Skip to main content

Transcript Slippage and Recoding

  • Chapter
  • First Online:
Recoding: Expansion of Decoding Rules Enriches Gene Expression

Part of the book series: Nucleic Acids and Molecular Biology ((NUCLEIC,volume 24))

Abstract

Accurate transmission of genetic information during transcription requires that RNA polymerases maintain the correct register of the active site during each cycle of nucleotide incorporation. The RNA:DNA hybrid plays an important role in maintaining this lateral stability, and it has been observed that when the polymerase encounters homopolymeric tracts in the DNA template the transcript and/or the transcription complex may slip along the template, allowing the polymerase to incorporate more or fewer nucleotides than are encoded by the template. This phenomenon has been observed during all phases in the transcription cycle, including initiation, elongation, and termination. Here we review the evidence for transcript slippage in vivo and its implications for miscoding events. In addition, we review experiments that bear upon the mechanistic aspects of transcript slippage and the parameters that may affect its frequency. Aside from its implications for miscoding, transcript slippage may also be involved in regulatory roles during initiation and termination and promote expression of alternative information from the same gene.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alm RA, Ling LS, Moir DT, King BL, Brown ED, Doig PC, Smith DR, Noonan B, Guild BC, deJonge BL, Carmel G, Tummino PJ, Caruso A, Uria-Nickelsen M, Mills DM, Ives C, Gibson R, Merberg D, Mills SD, Jiang Q, Taylor DE, Vovis GF, Trust TJ (1999) Genomic-sequence comparison of two unrelated isolates of the human gastric pathogen Helicobacter pylori. Nature 397:176–180

    Article  PubMed  Google Scholar 

  • Ba Y, Tonoki H, Tada M, Nakata D, Hamada J, Moriuchi T (2000) Transcriptional slippage of p53 gene enhanced by cellular damage in rat liver: monitoring the slippage by a yeast functional assay. Mutat Res 447:209–220

    Article  PubMed  CAS  Google Scholar 

  • Bar-Nahum G, Epshtein V, Ruckenstein AE, Rafikov R, Mustaev A, Nudler E (2005) A ratchet mechanism of transcription elongation and its control. Cell 120:183–193

    Article  PubMed  CAS  Google Scholar 

  • Baranov PV, Hammer AW, Zhou J, Gesteland RF, Atkins JF (2005) Transcriptional slippage in bacteria: distribution in sequenced genomes and utilization in IS element gene expression. Genome Biol 6:R25

    Article  PubMed  Google Scholar 

  • Benson KF, Person RE, Li FQ, Williams K, Horwitz M (2004) Paradoxical homozygous expression from heterozygotes and heterozygous expression from homozygotes as a consequence of transcriptional infidelity through a polyadenine tract in the AP3B1 gene responsible for canine cyclic neutropenia. Nucleic Acids Res 32:6327–6333

    Article  PubMed  CAS  Google Scholar 

  • Borukhov S, Sagitov V, Josaitis CA, Gourse RL, Goldfarb A (1993) Two modes of transcription initiation in vitro at the rrnB P1 promoter of Escherichia coli. J Biol Chem 268:23477–23482

    PubMed  CAS  Google Scholar 

  • Burch CL, Danaher RJ, Stein DC (1997) Antigenic variation in Neisseria gonorrhoeae: production of multiple lipooligosaccharides. J Bacteriol 179:982–986

    PubMed  CAS  Google Scholar 

  • Chamberlin M, Berg P (1962) Deoxyribonucleic acid-directed synthesis of ribonucleic acid by an enzyme from Escherichia coli. Proc Natl Acad Sci USA 48:81–94

    Article  PubMed  CAS  Google Scholar 

  • de Pril R, Fischer DF, van Leeuwen FW (2006) Conformational diseases: an umbrella for various neurological disorders with an impaired ubiquitin-proteasome system. Neurobiol Aging 27:515–523

    Article  PubMed  Google Scholar 

  • Deng L, Shuman S (1997) Elongation properties of vaccinia virus RNA polymerase: pausing, slippage, 3’ end addition, and termination site choice. Biochemistry 36:15892–15899

    Article  PubMed  CAS  Google Scholar 

  • Fabre E, Dujon B, Richard GF (2002) Transcription and nuclear transport of CAG/CTG trinucleotide repeats in yeast. Nucleic Acids Res 30:3540–3547

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Diaz M, Bebenek K, Krahn JM, Pedersen LC, Kunkel TA (2006) Structural analysis of strand misalignment during DNA synthesis by a human DNA polymerase. Cell 124:331–342

    Article  PubMed  CAS  Google Scholar 

  • Gerez L, de HA, Hol EM, Fischer DF, van Leeuwen FW, van SH, Benne R (2005) Molecular misreading: the frequency of dinucleotide deletions in neuronal mRNAs for beta-amyloid precursor protein and ubiquitin B. Neurobiol Aging 26:145–155

    Article  PubMed  CAS  Google Scholar 

  • Guajardo R, Gopal V, Lopez P, Sousa R (1998) NTP concentration effects on initial transcription by T7 RNAP indicate that translocation occurs through passive sliding and reveal that divergent promoters have distinct NTP concentration requirements for productive initiation. J Mol Biol 281:777–792

    Article  PubMed  CAS  Google Scholar 

  • Guo HC, Roberts JW (1990) Heterogeneous initiation due to slippage at the bacteriophage 82 late gene promoter in vitro. Biochemistry 29:10702–10709

    Article  PubMed  CAS  Google Scholar 

  • Hamburgh ME, Curr KA, Monaghan M, Rao VR, Tripathi S, Preston BD, Sarafianos S, Arnold E, Darden T, Prasad VR (2006) Structural determinants of slippage-mediated mutations by human immunodeficiency virus type 1 reverse transcriptase. J Biol Chem 281:7421–7428

    Article  PubMed  CAS  Google Scholar 

  • Harley CB, Lawrie J, Boyer HW, Hedgpeth J (1990) Reiterative copying by E. coli RNA polymerase during transcription initiation of mutant pBR322 tet promoters. Nucleic Acids Res 18:547–552

    Article  PubMed  CAS  Google Scholar 

  • Hawryluk PJ, Ujvari A, Luse DS (2004) Characterization of a novel RNA polymerase II arrest site which lacks a weak 3’ RNA-DNA hybrid. Nucleic Acids Res 32:1904–1916

    Article  PubMed  CAS  Google Scholar 

  • He B, Kukarin A, Temiakov D, Chin-Bow ST, Lyakhov DL, Rong M, Durbin RK, McAllister WT (1998) Characterization of an unusual, sequence-specific termination signal for T7 RNA polymerase. J Biol Chem 273:18802–18811

    Article  PubMed  CAS  Google Scholar 

  • Imburgio D, Anikin M, McAllister WT (2002) Effects of substitutions in a conserved DX(2)GR sequence motif, found in many DNA-dependent nucleotide polymerases, on transcription by T7 RNA polymerase. J Mol Biol 319:37–51

    Article  PubMed  CAS  Google Scholar 

  • Imburgio D, Rong M, Ma K, McAllister WT (2000) Studies of promoter recognition and start site selection by T7 RNA polymerase using a comprehensive collection of promoter variants. Biochemistry 39:10419–10430

    Article  PubMed  CAS  Google Scholar 

  • Isken O, Maquat LE (2007) Quality control of eukaryotic mRNA: safeguarding cells from abnormal mRNA function. Genes Dev 21:1833–1856

    Article  PubMed  CAS  Google Scholar 

  • Jacques JP, Kolakofsky D (1991) Pseudo-templated transcription in prokaryotic and eukaryotic organisms. Genes Dev 5:707–713

    Article  PubMed  CAS  Google Scholar 

  • Jacques JP, Susskind MM (1990) Pseudo-templated transcription by Escherichia coli RNA polymerase at a mutant promoter. Genes Dev 4:1801–1810

    Article  PubMed  CAS  Google Scholar 

  • Jin DJ (1996) A mutant RNA polymerase reveals a kinetic mechanisms for the switch between nonproductive stuttering synthesis and productive initiation during promoter clearance. J Biol Chem 271:11659–11667

    Article  PubMed  CAS  Google Scholar 

  • Johnson SJ, Beese LS (2004) Structures of mismatch replication errors observed in a DNA polymerase. Cell 116:803–816

    Article  PubMed  CAS  Google Scholar 

  • Kashkina E, Anikin M, Brueckner F, Pomerantz RT, McAllister WT, Cramer P, Temiakov D (2006) Template misalignment in multisubunit RNA polymerases and transcription fidelity. Mol Cell 24:257–266

    Article  PubMed  CAS  Google Scholar 

  • Kolakofsky D, Roux L, Garcin D, Ruigrok RW (2005) Paramyxovirus mRNA editing, the "rule of six" and error catastrophe: a hypothesis. J Gen Virol 86:1869–1877

    Article  PubMed  CAS  Google Scholar 

  • Komissarova N, Kashlev M (1997) RNA polymerase switches between inactivated and activated states By translocating back and forth along the DNA and the RNA. J Biol Chem 272:15329–15338

    Article  PubMed  CAS  Google Scholar 

  • Kopka ML, Lavelle L, Han GW, Ng HL, Dickerson RE (2003) An unusual sugar conformation in the structure of an RNA/DNA decamer of the polypurine tract may affect recognition by RNase H. J Mol Biol 334:653–665

    Article  PubMed  CAS  Google Scholar 

  • Kuroda M, Ohta T, Uchiyama I, Baba T, Yuzawa H, Kobayashi I, Cui L, Oguchi A, Aoki K, Nagai Y, Lian J, Ito T, Kanamori M, Matsumaru H, Maruyama A, Murakami H, Hosoyama A, Mizutani-Ui Y, Takahashi NK, Sawano T, Inoue R, Kaito C, Sekimizu K, Hirakawa H, Kuhara S, Goto S, Yabuzaki J, Kanehisa M, Yamashita A, Oshima K, Furuya K, Yoshino C, Shiba T, Hattori M, Ogasawara N, Hayashi H, Hiramatsu K (2001) Whole genome sequencing of meticillin-resistant Staphylococcus aureus. Lancet 357:1225–1240

    Article  PubMed  CAS  Google Scholar 

  • Laken SJ, Petersen GM, Gruber SB, Oddoux C, Ostrer H, Giardiello FM, Hamilton SR, Hampel H, Markowitz A, Klimstra D, Jhanwar S, Winawer S, Offit K, Luce MC, Kinzler KW, Vogelstein B (1997) Familial colorectal cancer in Ashkenazim due to a hypermutable tract in APC. Nat Genet 17:79–83

    Article  PubMed  CAS  Google Scholar 

  • Landick R (2004) Active-site dynamics in RNA polymerases. Cell 116:351–353

    Article  PubMed  CAS  Google Scholar 

  • Landick R (2001) RNA Polymerase Clamps Down. Cell 105:567–570

    Article  PubMed  CAS  Google Scholar 

  • Larsen B, Wills NM, Nelson C, Atkins JF, Gesteland RF (2000) Nonlinearity in genetic decoding: homologous DNA replicase genes use alternatives of transcriptional slippage or translational frameshifting. Proc Natl Acad Sci USA 97:1683–1688

    Article  PubMed  CAS  Google Scholar 

  • Larson MH, Greenleaf WJ, Landick R, Block SM (2008) Applied force reveals mechanistic and energetic details of transcription termination. Cell 132:971–982

    Article  PubMed  CAS  Google Scholar 

  • Lee LY, Miyamoto YJ, McIntyre BW, Hook M, McCrea KW, McDevitt D, Brown EL (2002) The Staphylococcus aureus Map protein is an immunomodulator that interferes with T cell-mediated responses. J Clin Invest 110:1461–1471

    PubMed  CAS  Google Scholar 

  • Ling H, Boudsocq F, Woodgate R, Yang W (2001) Crystal structure of a Y-family DNA polymerase in action: a mechanism for error-prone and lesion-bypass replication. Cell 107:91–102

    Article  PubMed  CAS  Google Scholar 

  • Linton MF, Pierotti V, Young SG (1992) Reading-frame restoration with an apolipoprotein B gene frameshift mutation. Proc Natl Acad Sci USA 89:11431–11435

    Article  PubMed  CAS  Google Scholar 

  • Linton MF, Raabe M, Pierotti V, Young SG (1997) Reading-frame restoration by transcriptional slippage at long stretches of adenine residues in mammalian cells. J Biol Chem 272:14127–14132

    Article  PubMed  CAS  Google Scholar 

  • Liu C, Heath LS, Turnbough CL Jr. (1994) Regulation of pyrBI operon expression in Escherichia coli by UTP-sensitive reiterative RNA synthesis during transcriptional initiation. Genes Dev 8:2904–2912

    Article  PubMed  CAS  Google Scholar 

  • Macdonald LE, Zhou Y, McAllister WT (1993) Termination and slippage by bacteriophage T7 RNA polymerase. J Mol Biol 232:1030–1047

    Article  PubMed  CAS  Google Scholar 

  • Martin CT, Muller DK, Coleman JE (1988) Processivity in early stages of transcription by T7 RNA polymerase. Biochemistry 27:3966–3974

    Article  PubMed  CAS  Google Scholar 

  • Meng Q, Turnbough CL Jr, Switzer RL (2004) Attenuation control of pyrG expression in Bacillus subtilis is mediated by CTP-sensitive reiterative transcription. Proc Natl Acad Sci U S A 101:10943–10948

    Article  PubMed  Google Scholar 

  • Newton WA, Beckwith JR, Zipser D, Brenner S (1965) Nonsense mutants and polarity in the lac operon of Escherichia coli. J Mol Biol 14:290–296

    Article  PubMed  CAS  Google Scholar 

  • Nudler E, Mustaev A, Lukhtanov E, Goldfarb A (1997) The RNA-DNA hybrid maintains the register of transcription by preventing backtracking of RNA polymerase. Cell 89:33–41

    Article  PubMed  CAS  Google Scholar 

  • Pal M, Luse DS (2002) Strong natural pausing by RNA polymerase II within 10 bases of transcription start may result in repeated slippage and reextension of the nascent RNA. Mol Cell Biol 22:30–40

    Article  PubMed  CAS  Google Scholar 

  • Pal M, Luse DS (2003) The initiation-elongation transition: lateral mobility of RNA in RNA polymerase II complexes is greatly reduced at +8/+9 and absent by +23. Proc Natl Acad Sci USA 100:5700–5705

    Article  PubMed  CAS  Google Scholar 

  • Parker RC (1986) Synthesis of in vitro Co1E1 transcripts with 5’-terminal ribonucleotides that exhibit noncomplementarity with the DNA template. Biochemistry 25:6593–6598

    Article  PubMed  CAS  Google Scholar 

  • Penno C, Hachani A, Biskri L, Sansonetti P, Allaoui A, Parsot C (2006) Transcriptional slippage controls production of type III secretion apparatus components in Shigella flexneri. Mol Microbiol 62:1460–1468

    Article  PubMed  CAS  Google Scholar 

  • Penno C, Parsot C (2006) Transcriptional slippage in mxiE controls transcription and translation of the downstream mxiD gene, which encodes a component of the Shigella flexneri type III secretion apparatus. J Bacteriol 188:1196–1198

    Article  PubMed  CAS  Google Scholar 

  • Penno C, Sansonetti P, Parsot C (2005) Frameshifting by transcriptional slippage is involved in production of MxiE, the transcription activator regulated by the activity of the type III secretion apparatus in Shigella flexneri. Mol Microbiol 56:204–214

    Article  PubMed  CAS  Google Scholar 

  • Pomerantz RT, Temiakov D, Anikin M, Vassylyev DG, McAllister WT (2006) A mechanism of nucleotide misincorporation during transcription due to template-strand misalignment. Mol Cell 24:245–255

    Article  PubMed  CAS  Google Scholar 

  • Raabe M, Linton MF, Young SG (1998) Long runs of adenines and human mutations. Am J Med Genet 76:101–102

    Article  PubMed  CAS  Google Scholar 

  • Ratinier M, Boulant S, Combet C, Targett-Adams P, McLauchlan J, Lavergne JP (2008) Transcriptional slippage prompts recoding in alternate reading frames in the hepatitis C virus (HCV) core sequence from strain HCV-1. J Gen Virol 89:1569–1578

    Article  PubMed  CAS  Google Scholar 

  • Reeder RH, Lang WH (1997) Terminating transcription in eukaryotes: lessons learned from RNA polymerase I. Trends Biochem Sci 22:473–477

    Article  PubMed  CAS  Google Scholar 

  • Sanchez A, Trappier SG, Mahy BW, Peters CJ, Nichol ST (1996) The virion glycoproteins of Ebola viruses are encoded in two reading frames and are expressed through transcriptional editing. Proc Natl Acad Sci USA 93:3602–3607

    Article  PubMed  CAS  Google Scholar 

  • Sarafianos SG, Das K, Tantillo C, Clark AD, Jr., Ding J, Whitcomb JM, Boyer PL, Hughes SH, Arnold E (2001) Crystal structure of HIV-1 reverse transcriptase in complex with a polypurine tract RNA:DNA. EMBO J 20:1449–1461

    Article  PubMed  CAS  Google Scholar 

  • Severinov K, Goldfarb A (1994) Topology of the product binding site in RNA polymerase revealed by transcript slippage at the phage lambda PL promoter. J Biol Chem 269:31701–31705

    PubMed  CAS  Google Scholar 

  • Sidorenkov I, Komissarova N, Kashlev M (1998) Crucial role of the RNA:DNA hybrid in the processivity of transcription. Mol Cell 2:55–64

    Article  PubMed  CAS  Google Scholar 

  • Sousa R (2005) Machinations of a Maxwellian demon. Cell 120:155–156

    Article  PubMed  CAS  Google Scholar 

  • Sugimoto N, Nakano S, Katoh M, Matsumura A, Nakamuta H, Ohmichi T, Yoneyama M, Sasaki M (1995) Thermodynamic parameters to predict stability of RNA/DNA hybrid duplexes. Biochemistry 34:11211–11216

    Article  PubMed  CAS  Google Scholar 

  • Tamas I, Wernegreen JJ, Nystedt B, Kauppinen SN, Darby AC, Gomez-Valero L, Lundin D, Poole AM, Andersson SG (2008) Endosymbiont gene functions impaired and rescued by polymerase infidelity at poly(A) tracts. Proc Natl Acad Sci USA 105:14934–14939

    Article  PubMed  CAS  Google Scholar 

  • Timsit Y (1999) DNA structure and polymerase fidelity. J Mol Biol 293:835–853

    Article  PubMed  CAS  Google Scholar 

  • Tippin B, Kobayashi S, Bertram JG, Goodman MF (2004) To slip or skip, visualizing frameshift mutation dynamics for error-prone DNA polymerases. J Biol Chem 279:45360–45368

    Article  PubMed  CAS  Google Scholar 

  • Tomb JF, White O, Kerlavage AR, Clayton RA, Sutton GG, Fleischmann RD, Ketchum KA, Klenk HP, Gill S, Dougherty BA, Nelson K, Quackenbush J, Zhou L, Kirkness EF, Peterson S, Loftus B, Richardson D, Dodson R, Khalak HG, Glodek A, McKenney K, Fitzegerald LM, Lee N, Adams MD, Hickey EK, Berg DE, Gocayne JD, Utterback TR, Peterson JD, Kelley JM, Cotton MD, Weidman JM, Fujii C, Bowman C, Watthey L, Wallin E, Hayes WS, Borodovsky M, Karp PD, Smith HO, Fraser CM, Venter JC (1997) The complete genome sequence of the gastric pathogen Helicobacter pylori. Nature 388:539–547

    Article  PubMed  CAS  Google Scholar 

  • Toulokhonov I, Landick R (2003) The flap domain is required for pause RNA hairpin inhibition of catalysis by RNA polymerase and can modulate intrinsic termination. Mol Cell 12:1125–1136

    Article  PubMed  CAS  Google Scholar 

  • Turnbough CL Jr, Switzer RL (2008) Regulation of pyrimidine biosynthetic gene expression in bacteria: repression without repressors. Microbiol Mol Biol Rev 72:266–300

    Article  PubMed  CAS  Google Scholar 

  • van den Hurk WH, Willems HJ, Bloemen M, Martens GJ (2001) Novel frameshift mutations near short simple repeats. J Biol Chem 276:11496–11498

    Article  Google Scholar 

  • van Leeuwen FW, Fischer DF, Kamel D, Sluijs JA, Sonnemans MA, Benne R, Swaab DF, Salehi A, Hol EM (2000) Molecular misreading: a new type of transcript mutation expressed during aging. Neurobiol Aging 21:879–891

    Article  PubMed  Google Scholar 

  • van Leeuwen FW, Kros JM, Kamphorst W, van SC, de Vos RA (2006) Molecular misreading: the occurrence of frameshift proteins in different diseases. Biochem Soc Trans 34:738–742

    Article  PubMed  Google Scholar 

  • Volchkov VE, Becker S, Volchkova VA, Ternovoj VA, Kotov AN, Netesov SV, Klenk HD (1995) GP mRNA of Ebola virus is edited by the Ebola virus polymerase and by T7 and vaccinia virus polymerases. Virology 214:421–430

    Article  PubMed  CAS  Google Scholar 

  • Volchkov VE, Volchkova VA, Muhlberger E, Kolesnikova LV, Weik M, Dolnik O, Klenk HD (2001) Recovery of infectious Ebola virus from complementary DNA: RNA editing of the GP gene and viral cytotoxicity. Science 291:1965–1969

    Article  PubMed  CAS  Google Scholar 

  • Wagner LA, Weiss RB, Driscoll R, Dunn DS, Gesteland RF (1990) Transcriptional slippage occurs during elongation at runs of adenine or thymine in Escherichia coli. Nucleic Acids Res 18:3529–3535

    Article  PubMed  CAS  Google Scholar 

  • Wills NM, Atkins JF (2006) The potential role of ribosomal frameshifting in generating aberrant proteins implicated in neurodegenerative diseases. RNA 12:1149–1153

    Article  PubMed  CAS  Google Scholar 

  • Xiong XF, Reznikoff WS (1993) Transcriptional slippage during the transcription initiation process at a mutant lac promoter in vivo. J Mol Biol 231:569–580

    Article  PubMed  CAS  Google Scholar 

  • Yin H, Wang MD, Svoboda K, Landick R, Block S, Gelles J (1995) Transcription against an applied force. Science 270:1653–1657

    Article  PubMed  CAS  Google Scholar 

  • Yoon C, Prive GG, Goodsell DS, Dickerson RE (1988) Structure of an alternating-B DNA helix and its relationship to A-tract DNA. Proc Natl Acad Sci USA 85:6332–6336

    Article  PubMed  CAS  Google Scholar 

  • Young M, Inaba H, Hoyer LW, Higuchi M, Kazazian HH Jr, Antonarakis SE (1997) Partial correction of a severe molecular defect in hemophilia A, because of errors during expression of the factor VIII gene. Am J Hum Genet 60:565–573

    PubMed  CAS  Google Scholar 

  • Zang H, Goodenough AK, Choi JY, Irimia A, Loukachevitch LV, Kozekov ID, Angel KC, Rizzo CJ, Egli M, Guengerich FP (2005) DNA adduct bypass polymerization by Sulfolobus solfataricus DNA polymerase Dpo4: analysis and crystal structures of multiple base pair substitution and frameshift products with the adduct 1,N2-ethenoguanine. J Biol Chem 280:29750–29764

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

These studies were supported by grants from the National Institutes of Health (GM38147) and from the Foundation of UMDNJ to WTM. We are grateful to Chuck Turnbough, Don Luse, Sergei Borukhov, Dimitriy Markov, Steven Emanuel, and Maria Savkina for helpful comments, and to Mr. Raymond Castagna for technical support. We thank Craig Martin for pointing out to us the special properties of An:Tn homoduplexes that might provide a basis for transcript slippage, and Irina Artsimovitch and Evgeny Nudler for the gift of EcoRIQ111A.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William T. McAllister .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Anikin, M., Molodtsov, V., Temiakov, D., McAllister, W.T. (2010). Transcript Slippage and Recoding. In: Atkins, J., Gesteland, R. (eds) Recoding: Expansion of Decoding Rules Enriches Gene Expression. Nucleic Acids and Molecular Biology, vol 24. Springer, New York, NY. https://doi.org/10.1007/978-0-387-89382-2_19

Download citation

Publish with us

Policies and ethics