics 10:429

    Article  Google Scholar 

  • Pinto JPC, Kuipers OP, Marreddy RKR, Poolman B, Kok J (2010) Efficient overproduction of membrane proteins in Lactococcus lactis requires the cell envelope stress sensor/regulator couple CesSR. Submitted

    Google Scholar 

  • Poole K (2007) Efflux pumps as antimicrobial resistance mechanisms. Ann Med 39:162–176

    Article  CAS  Google Scholar 

  • Qi F, Merritt J, Lux R, Shi W (2004) Inactivation of the ciaH Gene in Streptococcus mutans diminishes mutacin production and competence development, alters sucrose-dependent biofilm formation, and reduces stress tolerance. Infect Immun 72:4895–4899

    Article  CAS  Google Scholar 

  • Reynolds PE, Courvalin P (2005) Vancomycin resistance in enterococci due to synthesis of precursors terminating in D-alanyl-D-serine. Antimicrob Agents Chemother 49:21–25

    Article  CAS  Google Scholar 

  • Roberts IS (1996) The biochemistry and genetics of capsular polysaccharide production in bacteria. Annu Rev Microbiol 50:285–315

    Article  CAS  Google Scholar 

  • Roces C, Campelo AB, Veiga P, Pinto JPC, Rodríguez A, Martínez B (2009) Contribution of the CesR-regulated genes llmg0169 and llmg2164-2163 to Lactococcus lactis fitness. Int J Food Microbiol 133:279–285

    Article  CAS  Google Scholar 

  • Rogers PD, Liu TT, Barker KS, Hilliard GM, English BK, Thornton J, Swiatlo E, McDaniel LS (2007) Gene expression profiling of the response of Streptococcus pneumoniae to penicillin. J Antimicrob Chemother 59:616–626

    Article  CAS  Google Scholar 

  • Sauvage E, Kerff F, Terrak M, Ayala JA, Charlier P (2008) The penicillin-binding proteins: structure and role in peptidoglycan biosynthesis. FEMS Microbiol Rev 32:234–258

    Article  CAS  Google Scholar 

  • Sebert ME, Palmer LM, Rosenberg M, Weiser JN (2002) Microarray-based identification of htrA, a Streptococcus pneumoniae gene that is regulated by the CiaRH two-component system and contributes to nasopharyngeal colonization. Infect Immun 70:4059–4067

    Article  CAS  Google Scholar 

  • Sebert ME, Patel KP, Plotnick M, Weiser JN (2005) Pneumococcal HtrA protease mediates inhibition of competence by the CiaRH two-component signaling system. J Bacteriol 187:3969–3979

    Article  CAS  Google Scholar 

  • Shivaji S, Prakash JSS (2010) How do bacteria sense and respond to low temperature? Arch Microbiol 192:85–95

    Article  CAS  Google Scholar 

  • Sillanpää J, Prakash VP, Nallapareddy SR, Murray BE (2009) Distribution of genes encoding MSCRAMMs and pili in clinical and natural populations of Enterococcus faecium. J Clin Microbiol 47:896–901

    Article  Google Scholar 

  • Silver LL (2003) Novel inhibitors of bacterial cell wall synthesis. Curr Opin Microbiol 6:431–438

    Article  CAS  Google Scholar 

  • Silver LL (2006) Does the cell wall of bacteria remain a viable source of targets for novel antibiotics? Biochem Pharmacol 71:996–1005

    Article  CAS  Google Scholar 

  • Sleytr UB, Beveridge TJ (1999) Bacterial S-layers. Trends Microbiol 7:253–260

    Article  CAS  Google Scholar 

  • Summers AO (2006) Genetic linkage and horizontal gene transfer, the roots of the antibiotic multi-resistance problem. Anim Biotechnol 17:125–135

    Article  CAS  Google Scholar 

  • Suntharalingam P, Senadheera MD, Mair RW, Lévesque CM, Cvitkovitch DG (2009) The LiaFSR system regulates cell envelope stress response in Streptococcus mutans. J Bacteriol 191:2973–2984

    Article  CAS  Google Scholar 

  • Swoboda JG, Campbell J, Meredith TC, Walker S (2010) Wall teichoic acid function, biosynthesis, and inhibition. Chembiochem 11:35–45

    Article  CAS  Google Scholar 

  • Telford JL, Barocchi MA, Margarit I, Rappuoli R, Grandi G (2006) Pili in Gram-positive pathogens. Nat Rev Microbiol 4:509–519

    Article  CAS  Google Scholar 

  • Tsuda H, Yamashita Y, Shibata Y, Nakano Y, Koga T (2002) Genes involved in bacitracin resistance in Streptococcus mutans. Antimicrob Agents Chemother 46:3756–3764

    Article  CAS  Google Scholar 

  • Ulrich LE, Koonin EV, Zhulin IB (2005) One-component systems dominate signal transduction in prokaryotes. Trends Microbiol 13:52–56

    Article  CAS  Google Scholar 

  • Van Bambeke F, Mingeot-Leclercq M, Struelens MJ, Tulkens PM (2008) The bacterial envelope as a target for novel anti-MRSA antibiotics. Trends Pharmacol Sci 29:124–134

    Article  Google Scholar 

  • van Dam V, Sijbrandi R, Kol M, Swiezewska E, de Kruijff B, Breukink E (2007) Transmembrane transport of peptidoglycan precursors across model and bacterial membranes. Mol Microbiol 64:1105–1114

    Article  Google Scholar 

  • Veiga P, Bulbarela-Sampieri C, Furlan S, Maisons A, Chapot-Chartier M, Erkelenz M, Mervelet P, Noirot P, Frees D, Kuipers OP, Kok J, Gruss A, Buist G, Kulakauskas S (2007) SpxB regulates O-acetylation-dependent resistance of Lactococcus lactis peptidoglycan to hydrolysis. J Biol Chem 282:19342–19354

    Article  CAS  Google Scholar 

  • Walker A (2009) Genome watch: probiotics stick it to the man. Nat Rev Microbiol 7:843

    Article  CAS  Google Scholar 

  • Wallin E, Heijne GV (1998) Genome-wide analysis of integral membrane proteins from eubacterial, archaean, and eukaryotic organisms. Protein Sci 7:1029–1038

    Article  CAS  Google Scholar 

  • Walsh SE, Maillard JY, Simons C, Russell AD (1999) Studies on the mechanisms of the antibacterial action of ortho-phthalaldehyde. J Appl Microbiol 87:702–710

    Article  CAS  Google Scholar 

  • Weigel LM, Clewell DB, Gill SR, Clark NC, McDougal LK, Flannagan SE, Kolonay JF, Shetty J, Killgore GE, Tenover FC (2003) Genetic analysis of a high-level vancomycin-resistant isolate of Staphylococcus aureus. Science 302:1569–1571

    Article  CAS  Google Scholar 

  • Zapun A, Contreras-Martel C, Vernet T (2008) Penicillin-binding proteins and beta-lactam resistance. FEMS Microbiol Rev 32:361–385

    Article  CAS  Google Scholar 

  • Zhu L, Kreth J (2010) Role of Streptococcus mutans eukaryotic-type serine/threonine protein kinase in interspecies interactions with Streptococcus sanguinis. Arch Oral Biol 55:385–390

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Kok .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Pinto, J.P.C., Kuipers, O.P., Kok, J. (2011). Responses of Lactic Acid Bacteria to Cell Envelope Stresses. In: Tsakalidou, E., Papadimitriou, K. (eds) Stress Responses of Lactic Acid Bacteria. Food Microbiology and Food Safety. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-92771-8_8

Download citation

Publish with us

Policies and ethics