Skip to main content

A Robust Estimation of Information Flow in Coupled Nonlinear Systems

  • Chapter
  • First Online:
Book cover Computational Neuroscience

Part of the book series: Springer Optimization and Its Applications ((SOIA,volume 38))

Abstract

Transfer entropy (TE) is a recently proposed measure of the information flow between coupled linear or nonlinear systems. In this study, we first suggest improvements in the selection of parameters for the estimation of TE that significantly enhance its accuracy and robustness in identifying the direction and the level of information flow between observed data series generated by coupled complex systems. Second, a new measure, the net transfer of entropy (NTE), is defined based on TE. Third, we employ surrogate analysis to show the statistical significance of the measures. Fourth, the effect of measurement noise on the measures’ performance is investigated up to \(S/N = 3\) dB. We demonstrate the usefulness of the improved method by analyzing data series from coupled nonlinear chaotic oscillators. Our findings suggest that TE and NTE may play a critical role in elucidating the functional connectivity of complex networks of nonlinear systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bharucha-Reid, A. Elements of the Theory of Markov Processes and Their Applications. Courier Dover Publications, Chemsford, MA (1997)

    Google Scholar 

  2. Chen, Y., Rangarajan, G., Feng, J., Ding, M. Analyzing multiple nonlinear time series with extended Granger causality. Phys Lett A 324(1), 26–35 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  3. Eckmann, J., Ruelle, D. Ergodic theory of chaos and strange attractors. In: Ruelle, D. (ed.) Turbulence, Strange Attractors, and Chaos, pp. 365–404. World Scientific, Singapore (1995)

    Chapter  Google Scholar 

  4. Efron, B., Tibshirani, R. An Introduction to the Bootstrap. CRC Press, Boca Raton (1993)

    Google Scholar 

  5. Franaszczuk, P., Bergey, G. Application of the directed transfer function method to mesial and lateral onset temporal lobe seizures. Brain Topogr 11(1), 13–21 (1998)

    Article  Google Scholar 

  6. Friston, K. Brain function, nonlinear coupling, and neuronal transients. Neuroscientist 7(5), 406–418 (2001)

    Article  Google Scholar 

  7. Gaspard, P., Nicolis, G. What can we learn from homoclinic orbits in chaotic dynamics? J Stat Phys 31(3), 499–518 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  8. Grassberger, P. Finite sample corrections to entropy and dimension estimates. Phys Lett A 128(6–7), 369–373 (1988)

    Article  MathSciNet  Google Scholar 

  9. Hlaváčková-Schindler, K., Paluş, M., Vejmelka, M., Bhattacharya, J. Causality detection based on information-theoretic approaches in time series analysis. Phys Rep 441(1), 1–46 (2007)

    Article  Google Scholar 

  10. Iasemidis, L.D., Sackellares, J.C., Savit, R. Quantification of hidden time dependencies in the EEG within the framework of nonlinear dynamics. In: Jansen, B., Brandt, M. (eds.) Nonlinear Dynamical Analysis of the EEG, pp. 30–47. World Scientific, Singapore (1993)

    Google Scholar 

  11. Kaiser, A., Schreiber, T. Information transfer in continuous processes. Physica D 166, 43–62 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  12. Katz, R. On some criteria for estimating the order of a Markov chain. Technometrics 23(3), 243–256 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  13. Martinerie, J., Albano, A., Mees, A., Rapp, P. Mutual information, strange attractors, and the optimal estimation of dimension. Phys Rev A 45(10), 7058–7064 (1992)

    Article  Google Scholar 

  14. Pawelzik, K., Schuster, H. Generalized dimensions and entropies from a measured time series. Phys Rev A 35(1), 481–484 (1987)

    Article  Google Scholar 

  15. Pereda, E., Quiroga, R.Q., Bhattacharya, J. Nonlinear multivariate analysis of neurophysiological signals. Prog Neurobiol 77(1–2), 1–37 (2005)

    Article  Google Scholar 

  16. Politis, D., Romano, J., Wolf, M. Subsampling, Springer Series in Statistics, Springer Verlag, New York (1999)

    Google Scholar 

  17. Quiroga, R.Q., Arnhold, J., Lehnertz, K., Grassberger, P. Kulback-Leibler and renormalized entropies: Applications to electroencephalograms of epilepsy patients. Phys Rev E 62(6), 8380–8386 (2000)

    Article  Google Scholar 

  18. Sabesan, S., Narayanan, K., Prasad, A., Spanias, A. and Iasemidis, L. Improved measure of information flow in coupled nonlinear systems. In: Proceedings of International Association of Science and Technology for Development, pp. 24–26 (2003)

    Google Scholar 

  19. Sabesan, S., Narayanan, K., Prasad, A., Tsakalis, K., Spanias, A., Iasemidis, L. Information flow in coupled nonlinear systems: Application to the epileptic human brain. In: Pardalos, P., Boginski, V., Vazacopoulos, A. (eds.) Data Mining in Biomedicine, Springer Optimization and Its Applications Series, Springer, New York, pp. 483–504 (2007)

    Chapter  Google Scholar 

  20. Schiff, S., So, P., Chang, T., Burke, R., Sauer, T. Detecting dynamical interdependence and generalized synchrony through mutual prediction in a neural ensemble. Phys Rev E 54(6), 6708–6724 (1996)

    Article  Google Scholar 

  21. Schreiber, T. Determination of the noise level of chaotic time series. Phys Rev E 48(1), 13–16 (1993)

    Article  MathSciNet  Google Scholar 

  22. Schreiber, T. Measuring information transfer. Phys Rev Lett 85(2), 461–464 (2000)

    Article  Google Scholar 

  23. Theiler, J. Spurious dimension from correlation algorithms applied to limited time-series data. Phys Rev A 34(3), 2427–2432 (1986)

    Article  Google Scholar 

  24. Wiener, N. Modern Mathematics for the Engineers [Z]. Series 1. McGraw-Hill, New York (1956)

    Google Scholar 

Download references

Acknowledgments

This work was supported in part by NSF (Grant ECS-0601740) and the Science Foundation of Arizona (Competitive Advantage Award CAA 0281-08).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shivkumar Sabesan , Konstantinos Tsakalis , Andreas Spanias or Leon Iasemidis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Sabesan, S., Tsakalis, K., Spanias, A., Iasemidis, L. (2010). A Robust Estimation of Information Flow in Coupled Nonlinear Systems. In: Chaovalitwongse, W., Pardalos, P., Xanthopoulos, P. (eds) Computational Neuroscience. Springer Optimization and Its Applications(), vol 38. Springer, New York, NY. https://doi.org/10.1007/978-0-387-88630-5_15

Download citation

Publish with us

Policies and ethics