Skip to main content

Tracing aquatic food webs using fatty acids: from qualitative indicators to quantitative determination

  • Chapter
  • First Online:

Abstract

Food web structure, predator–prey dynamics, foraging behavior, and consequences of these factors for individual growth, reproduction and survival are central to our understanding of ecosystem structure and functioning. Moreover, in the current context of understanding (and managing) ecosystems in the face of ongoing environmental change, important questions include: What are the critical prey of key consumers in relation to prey abundance, availability, and nutritional quality? What are the ecosystem processes responsible for food web production? And, how do these processes respond to changes in physical forcing? A fundamental require-ment to understand any of these areas is an accurate assessment of trophic relationships and consumer diets. However, in aquatic, and especially marine ecosystems, such information is generally not easily or reliably obtained. In these systems, the relative inaccessibility of free-ranging organisms and the inability to directly observe species interactions make it difficult to accurately characterize diet. Traditional approaches, such as examining gut contents, have well-recognized biases in addition to representing only snapshots of recent meals and may therefore not be reliable indicators of long-term diet (Iverson et al. 2004). Thus, alternative approaches have been developed, which use various types of trophic markers. One of the most promising of these approaches is the use of lipids and fatty acids (FA) to study food web dynamics.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Ackman, R.G. 1980. Fish lipids, Part, pp. 86–103. In J.J. Connell (ed.), Advances in Fish Science and Technology. Fishing News Books, Surrey.

    Google Scholar 

  • Ackman, R.G. 1986. WCOT (capillary) gas-liquid chromatography, pp. 137–206. In R.J. Hamilton, and J.B. Rossell (eds.), Analysis of Oils and Fats. Elsevier, London.

    Google Scholar 

  • Ackman, R.G. 2002. The gas chromatograph in practical analysis of common and uncommon fatty acids for the 21st century. Anal. Chim. Acta 465:175–192.

    Article  CAS  Google Scholar 

  • Ackman, R.G., and Eaton, C.A. 1966. Lipids of the fin whale (Balaenoptera physalus) from north Atlantic waters. III. Occurence of eicosenoic and docosenoic fatty acids in the zooplankter Meganyctiphanes norvegica (M. Sars) and their effect on whale oil composition. Can. J. Biochem. 44:1561–1566.

    Article  CAS  Google Scholar 

  • Ackman, R.G., and McLachlan, J. 1977. Fatty acids in some Nova Scotian marine seaweeds: a survey for octadecapentaenoic and other biochemically novel fatty acids. Proc. Nova Scotian Inst. Sci. 28:47–64.

    CAS  Google Scholar 

  • Ackman, R.G., Hooper, S.N., and Sipos, J.C. 1972. Distribution of the trans-6-hexadecenoic acid and other fatty acids in tissues and organs of the Atlantic leatherback turtle, Dermochelys coriacea coriacia. L. Int. J. Biochem. 3:171–179.

    Article  CAS  Google Scholar 

  • Ackman, R.G., Eaton, C.A., and Linke, B.A. 1975. Differentiation of freshwater characteristics of fatty acids in marine specimens of the Atlantic sturgeon, Acipenser oxyrhynchus. Fish. Bull. US Fish. Wildl. Serv. 73:838–845.

    CAS  Google Scholar 

  • Beck, C.A., Iverson, S.J., Bowen, W.D., and Blanchard, W. 2007. Sex differences in grey seal diet reflect seasonal variation in foraging behaviour and reproductive expenditure: evidence from quantitative fatty acid signature analysis. J. Anim. Ecol. 76:490–502.

    Article  PubMed  Google Scholar 

  • Bowen, W.D., Beck, C.A., Iverson, S.J., Austin, D., and McMillan, J.I. 2006. Linking predator foraging behaviour and diet with variability in continental shelf ecosystems: grey seals of eastern Canada, pp. 63–81. In I.L. Boyd, S.W. Wanless, and C.J. Camphuysen (eds.), Top Predators in Marine Ecosystems. Cambridge University Press, Cambridge.

    Chapter  Google Scholar 

  • Brindley, D.N. 1991. Metabolism of triacylglycerols, pp. 171–203. In D.E. Vance and J.E. Vance (eds.), Biochemistry of Lipids, Lipoproteins and Membranes. Elsevier Science, New York.

    Google Scholar 

  • Budge, S.M., and Iverson, S.J. 2003. Quantitative analysis of fatty acid precursors in marine samples: direct conversion of wax ester alcohols and dimethylacetals to fatty acid methyl esters. J. Lipid Res. 44:1802–1807.

    Article  PubMed  CAS  Google Scholar 

  • Budge, S.M., Iverson, S.J., Bowen, W.D., and Ackman, R.G. 2002. Among- and within-species variability in fatty acid signatures of marine fish and invertebrates on the Scotian Shelf, Georges Bank, and southern Gulf of St. Lawrence. Can. J. Fish. Aquat. Sci. 59:886–898.

    Article  CAS  Google Scholar 

  • Budge, S.M., Cooper, M.H., and Iverson, S.J. 2004. Demonstration of the deposition and modification of dietary fatty acids in pinniped blubber using radiolabelled precursors. Physiol. Biochem. Zool. 77:682–687.

    Article  PubMed  CAS  Google Scholar 

  • Budge, S.M., Iverson, S.J., and Koopman, H.N. 2006. Studying trophic ecology in marine ecosystems using fatty acids: a primer on analysis and interpretation. Mar. Mamm. Sci. 22:759–801.

    Article  Google Scholar 

  • Budge, S.M., Springer, A.M., Iverson, S.J., and Sheffield, G. 2007. Fatty acid biomarkers reveal niche separation in an arctic benthic food web. Mar. Ecol. Progr. Ser. 336:305–309.

    Article  CAS  Google Scholar 

  • Budge, S.M., Wooller, N.J., Springer, A.M., Iverson, S.J., and Divoky, G.J. 2008. Tracing carbon flow from the bottom to the top in of an Arctic marine food web using fatty acid-stable isotope analysis. Oecologia 157:117–129.

    Article  PubMed  CAS  Google Scholar 

  • Castellini, M.A., and Rea, L.D. 1992. The biochemistry of natural fasting at its limits. Experientia 48:575–582.

    Article  PubMed  CAS  Google Scholar 

  • Christie, W.W. 1982. Lipid Analysis. Pergamon, Oxford.

    Google Scholar 

  • Clarke, K.R. 1993. Non-parametric multivariate analysis of changes in community structure. Aust. J. Ecol. 18:117–143.

    Article  Google Scholar 

  • Colby, R.H., Mattacks, C.A., and Pond, C.M. 1993. The gross anatomy, cellular structure and fatty acid composition of adipose tissue in captive polar bears (Ursus maritimus). Zoo Biol. 12:267–275.

    Article  CAS  Google Scholar 

  • Cook, H.W. 1996. Fatty acid desaturation and chain elongation in eukaryotes, pp. 129–152. In D.E. Vance and J.E. Vance (eds.), Biochemistry of Lipids and Membranes. Elsevier, Amsterdam.

    Chapter  Google Scholar 

  • Cooper, M.H. 2004. Fatty acid metabolism in marine carnivores: implications for quantitative estimation of predator diets. Ph.D. Thesis, Dalhousie University, Halifax, NS.

    Google Scholar 

  • Cooper, M.H., Iverson, S.J., and Heras, H. 2005. Dynamics of blood chylomicron fatty acids in a marine carnivore: implications for lipid metabolism and quantitative estimation of predator diets. J. Comp. Physiol. B 175:133–145

    Article  PubMed  CAS  Google Scholar 

  • Cooper, M.H., Iverson, S.J., and Rouvinen-Watt, K. 2006. Metabolism of dietary cetoleic acid (22:1n-11) in mink (Mustela vison) and grey seals (Halichoerus grypus) studied using radiolabelled fatty acids. Physiol. Biochem. Zool. 79:820–829.

    Article  PubMed  CAS  Google Scholar 

  • Cripps, G.C., and Hill, H.J. 1998. Changes in lipid composition of copepods and Euphasia superba associated with diet and environmental conditions in the marginal ice zone, Bellingshausen Sea, Antarctica. Deep Sea Res. Part I. 45:1357–1381.

    Article  CAS  Google Scholar 

  • Dalsgaard, J., St John, M., Kattner, G., Müller-Navarra, D.C., and Hagen, W. 2003. Fatty acid trophic markers in the pelagic marine environment. Adv. Mar. Biol. 46:225–340.

    Article  PubMed  Google Scholar 

  • Dunstan G.A., Volkman, J.K, Barrett, S.M., Leroi J-M, and Jeffrey, S.W. 1994. Essential polyunsaturated fatty acids from 14 species of diatom (Bacillariophyceae). Phytochemistry 35:155–161.

    Article  CAS  Google Scholar 

  • Groscolas, R. 1990. Metabolic adaptations to fasting in emperor and king penguins, pp. 269–295. In L.S. Davis and J.T. Darby (eds.), Penguin Biology. Academic, New York.

    Google Scholar 

  • Gurr, M.I., and Harwood, J.L. 1991. Lipid Biochemistry: An Introduction. Chapman and Hall, New York.

    Google Scholar 

  • Hebert C.E., Arts, M.T. and Weseloh, D.V.C. 2006. Ecological tracers can quantify food web structure and change. Environ. Sci. Technol. 40:5618–5623.

    Article  CAS  Google Scholar 

  • Hobson, K.A., and Stirling, I. 1997. Terrestrial foraging by polar bears during the ice free period in western Hudson Bay: metabolic pathways and limitations of the stable isotope method. Mar. Mamm. Sci. 13:359–367.

    Article  Google Scholar 

  • Hooper, S.N., Paradis, M., and Ackman, R.G. 1973. Distribution of trans-6-hexadecanoic acid, 7-methyl-7-hexadecanoic acid and common fatty acids in lipids of the ocean sunfish Mola mola. Lipids 8:509–516.

    Article  PubMed  CAS  Google Scholar 

  • Iverson, S.J. 1993. Milk secretion in marine mammals in relation to foraging: can milk fatty acids predict diet? Symp. Zool. Soc. Lond. 66:263–291.

    Google Scholar 

  • Iverson, S.J., and Oftedal, O.T. 1995. Phylogenetic and ecological variation in the fatty acid composition of milks, pp. 789–827. In R.G. Jensen (ed.), The Handbook of Milk Composition. Academic, Orlando.

    Google Scholar 

  • Iverson, S.J., Oftedal, O.T., Bowen, W.D., Boness, D.J., and Sampugna, J. 1995. Prenatal and postnatal transfer of fatty acids from mother to pup in the hooded seal. J. Comp. Physiol. 165:1–12.

    CAS  Google Scholar 

  • Iverson, S.J., Frost, K.J., and Lowry, L.L. 1997. Fatty acid signatures reveal fine scale structure of foraging distribution of harbor seals and their prey in Prince William Sound, Alaska. Mar. Ecol. Progr. Ser. 151:255–271.

    Article  CAS  Google Scholar 

  • Iverson, S.J., Lang, S., and Cooper, M. 2001a. Comparison of the Bligh and Dyer and Folch methods for total lipid determination in a broad range of marine tissue. Lipids 36:1283–1287.

    Article  PubMed  CAS  Google Scholar 

  • Iverson, S.J., MacDonald, J., and Smith, L.K. 2001b. Changes in diet of free-ranging black bears in years of contrasting food availability revealed through milk fatty acids. Can. J. Zool. 79:2268–2279.

    Article  Google Scholar 

  • Iverson, S.J., Frost, K.J., and Lang, S. 2002. Fat content and fatty acid composition of forage fish and invertebrates in Prince William Sound, Alaska: factors contributing to among and within species variability. Mar. Ecol. Progr. Ser. 241:161–181.

    Article  CAS  Google Scholar 

  • Iverson, S.J., Stewart, B.S., and Yochem, P.K. 2003. Captive validation and calibration of fatty acid signatures in blubber as indicators of prey in hawaiian monk seal diet. NOAA Technical Report, San Diego, CA, 22 pp.

    Google Scholar 

  • Iverson, S.J., Field, C., Bowen, W.D., and Blanchard, W. 2004. Quantitative fatty acid signature analysis: a new method of estimating predator diets. Ecol. Monogr. 74:211–235.

    Article  Google Scholar 

  • Iverson, S.J., Piche, J., and Blanchard, W. 2006a. Hawaiian monk seals and their prey in the Northwestern Hawaiian Islands: assessing characteristics of prey species fatty acid signatures and consequences for estimating monk seal diets using quantitative fatty acid signature analysis (QFAA). NOAA technical Report, Honolulu, HA, 127 pp.

    Google Scholar 

  • Iverson, S.J., Stirling, I., and Lang, S.L.C. 2006b. Spatial and temporal variation in the diets of polar bears across the Canadian arctic: indicators of changes in prey populations and environment, pp. 98–117. In I.L. Boyd, S.W. Wanless, and C.J. Camphuysen (eds.), Top Predators in Marine Ecosystems. Cambridge University Press, Cambridge.

    Chapter  Google Scholar 

  • Iverson, S.J., Springer, A.M., and Kitaysky, A.S. 2007. Seabirds as indicators of food web structure and ecosystem variability: qualitative and quantitative diet analyses using fatty acids. Mar. Ecol. Progr. Ser. 352:235–244.

    Article  CAS  Google Scholar 

  • Joseph, J.D. 1982. Lipid composition of marine and estuarine invertebrates. Part II: Mollusca. Progr. Lipid Res. 21:109–153.

    Article  CAS  Google Scholar 

  • Kattner, G., and Hagen, W. 1995. Polar herbivorous copepods – different pathways in lipid biosynthesis. ICES J. Mar. Sci. 52:329–335.

    Article  Google Scholar 

  • Kharlamenko, V.I., Kiyashko, S.I., Imbs, A.B., and Vyshkvartzev, D.I. 2001. Identification of food sources of invertebrates from the seagrass Zostera marina community using carbon and sulfur stable isotope ratio and fatty acid analyses. Mar. Ecol. Progr. Ser. 45:17–22.

    Google Scholar 

  • Kirsch, P.E., Iverson, S.J., Bowen, W.D., Kerr, S. and Ackman, R.G. 1998. Dietary effects on the fatty acid signatures of whole Atlantic cod (Gadus morhua). Can. J. Fish. Aquat. Sci. 55:1378–1386.

    Article  CAS  Google Scholar 

  • Klem, A. 1935. Studies in the biochemistry of whale oils. Hvalradets Skr. Nr. 11:49–108.

    Google Scholar 

  • Koopman, H.N. 2007. Phylogenetic, ecological, and ontogenetic factors influencing the biochemical structure of the blubber of odontocetes. Mar. Biol. 151:277–291.

    Article  Google Scholar 

  • Koopman, H.N., Iverson, S.J., and Gaskin, D.E. 1996. Stratification and age-related differences in blubber fatty acids of the male harbour porpoise (Phocoena phocoena). J. Comp. Physiol. 165:628–639.

    CAS  Google Scholar 

  • Koopman, H.N., Iverson, S.J., and Read, A.J. 2003. High concentrations of isovaleric acid in the fats of odontocetes: variation and patterns of accumulation in blubber vs. stability in the melon. J. Comp. Physiol. 173:247–261.

    CAS  Google Scholar 

  • Koopman, H.N., Budge, S.M., Ketten, D.R., and Iverson, S.J. 2006. The topographical distribution of lipids inside the mandibular fat bodies of odontocetes: remarkable complexity and consistency. IEEE J. Oceanic Eng. 31:95–106.

    Article  Google Scholar 

  • Lovern, J.A. 1935. C. Fat metabolism in fishes. VI. The fats of some plankton Crustacea. Biochem. J. 29:847–849.

    PubMed  CAS  Google Scholar 

  • McConville, M.J. 1985. Chemical composition and biochemistry of sea ice microalgae, pp. 105–146. In R.A. Horner (ed.), Sea Ice Biota. CRC Press, Boca Raton.

    Google Scholar 

  • Mellish, J.E., and Iverson, S.J. 2001. Blood metabolites as indicators of nutrient utilization in fasting, lactating phocid seals: does depletion of nutrient reserves terminate lactation? Can. J. Zool. 79:303–311.

    CAS  Google Scholar 

  • Napolitano, G.E. 1999. Fatty acids as trophic and chemical markers in freshwater ecosystems, pp. 21–44. In M.T. Arts and B.C Wainman (eds.), Lipids in Freshwater Ecosystems. Springer, New York.

    Google Scholar 

  • Nelson, G.J. 1992. Dietary fatty acids and lipid metabolism, pp. 437–471. In C.K. Chow (ed.), Fatty Acids in Foods and Their Health Implications. Marcel Dekker, New York.

    Google Scholar 

  • Nordstrom, C.A., Wilson, L.J. Iverson, S.J., and Tollit, D.J. 2008. Evaluating quantitative fatty acid signature analysis (QFASA) using harbour seals (Phoca vitulina richardsi) in captive feeding studies. Mar. Ecol. Progr. Ser. 360:245–263

    Article  Google Scholar 

  • Norseth, J., and Christophersen, B.O. 1978. Chain shortening of erucic acid in isolated liver cells. FEBS Lett. 88:353–357.

    Article  PubMed  CAS  Google Scholar 

  • Osmundsen, H., Neat, C.E., and Norum, K.R. 1979. Peroxisomal oxidation of long chain fatty acids. FEBS Lett. 99:292–296.

    Article  PubMed  CAS  Google Scholar 

  • Paradis, M., and Ackman, R.G. 1977. Potential for employing the distribution of anomalous nonmethylene-interrupted dienoic fatty acids in several marine invertebrates as part of food web studies. Lipids 12:170–176.

    Article  PubMed  CAS  Google Scholar 

  • Parrish, C.C. 1999. Determination of total lipid, lipid classes, and fatty acids in aquatic samples, pp. 4–20. In M.T. Arts and B.C. Wainman (eds.), Lipids in Freshwater Ecosystems. Springer, New York.

    Google Scholar 

  • Pascal, J.C., and Ackman, R.G. 1976. Long chain monoethylenic alcohol and acid isomers in lipids of copepods and capelin. Chem. Phys. Lipids 16:219–223.

    Article  CAS  Google Scholar 

  • Pond, C.M. 1998. The Fats of Life. Cambridge University Press, Cambridge, UK.

    Book  Google Scholar 

  • Raclot, T. 2003. Selective mobilization of fatty acids from adipose tissue triacylglycerols. Progr. Lipid Res. 42:257–288.

    Article  CAS  Google Scholar 

  • Rouvinen, K., and Kiiskinen, T. 1989. Influence of dietary fat source on the body fat composition of mink (Mustela vison) and blue fox (Alopex lagopus). Acta Agric. Scand. 39:279–288.

    Article  CAS  Google Scholar 

  • Saito, H., and Murata, M. 1998. Origin of the monoene fats in the lipid of midwater fishes: relationship between the lipids of myctophids and those of their prey. Mar. Ecol. Progr. Ser. 168:21–33.

    Article  CAS  Google Scholar 

  • Sargent, J.R. 1976. The structure, metabolism and function of lipids in marine organisms, pp. 149–212. In D.C. Malins and J.R. Sargent (eds.), Biochemical and Biophysical Perspectives in Marine Biology, Academic, London.

    Google Scholar 

  • Sargent, J.R. 1978. Marine wax esters. Sci. Progr. 65:437–458.

    CAS  Google Scholar 

  • Sargent, J.R., and Henderson, R.J. 1986. Lipids, pp. 59–108. In E.D.S. Corner and S.C.M. O’Hara (eds.), The Biological Chemistry of Marine Copepods Vol I. Calrendon Press, Oxford.

    Google Scholar 

  • Sargent, J.R., and Henderson, R.J. 1995. Marine (n-3) polyunsaturated fatty acids, pp. 32–65. In R.J. Hamilton (ed.), Developments in Oils and Fats. Blackie Academic and Professional, London.

    Google Scholar 

  • Schlechtriem, C., Arts, M.T., and Zellmer, I.D. 2006. Effect of temperature on the fatty acid composition and temporal trajectories of fatty acids in fasting Daphnia pulex (Crustacea, Cladocera). Lipids 41:397–400.

    Article  PubMed  CAS  Google Scholar 

  • Smith, R.J., Hobson, K.A., Koopman, H.N., and Lavigne, D.M. 1996. Distinguishing between populations of fresh- and salt-water harbour seals (Phoca vitulina) using stable isotope ratios and fatty acid profiles. Can. J. Fish. Aquat. Sci. 53:272–279.

    Article  Google Scholar 

  • St. John, M.A., and Lund, T. 1996. Lipid biomarkers: linking the utilization of frontal plankton biomass to enhanced condition of juvenile North Sea cod. Mar. Ecol. Progr. Ser. 131:75–85.

    Article  Google Scholar 

  • Tollit, D.J., Heaslip, S., Deagle, B., Iverson, S.J., Joy, R., Rosen, D.A.S., and Trites, A.W. 2006. Estimating diet composition in sea lions: which technique to choose?, pp. 293–308. In A. Trites, S. Atkinson, D. DeMaster, L. Fritz, T. Gelatt, L, Rea and K. Whynne (eds.), Sea Lions of the World. Alaska Sea Grant College Program, University of Alaska Fairbanks.

    Google Scholar 

  • Thiemann, G.W., Iverson, S.J., and Stirling, I. 2006. Seasonal, sexual, and anatomical variability in the adipose tissue composition of polar bears (Ursus maritimus). J. Zool. Lond. 269:65–76.

    Article  Google Scholar 

  • Thiemann, G.W., Budge, S.M., Iverson, S.J. and Stirling, I. 2007. Unusual fatty acid biomarkers reveal age- and sex-specific foraging in polar bears (Ursus maritimus). Can. J. Zool. 85:505–517.

    Article  CAS  Google Scholar 

  • Tucker, S., Bowen, W.D. and Iverson, S.J. 2008. Convergence of diet estimates derived from fatty acids and stable isotopes within individual grey seals. Mar. Ecol. Progr. Ser. 354:267–276.

    Article  CAS  Google Scholar 

  • Vance, D.E., and Vance, J.E. 1996. Biochemistry of Lipids, Lipoproteins and Membranes. Elsevier Science, Amsterdam.

    Google Scholar 

  • Viso, C.A., and Marty, J. 1993. Fatty acids from 28 marine microalgae. Prog. Lipid Res. 32:1521–1533.

    Google Scholar 

  • Wamberg, S., Olesen, C.R., and Hansen, H.O. 1992. Influenece of dietary sources of fat on lipid synthesis in mink (Mustela vison) mammary tissue. Comp. Biochem. Physiol. A 103:199–204.

    Article  CAS  Google Scholar 

  • Wang, S.W., Iverson, S.J., Springer, A.M., and Hatch, S.A. 2007. Fatty acid signatures of stomach oil and adipose tissue of northern fulmars (Fulmarus glacialis) in Alaska: implications for diet analysis of Procellariiform birds. J. Comp. Physiol. B 177:893–903.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The writing of this chapter was supported in part by the Natural Sciences and Engineering Research Council (NSERC), Canada. I thank all of my many collaborators and students associated with the FatLab at Dalhousie, who have contributed greatly to our current state of understanding in the field of lipids and fatty acids as food web tracers. I thank W.D. Bowen for comments on an earlier version of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sara J. Iverson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Iverson, S.J. (2009). Tracing aquatic food webs using fatty acids: from qualitative indicators to quantitative determination. In: Kainz, M., Brett, M., Arts, M. (eds) Lipids in Aquatic Ecosystems. Springer, New York, NY. https://doi.org/10.1007/978-0-387-89366-2_12

Download citation

Publish with us

Policies and ethics