Skip to main content

Part of the book series: Nucleic Acids and Molecular Biology ((NUCLEIC,volume 24))

Abstract

There are two classes of translational recoding, both frameshifts, known in the dsDNA tailed phages. The first is an inefficient frameshift between two overlapping tail genes, and both the shifted and unshifted products have essential roles as chaperones of tail assembly. This class is remarkable for the widespread conservation of a frameshift mechanism in the absence of conservation of the direction or magnitude of the shift. The second class of frameshifts adds an Ig-like domain to the C-terminus of one of the major structural proteins of the virion. In addition to the cases using a frameshift, some major structural proteins have a C-terminal Ig-like domain encoded directly in their gene, and some are missing such a domain. Among the non-tailed phages, some of the ssRNA phages have an essential termination codon readthrough event at the end of their coat protein gene.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adhin MR, van Duin J (1990) Scanning model for translational reinitiation in eubacteria. J Mol Biol 213:811–818

    Article  PubMed  CAS  Google Scholar 

  • Agirrezabala X, Velazquez-Muriel JA, Gomez-Puertas P, Scheres SH, Carazo JM, Carrascosa JL (2007) Quasi-atomic model of bacteriophage T7 procapsid shell: insights into the structure and evolution of a basic fold. Structure 15:461–472

    Article  PubMed  CAS  Google Scholar 

  • Atkins JF, Gesteland RF, Reid BR, Anderson CW (1979) Normal tRNAs promote ribosomal frameshifting. Cell 18:1119–1131

    Article  PubMed  CAS  Google Scholar 

  • Berkhout B, Schmidt BF, van Strien A, van Boom J, van Westrenen J, van Duin J (1987) Lysis gene of bacteriophage MS2 is activated by translation termination at the overlapping coat gene. J Mol Biol 195:517–524

    Article  PubMed  CAS  Google Scholar 

  • Christie GE, Temple LM, Bartlett BA, Goodwin TS (2002) Programmed translational frameshift in the bacteriophage P2 FETUD tail gene operon. J Bacteriol 184:6522–6531

    Article  PubMed  CAS  Google Scholar 

  • Condreay JP, Wright SE, Molineux IJ (1989) Nucleotide sequence and complementation studies of the gene 10 region of bacteriophage T3. J Mol Biol 207:555–561

    Article  PubMed  CAS  Google Scholar 

  • Condron BG, Atkins JF, Gesteland RF (1991) Frameshifting in gene 10 of bacteriophage T7. J Bacteriol 173:6998–7003

    PubMed  CAS  Google Scholar 

  • de Smit MH, van Duin J., van Knippenberg PH, van Eijk HG (1994) CCC.UGA: a new site of ribosomal frameshifting in Escherichia coli. Gene 143:43–47

    Article  PubMed  Google Scholar 

  • Dunn JJ, Studier FW (1983) Complete nucleotide sequence of bacteriophage T7 DNA and the locations of T7 genetic elements. J Mol Biol 166:477–535

    Article  PubMed  CAS  Google Scholar 

  • Fortier LC, Bransi A, Moineau S (2006) Genome sequence and global gene expression of Q54, a new phage species linking the 936 and c2 phage species of Lactococcus lactis. J Bacteriol 188:6101–6114

    Article  PubMed  CAS  Google Scholar 

  • Fraser JS, Maxwell KL, Davidson AR (2007) Immunoglobulin-like domains on bacteriophage: weapons of modest damage? Curr Opin Microbiol 10:382–387

    Article  PubMed  CAS  Google Scholar 

  • Fraser JS, Yu Z, Maxwell KL, Davidson AR (2006) Ig-like domains on bacteriophages: a tale of promiscuity and deceit. J Mol Biol 359:496–507

    Article  PubMed  CAS  Google Scholar 

  • Garcia P, Rodriguez I, Suarez JE (2004) A -1 ribosomal frameshift in the transcript that encodes the major head protein of bacteriophage A2 mediates biosynthesis of a second essential component of the capsid. J Bacteriol 186:1714–1719

    Article  PubMed  CAS  Google Scholar 

  • Hendrix RW (2003) Bacteriophage genomics. Curr Opin Microbiol 6:506–511

    Article  PubMed  CAS  Google Scholar 

  • Hendrix RW (2004) Hot new virus, deep connections. Proc Natl Acad Sci USA 101:7495–7496

    Article  PubMed  CAS  Google Scholar 

  • Hofstetter H, Monstein HJ, Weissmann, C (1974) The readthrough protein A1 is essential for the formation of viable Q beta particles. Biochim Biophys Acta 374:238–251

    Article  PubMed  CAS  Google Scholar 

  • Juhala RJ, Ford ME, Duda RL, Youlton A., Hatfull GF, Hendrix RW (2000) Genomic sequences of bacteriophages HK97 and HK022: pervasive genetic mosaicism in the lambdoid bacteriophages. J Mol Biol 299:27–51

    Article  PubMed  CAS  Google Scholar 

  • Kastelein RA, Remaut E, Fiers W, van Duin J (1982) Lysis gene expression of RNA phage MS2 depends on a frameshift during translation of the overlapping coat protein gene. Nature 295:35–41

    Article  PubMed  CAS  Google Scholar 

  • Levin ME, Hendrix RW, Casjens SR (1993) A programmed translational frameshift is required for the synthesis of a bacteriophage lambda tail assembly protein. J Mol Biol 234:124–139

    Article  PubMed  CAS  Google Scholar 

  • Nishihara T, Morisawa H, Ohta N, Atkins JF, Nishimura, Y (2004) A cryptic lysis gene near the start of the Qbeta replicase gene in the +1 frame. Genes Cells 9:877–889

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez I, Garcia P, Suarez JE (2005) A second case of -1 ribosomal frameshifting affecting a major virion protein of the Lactobacillus bacteriophage A2. J Bacteriol 187:8201–8204

    Article  PubMed  CAS  Google Scholar 

  • Stewart CR, Casjens SR, Cresawn SG, Houtz JM, Smith AL, Ford ME, Peebles CL, Hatfull GF, Hendrix RW, Huang WM, Pedulla ML (2009) The genome of Bacillus subtilis bacteriophage SPO1. J Mol Biol 388:48–70

    Article  PubMed  CAS  Google Scholar 

  • van Duin J, Tsareva N (2006) Single-stranded RNA phages. In: Calendar R (ed) The bacteriophages. Oxford University Press, New York, pp 175–196

    Google Scholar 

  • Weiner AM, Weber K (1971) Natural read-through at the UGA termination signal of Q-beta coat protein cistron. Nat New Biol 234:206–209

    PubMed  CAS  Google Scholar 

  • Wilhelm SW, Brigden SM, Suttle CA (2002) A dilution technique for the direct measurement of viral production: a comparison in stratified and tidally mixed coastal waters. Microb Ecol 43:168–173

    Article  PubMed  CAS  Google Scholar 

  • Wommack KE, Colwell RR (2000) Virioplankton: viruses in aquatic ecosystems. Microbiol Mol Biol Rev 64:69–114

    Article  PubMed  CAS  Google Scholar 

  • Xu J (2001) A conserved frameshift strategy in dsDNA long tailed bacteriophages. PhD Thesis: University of Pittsburgh

    Google Scholar 

  • Xu J, Hendrix RW, Duda RL (2004) Conserved translational frameshift in dsDNA bacteriophage tail assembly genes. Mol Cell 16:11–21

    Article  PubMed  CAS  Google Scholar 

  • Zimmer M, Sattelberger E, Inman RB, Calendar R, Loessner MJ (2003) Genome and proteome of Listeria monocytogenes phage PSA: an unusual case for programmed + 1 translational frameshifting in structural protein synthesis. Mol Microbiol 50:303–317

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roger W. Hendrix .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Hendrix, R.W. (2010). Recoding in Bacteriophages. In: Atkins, J., Gesteland, R. (eds) Recoding: Expansion of Decoding Rules Enriches Gene Expression. Nucleic Acids and Molecular Biology, vol 24. Springer, New York, NY. https://doi.org/10.1007/978-0-387-89382-2_11

Download citation

Publish with us

Policies and ethics