Skip to main content

Plant Mitochondrial Genomes and Recombination

  • Chapter
  • First Online:

Part of the book series: Advances in Plant Biology ((AIPB,volume 1))

Abstract

The mitochondrial genome of higher plants provides what is often considered a confusing picture of genome evolution, with extreme variation in its organization, size, and complexity. The genome’s recombinogenic nature and chimeric gene content is unusual relative to what is seen in mitochondria of animals and fungi. But emerging mitochondrial sequence data from early land plants and recent studies of nuclear influence on mitochondrial genome behavior have provided insight into the evolutionary trends and possible rationale for the genomic variability that is seen. We review some of these recent findings in the context of plant adaptation. The versatility of the mitochondrial genome structure, in association with mitochondrial cellular signaling capacity, may constitute an important, plant-specific strategy for environmental responsiveness.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

CMS:

Cytoplasmic male sterility

Fr:

Fertility restorer

GA:

Gibberellic acid

MSH1:

mutS Homolog 1

Osb1:

Organellar single-stranded DNA binding protein 1

SSS:

Substoichiometric shifting

References

  • Abdelnoor, R. V., Christensen, A. C., Mohammed, S., Munoz-Castillo, B., Moriyama, H., Mackenzie, S. A. 2006. Mitochondrial genome dynamics in plants and animals: convergent gene fusions of a MutS homologue. J. Mol. Evol. 63:165–173.

    Google Scholar 

  • Adamo, A., Pinney, J. W., Kunova, A., Westhead, D. R., Meyer, P. 2008. Heat stress enhances the accumulation of polyadenylated mitochondrial transcripts in Arabidopsis thaliana. PLoS One 6:e2889.

    Article  Google Scholar 

  • Albert, B., Lelandais, C., Pla, M., Leuret, C., Vitart, V., Mathieu, C., Sihachakr, D., Godelle, B., De Paepe, R. 2003. Amplification of Nicotiana sylvestris mitochondrial subgenomics is under nuclear control and is associated with phenotypic changes. Genetica 117:17–25.

    Article  PubMed  CAS  Google Scholar 

  • Allen, J. O., Fauron, C. M., Minx, P., Roark, L., Oddiraju, S., Lin, G. N., Meyer, L., Sun, H., Kim, K., Wang, C., Du, F., Xu, D., Gibson, M., Cifrese, J., Clifton, S. W., Newton, K. J. 2007. Comparisons among two fertile and three male-sterile mitochondrial genomes of maize. Genetics 177:1173–1192.

    Google Scholar 

  • Alverson, A. J., Wei, X., Rice, D. W., Stern, D. B., Barry, K., Palmer, J. D. 2010. Insights into the evolution of mitochondrial genome size from complete sequences of Citrullus lanatus and Cucurbita pepo (Cucurbitaceae). Mol. Biol. Evol. Epub.

    Google Scholar 

  • Anderson, S., Bankier, A. T., Barrell, B. G., De Bruijn, M. H. L., Coulson, A. R., et al. 1981. Sequence and organization of the human mitochondrial genome. Nature 290:457–465.

    Article  PubMed  CAS  Google Scholar 

  • Andersson, H. 1999. Female and hermaphrodite flowers on a chimeric gynomonoecious Silene vulgaris plant produce offspring with different genders: a case of heteroplasmic sex determination? J. Hered. 90:563–565.

    Article  Google Scholar 

  • Arrieta-Montiel, M., Lyznik, A., Woloszynska, M., Janska, H., Tohme, J., Mackenzie, S. 2001. Tracing evolutionary and developmental implications of mitochondrial stoichiometric shifting in the common bean. Genetics 158:851–864.

    PubMed  CAS  Google Scholar 

  • Arrieta-Montiel, M. P., Shedge, V., Davila, J., Christensen, A. C., Mackenzie, S. A. 2009. Diversity of the Arabidopsis mitochondrial genome occurs via nuclear-controlled recombination activity. Genetics 183:1261–1268.

    Google Scholar 

  • Backert, S., Borner, T. 2000. Phage T4-like intermediates of DNA replication and recombination in the mitochondria of the higher plant Chenopodium album (L.). Curr. Genet. 37:304–314.

    Article  PubMed  CAS  Google Scholar 

  • Backert, S., Nielsen, B. L., Borner, T. 1997.The mystery of the rings: Structure and replication of mitochondrial genomes from higher plants. Trends Plant Sci. 2:477–483.

    Article  Google Scholar 

  • Barr, C. M., Neiman, M., Taylor, D. R. 2005. Inheritance and recombination of mitochondrial genomes in plants, fungi and animals. New Phytol. 168:39–50.

    Article  PubMed  CAS  Google Scholar 

  • Bartoszewski, G., Havey, M. J., Ziolkowska, A., Dlugosz, M., Malepszy, S. 2007. The selection of mosaic (MSC) phenotype after passage of cucumber (Cucumis sativus L) through cell culture – a method to obtain plant mitochondrial mutants. J. Appl. Genet. 48:1–9.

    Article  PubMed  Google Scholar 

  • Bellaoui, M., Martin-Canadell, A., Pelletier, G., Budar, F. 1998. Low-copy-number molecules are produced by recombination, actively maintained and can be amplified in the mitochondrial genome of Brassicaceae: relationship to reversion of the male sterile phenotype in some cybrids. Mol. Gen. Genet. 257:177–185.

    Article  PubMed  CAS  Google Scholar 

  • Boore, J. L. 1999. Animal mitochondrial genomes. Nucl. Acids Res. 27:1767–1780.

    Article  PubMed  CAS  Google Scholar 

  • Brettell, R. I. S., Thomas, E., Ingram, D. S. 1980. Reversion of Texas male-sterile cytoplasm maize in culture to give fertile, T-toxin resistant plants. Theor. Appl. Genet. 58:55–58.

    Google Scholar 

  • Bullerwell, C. E., Gray, M. W. 2004. Evolution of the mitochondrial genome: protist connections to animals, fungi and plants. Curr. Opin. Microbiol. 7:528–534.

    Article  PubMed  CAS  Google Scholar 

  • Chaw, S. M., Shih, A. C., Wang, D., Wu, Y. W., Liu, S. M., Chou, T. Y. 2008. The mitochondrial genome of the gymnosperm Cycas taitungensis contains a novel family of short interspersed elements, Bpu sequences, and abundant RNA editing sites. Mol. Biol. Evol. 25:603–615.

    Article  PubMed  CAS  Google Scholar 

  • Clifton, S. W., Minx, P., Fauron, C. M., et al. 2004. Sequence and comparative analysis of the maize NB mitochondrial genome. Plant Physiol. 136:3486–3503.

    Article  PubMed  CAS  Google Scholar 

  • Dutilleul, C., Garmier, M., Noctor, G., Mathieu, C., Chétrit, P., Foyer, C. H., de Paepe, R. 2003. Leaf mitochondria modulate whole cell redox homeostasis, set antioxidant capacity, and determine stress resistance through altered signaling and diurnal regulation. Plant Cell 15:1212–1226.

    Article  PubMed  CAS  Google Scholar 

  • Escote, L. J., Gabay-Laughnan, S. J., Laughnan, J. R. 1985. Cytoplasmic reversion to fertility in cms-S maize need not involve loss of linear mitochondrial plasmids. Plasmid 14:264–267.

    Article  PubMed  CAS  Google Scholar 

  • Fauron, C., Casper, M., Gao, Y., Moore, B. 1995 The maize mitochondrial genome: dynamic, yet functional. Trends Genet. 11:228–235.

    Article  PubMed  CAS  Google Scholar 

  • Feng, X., Kaur, A. P., Mackenzie, S. A., Dweikat, I. M. 2009. Substoichiometric shifting in the fertility reversion of cytoplasmic male sterile pearl millet. Theor. Appl. Genet. 118:1361–1370.

    Google Scholar 

  • Folkerts, O., Hanson, M. R. 1991. The male sterility-associated pcf gene and the normal atp9-1 gene in Petunia are located on different mitochondrial DNA molecules. Genetics 129:885–895.

    Google Scholar 

  • Forner, J., Weber, B., Wietholter, C., Meyer, R. C., Binder, S. 2005. Distant sequences determine end formation of cox3 transcripts in Arabidopsis thaliana ecotype C24. Nucl. Acids Res. 33:4673–4682.

    Article  PubMed  CAS  Google Scholar 

  • Giancola, S., Rao, Y., Chaillou, S., Hiard, S., Martin-Canadell, A., Pelletier, G., Budar, F. 2007. Cytoplasmic suppression of Ogura cytoplasmic male sterility in European natural populations of Raphanus raphanistrum. Theor. Appl. Genet. 114:1333–1343.

    Article  PubMed  Google Scholar 

  • Giraud, E., Ho, L. H., Clifton, R., Carroll, A., Estavillo, G., Tan, Y. F., Howell, K. A., Ivanova, A., Pogson, B. J., Millar, A. H., Whelan, J. 2008. The absence of ALTERNATIVE OXIDASE1a in Arabidopsis results in acute sensitivity to combined light and drought stress. Plant Physiol. 147:595–610.

    Article  PubMed  CAS  Google Scholar 

  • Gray, M. W., Burger, G. and Lang, B. F. 1999. Mitochondrial evolution. Science 283:1476–1481.

    Article  PubMed  CAS  Google Scholar 

  • Grewe, F., Viehoever, P., Weisshaar, B., Knoop V. 2009. A trans-splicing group I intron and tRNA-hyperediting in the mitochondrial genome of the lycophyte Isoetes engelmannii. Nucl. Acids Res. 37:5093–5104.

    Article  PubMed  CAS  Google Scholar 

  • Handa, H. 2003. The complete nucleotide sequence and RNA editing content of the mitochondrial genome of rapeseed (Brassica napus L.): comparative analysis of the mitochondrial genomes of rapeseed and Arabidopsis thaliana. Nucl. Acids Res. 31:5907–5916.

    Article  PubMed  CAS  Google Scholar 

  • Hanson, M., Bentolila, S. 2004. Interactions of mitochondrial and nuclear genes that affect male gametophyte development. Plant Cell 16(suppl):S154–S169.

    Article  PubMed  CAS  Google Scholar 

  • Hartmann, C., Henry, Y., Tregear, J., Rode, A. 2000. Nuclear control of mitochondrial genome reorganization characterized using cultured cells of ditelosomic and nullisomic-tetrasomic wheat lines. Curr. Genet. 38:156–162.

    Article  CAS  Google Scholar 

  • Hauschner, H., Yesodi, V., Izhar, S., Tabib, Y., Firon, N. 1998. Cytoplasmic diversity caused by mitochondrial (mt) DNA dynamics and mt gene expression in petunia, in Plant Biotechnology and In Vitro Biology in the 21st Century, ed. A. Altman. Proceedings of the IX IAPTC International Congress Plant Tissue and Cell Culture, Amsterdam, pp. 147–150.

    Google Scholar 

  • Huertas, P. 2010. DNA resection in eukaryotes: deciding how to fix the break. Nat. Struct. Mol. Biol. 17(1):11–16.

    Article  PubMed  CAS  Google Scholar 

  • Janska, H., Mackenzie, S. A. 1993. Unusual mitochondrial genome organization in cytoplasmic male sterile common bean and the nature of cytoplasmic reversion to fertility. Genetics 135:869–879.

    PubMed  CAS  Google Scholar 

  • Janska, H., Sarria, R.,Woloszynska, M., Arrieta-Montiel, M., Mackenzie, S. A. 1998. Stoichiometric shifts in the common bean mitochondrial genome leading to male sterility and spontaneous reversion to fertility. Plant Cell 10:1163–1180.

    PubMed  CAS  Google Scholar 

  • Jiao, S., Thornsberry, J. M., Elthon, T. E., Newton, K. J. 2005 Biochemical and molecular characterization of photosystem I deficiency in the NCS6 mitochondrial mutant of maize. Plant Mol. Biol. 57:303–313.

    Article  PubMed  CAS  Google Scholar 

  • Khazi FR, Edmondson AC, Nielsen BL. 2003. An Arabidopsis homologue of bacterial RecA that complements an E. coli recA deletion is targeted to plant mitochondria. Mol Genet Genomics. 269:454-63.

    Google Scholar 

  • Kosa, P., Valach, M., Tomaska, L., Wolfe, K. H., Nosek, J. 2006. Complete DNA sequences of the mitochondrial genomes of the pathogenic yeasts Candida orthopsilosis and Candida metapsilosis: insight into the evolution of linear DNA genomes from mitochondrial telomere mutants. Nucl. Acids Res. 34:2472–2481.

    Article  PubMed  CAS  Google Scholar 

  • Kubo, T., Newton, K. J. 2008. Angiosperm mitochondrial genomes and mutations. Mitochondrion 8:5–14.

    Article  PubMed  CAS  Google Scholar 

  • Kubo, T., Nishizawa, S., Sugawara, A., Itchoda, N., Estiati, A., Mikami, T. 2000. The complete nucleotide sequence of the mitochondrial genome of sugar beet (Beta vulgaris L.) reveals a novel gene for tRNA Cys(GCA). Nucl. Acids Res. 28:2571–2576.

    Article  PubMed  CAS  Google Scholar 

  • Laser, B., Mohr, S., Odenback, W., Oettler, G., Kuck, U. 1997. Parental and novel copies of the mitochondrial orf25 gene in the hybrid crop-plant triticale: predominant transcriptional expression of the maternal gene copy. Curr. Genet. 32:337–347.

    Article  PubMed  CAS  Google Scholar 

  • Levy, A. A., André, C. P., Walbot, V. 1991. Analysis of a 120-kilobase mitochondrial chromosome in maize. Genetics 128:417–424.

    Google Scholar 

  • Li, X. Q., Chétrit P., Mathieu C., Vedel F., De Paepe R., Remy, R., Ambard-Bretteville, F. 1988. Regeneration of cytoplasmic male sterile protoclones of Nicotiana sylvestris with mitochondrial variations. Curr. Genet. 13:261–266.

    Article  CAS  Google Scholar 

  • Li, Wang. B., Liu, Y., Qiu, Y. L. 2009. The complete mitochondrial genome sequence of the hornwort Megaceros aenigmaticus shows a mixed mode of conservative yet dynamic evolution in early land plant mitochondrial genomes. J. Mol. Evol. 68:665–678.

    Google Scholar 

  • Mackenzie, S.A., Chase, C.D. 1990. Fertility restoration is associated with loss of a portion of the mitochondrial genome in cytoplasmic male-sterile common bean. Plant Cell 2:905–912.

    Google Scholar 

  • Mackenzie, S. A., Pring, D. R., Bassett, M. J., Chase, C. D. 1988. Mitochondrial DNA rearrangement associated with fertility restoration and cytoplasmic reversion to fertility in cytoplasmic male sterile Phaseolus vulgaris L. Proc. Natl. Acad. Sci. U.S.A. 85:2714–2717.

    Article  PubMed  CAS  Google Scholar 

  • Manchekar, M., Scissum-Gunn, K., Song, D., Khazi, F., McLean, S. L., Nielsen, B. L. 2006. DNA recombination activity in soybean mitochondria. J. Mol. Biol. 356:288–299.

    Article  PubMed  CAS  Google Scholar 

  • Maréchal, A., Parent, J. S., Sabar, M., Véronneau-Lafortune, F., Abou-Rached, C., Brisson, N. 2008. Overexpression of mtDNA-associated AtWhy2 compromises mitochondrial function. BMC Plant Biol. 8:42.

    Article  PubMed  Google Scholar 

  • Maréchal, A., Parent, J. S., Véronneau-Lafortune, F., Joyeux, A., Lang, B. F., Brisson, N. 2009. Whirly proteins maintain plastid genome stability in Arabidopsis. Proc. Natl. Acad. Sci. U.S.A. 106:14693–14698.

    Article  PubMed  Google Scholar 

  • McCauley, D. E., Olson, M. S. 2008. Do recent findings in plant mitochondrial molecular and population genetics have implications for the study of gynodioecy and cytonuclear conflict? Evolution 62:1013–1025.

    Article  PubMed  Google Scholar 

  • McVey, M., Lee, S. E. 2008. MMEJ repair of double strand breaks (director’s cut): deleted sequences and alternative endings. Trends Genet. 24:529–538.

    Google Scholar 

  • Murayama, K., Yahara, T., Terachi, T. 2004 Variation of female frequency and cytoplasmic male-sterility gene frequency among natural gynodioecious populations of wild radish (Raphanus sativus L.). Mol. Ecol. 13:2459–2464.

    Article  PubMed  CAS  Google Scholar 

  • Newton, K., Coe, E. H. 1986. Mitochondrial DNA changes in abnormal growth (nonchromosomal stripe) mutants of maize. Proc. Natl. Acad. Sci. U.S.A. 83:7363–7366.

    Article  PubMed  CAS  Google Scholar 

  • Notsu, Y., Masood, S., Nishikawa, T., Kubo, N., Akiduki, G., Nakazono, M., Hirai, A., Kadowaki, K. 2002. The complete sequence of the rice (Oryza sativa L.) mitochondrial genome: frequent DNA sequence acquisition and loss during the evolution of flowering plants. Mol. Genet. Genome 268:434–445.

    Article  CAS  Google Scholar 

  • Oda, K., Yamato, K., Ohta, E., Nakamura, Y., Takemura, M., Nozato, N., Akashi, K., Kanegae, T., Ogura, Y., Kohchi, T., et al. 1992. Gene organization deduced from the complete sequence of liverwort Marchantia polymorpha mitochondrial DNA: a primitive form of plant mitochondrial genome. J. Mol. Biol. 223:1–7.

    Article  PubMed  CAS  Google Scholar 

  • Odahara, M., Inouye, T., Fujita, T., Hasebe, M., Sekine, Y. 2007. Involvement of mitochondrial-targeted RecA in the repair of mitochondrial DNA in the moss, Physicomitrella patens. Genes Genet. Syst. 82:43–51.

    Article  PubMed  CAS  Google Scholar 

  • Ogihara, Y., Yamazaki, Y., Murai, K., et al. 2005. Structural dynamics of cereal mitochondrial genomes as revealed by complete nucleotide sequencing of the wheat mitochondrial genome. Nucl. Acids Res. 33:6235–6250.

    Article  PubMed  CAS  Google Scholar 

  • Oldenburg, D. J., Bendich, A. J. 1996. Size and structure of replicating mitochondrial DNA in cultured tobacco cells. Plant Cell 8:447–461.

    PubMed  CAS  Google Scholar 

  • Oldenburg, D. J., Bendich, A. J. 2001. Mitochondrial DNA from the liverwort Marchantia polymorpha: circularly permuted linear molecules, head-to-tail concatemers, and a 5′ protein. J. Mol. Biol. 310:549–562.

    Article  PubMed  CAS  Google Scholar 

  • Palmer, J. D., Herbo, L. A. 1987. Unicircular structure of the Brassica hirta mitochondrial genome. Curr. Genet. 11:565–570.

    Article  PubMed  CAS  Google Scholar 

  • Pearl, S. A., Welch, M. E., McCauley, D. E. 2009. Mitochondrial heteroplasmy and paternal leakage in natural populations of Silene vulgaris, a gynodioecious plant. Mol. Biol. Evol. 26:537–5345.

    Article  PubMed  CAS  Google Scholar 

  • Pellny, T. K., Van Aken, O., Dutilleul, C., Wolff, T., Groten, K., Bor, M., de Paepe, R., Reyss, A., Van Breusegem, F., Noctor, G., Foyer, C. H. 2008. Mitochondrial respiratory pathways modulate nitrate sensing and nitrogen-dependent regulation of plant architecture in Nicotiana sylvestris. Plant J. 54:976–992.

    Article  PubMed  CAS  Google Scholar 

  • Pring, D. R., Gengenbach, B. G., Wise, R. P. 1988 Recombination is associated with polymorphism of the mitochondrial genomes of maize and sorghum. Philos. Trans. R. Soc. Lond. B: Biol. Sci. 319:187–198.

    Article  CAS  Google Scholar 

  • Richards, A. J. 1997. Plant Breeding Systems. London: Chapman and Hall.

    Google Scholar 

  • Sakamoto, W., Kondo, H., Murata, M., Motoyoshi, F. 1996. Altered mitochondrial gene expression in a maternal distorted leaf mutant of Arabidopsis induced by chloroplast mutator. Plant Cell 8:1377–1390.

    PubMed  CAS  Google Scholar 

  • Sandhu, A. P., Abdelnoor, R. V., Mackenzie, S. A. 2007. Transgenic induction of mitochondrial rearrangements for cytoplasmic male sterility in crop plants. Proc. Natl. Acad. Sci. U.S.A. 104:1766–1770.

    Article  PubMed  CAS  Google Scholar 

  • Schnable, P., Wise, R. 1998. The molecular basis of cytoplasmic male sterility and fertility restoration. Trends Plant Sci. 3:175–180.

    Article  Google Scholar 

  • Schofield, M. J., Hsieh, P. 2003. DNA mismatch repair: molecular mechanisms and biological function. Annu. Rev. Microbiol. 57:579–608.

    Article  PubMed  CAS  Google Scholar 

  • Shedge, V., Arrieta-Montiel, M., Christensen, A. C., Mackenzie, S. A. 2007. Plant mitochondrial recombination surveillance requires unusual RecA and MutS homologs. Plant Cell 19:1251–1264.

    Article  PubMed  CAS  Google Scholar 

  • Shedge, V., Davila, J., Arrieta-Montiel, M. P., Mohammed, S., Mackenzie, S. A. 2010. Extensive rearrangement of the Arabidopsis mitochondrial genome elicits cellular conditions for thermotolerance. Plant Physiol. 152:1960–1970.

    Google Scholar 

  • Small, I. D., Isaac, P. G., Leaver, C. J. 1987. Stoichiometric differences in DNA molecules containing the atpA gene suggest mechanisms for the generation of mitochondrial genome diversity in maize. EMBO J. 6:865–869.

    PubMed  CAS  Google Scholar 

  • Small, I., Suffolk, R., Leaver, C. J. 1989. Evolution of plant mitochondrial genomes via substoichiometric intermediates. Cell 58:69–76.

    Article  PubMed  CAS  Google Scholar 

  • Sugiyama, Y., Watase, Y., Nagase, M., Makita, N., Yagura, S., Hirai, A., Sugiura, M. 2005. The complete nucleotide sequence and multipartite organization of the tobacco mitochondrial genome: comparative analysis of mitochondrial genomes in higher plants. Mol. Genet. Genome. 272:603–615.

    Article  CAS  Google Scholar 

  • Szal, B., Lukawska, K., Zdolińska, I., Rychter, A. M. 2009. Chilling stress and mitochondrial genome rearrangement in the MSC16 cucumber mutant affect the alternative oxidase and antioxidant defense system to a similar extent. Physiol. Plant. 137:435–445.

    Article  PubMed  CAS  Google Scholar 

  • Talla, E., Anthouard, V., Bouchier, C., Frangeul, L., Dujon, B. 2004. The complete mitochondrial genome of the yeast Kluyveromyces thermotolerans. FEBS Letts. 579:30–40.

    Article  Google Scholar 

  • Terasawa, K., Odahara, M., Kabeya, Y., Kikugawa, T., Sekine, Y., Fujiwara, M., Sato, N. 2006. The mitochondrial genome of the moss Physcomitrella patens sheds new light on mitochondrial evolution in land plants. Mol. Biol. Evol. 24:699–709.

    Article  PubMed  Google Scholar 

  • Tian, X., Zheng, J., Hu, S., Yu, J. 2006. The rice mitochondrial genomes and their variations. Plant Physiol. 140:401–410.

    Article  PubMed  CAS  Google Scholar 

  • Unseld, M., Marienfeld, J. R., Brandt, P., Brennicke, A. 1997. The Mitochondrial genome of Arabidopsis thaliana contains 57genes in 366924 nucleotides. Nat. Genet. 15:57–61.

    Article  PubMed  CAS  Google Scholar 

  • Vitart, V., De Paepe R., Mathieu C., Chétrit P., Vedel F. 1992. Amplification of substoichiometric recombinant mitochondrial DNA sequences in a nuclear, male sterile mutant regenerated from protoplast culture in Nicotiana sylvestris. Mol. Gen. Genet. 233:193–120.

    Article  PubMed  CAS  Google Scholar 

  • Wade, M. J., McCauley, D. E. 2005. Paternal leakage sustains the cytoplasmic polymorphism underlying gynodioecy but remains invisible by nuclear restorers. Am. Nat. 166:592–602.

    Article  Google Scholar 

  • Wang, B., Xue, J., Li, L., Liu, Y., Qiu, Y. L. 2009. The complete mitochondrial genome sequence of the liverwort Pleurozia purpurea reveals extremely conservative mitochondrial genome evolution in liverworts. Curr. Genet. 55:601–609.

    Article  PubMed  CAS  Google Scholar 

  • Weihe, A., Apitz, J., Pohlheim, F., Salinas-Hartwig, A., Borner, T. 2009. Biparental inheritance of plastidial and mitochondrial DNA and hybrid variegation in Pelargonium. Mol. Genet. Genome 282:587–593.

    Article  CAS  Google Scholar 

  • Woloszynska, M. 2010. Heteroplasmy ans stoichiometric complexity of plant mitochondrial genomes – though this be madness, yet there’s method in’t. J. Exp. Bot. 61:657–671.

    Article  PubMed  CAS  Google Scholar 

  • Woloszynska, M., Trojanowski, D. 2009. Counting mtDNA molecules in Phaseolus vulgaris: sublimons are constantly produced by recombination via short repeats and undergo rigorous selection during substoichiometric shifting. Plant Mol. Biol. 70:511–521.

    Article  PubMed  CAS  Google Scholar 

  • Yamagishi, H., Terachi, T. 1996. Molecular and biological studies on male-sterile cytoplasm in the Cruciferae. III. Distribution of Ogura-type cytoplasm among Japanese wild radishes and Asian radish cultivars. Theor. Appl. Genet. 93:325–332.

    Article  CAS  Google Scholar 

  • Zaegel, V., Guermann, B., Le Ret, M., Andres, C., Meyer, D., Erhardt, M., Canada, Y. J., Gualberto, J. M., Imbault, P. 2006. The plant-specific ssDNA binding protein OSB1 is involved in the stoichiometric transmission of mitochondrial DNA in Arabidopsis. Plant Cell 18:3548–3563.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We apologize to any authors whose relevant work was omitted from this review. References were selected to illustrate concepts, but space limitations precluded discussion of all publications relevant to the topic. Work described from the Mackenzie laboratory was supported by funding from the Department of Energy (DE-FG02-07ER15564) and the National Science Foundation (IOS 0820668 and MCB 0744104).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sally A. Mackenzie .

Editor information

Editors and Affiliations

Glossary

Asymmetric recombination:

DNA exchange event that produces only one of the two predicted products.

Reciprocal recombination:

DNA exchange event that gives rise to two distinct recombinant products.

Heteroplasmy:

A heterogeneous mitochondrial population that often undergoes a subsequent process of sorting and may give rise to phenotypically chimeric individuals.

Cytoplasmic male sterility:

A variant, maternally inherited plant phenotype characterized by the inability to shed viable pollen.

Gynodioecy:

Plant populations in which bisexual (hermaphrodite) flowers are produced on one plant and female flowers are produced on another.

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Arrieta-Montiel, M.P., Mackenzie, S.A. (2011). Plant Mitochondrial Genomes and Recombination. In: Kempken, F. (eds) Plant Mitochondria. Advances in Plant Biology, vol 1. Springer, New York, NY. https://doi.org/10.1007/978-0-387-89781-3_3

Download citation

Publish with us

Policies and ethics