Skip to main content

The Variety of Channels

  • Chapter
  • First Online:
Book cover Mathematical Foundations of Neuroscience

Part of the book series: Interdisciplinary Applied Mathematics ((IAM,volume 35))

Abstract

We have discussed several types of active (voltage-gated) channels for specific neuron models. The Hodgkin–Huxley model for the squid axon consisted of three different ion channels: a passive leak, a transient sodium channel, and the delayed rectifier potassium channel. Similarly, the Morris–Lecar model has a delayed rectifier and a simple calcium channel (with no dynamics). Hodgkin and Huxley were smart and supremely lucky that they used the squid axon as a model to analyze the action potential, as it turns out that most neurons have dozens of different ion channels. In this chapter, we briefly describe a number of them, provide some instances of their formulas, and describe how they influence a cell’s firing properties. The reader who is interested in finding out about other channels and other models for the channels described here should consult http://senselab.med.yale.edu/modeldb/default.asp, which is a database for neural models.

Keywords

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. R. Brette and W. Gerstner. Adaptive exponential integrate-and-fire model as an effective description of neuronal activity. J. Neurophysiol., 94:3637–3642, 2005.

    Article  Google Scholar 

  2. R. J. Butera, J. Rinzel, and J. C. Smith. Models of respiratory rhythm generation in the pre-Btzinger complex. II. Populations Of coupled pacemaker neurons. J. Neurophysiol., 82:398–415, 1999.

    Google Scholar 

  3. N. Carnevale and M. Hines. The NEURON Book. Cambridge University Press, Cambridge, UK, 2006.

    Book  Google Scholar 

  4. J. A. Connor and C. F. Stevens. Prediction of repetitive firing behaviour from voltage clamp data on an isolated neurone soma. J. Physiol. (Lond.), 213:31–53, 1971.

    Google Scholar 

  5. C. A. Del Negro, N. Koshiya, R. J. Butera, and J. C. Smith. Persistent sodium current, membrane properties and bursting behavior of pre-btzinger complex inspiratory neurons in vitro. J. Neurophysiol., 88:2242–2250, 2002.

    Article  Google Scholar 

  6. A. Destexhe and D. Paré. Impact of network activity on the integrative properties of neocortical pyramidal neurons in vivo. J. Neurophysiol., 81:1531–1547, 1999.

    Google Scholar 

  7. A. Destexhe, A. Babloyantz, and T. J. Sejnowski. Ionic mechanisms for intrinsic slow oscillations in thalamic relay neurons. Biophys. J., 65:1538–1552, 1993.

    Article  Google Scholar 

  8. A. Destexhe, D. A. McCormick, and T. J. Sejnowski. A model for 8–10 Hz spindling in interconnected thalamic relay and reticularis neurons. Biophys. J., 65:2473–2477, 1993.

    Article  Google Scholar 

  9. A. Destexhe and A. Babloyantz. Pacemaker-induced coherence in cortical networks. Neural Comput., 3:145–154, Dec 1991.

    Article  Google Scholar 

  10. O. Diekmann. On a nonlinear integral equation arising in mathematical epidemiology. In W. Eckhaus and E. M. de Jager, editors, Differential Equations and Applications (Proceedings of Third Scheveningen Conference, Scheveningen, 1977), volume 31 of North-Holland Mathematical Studies, pages 133–140. North-Holland, Amsterdam, 1978.

    Chapter  Google Scholar 

  11. B. Ermentrout. Type I membranes, phase resetting curves, and synchrony. Neural Comput., 8:979–1001, 1996.

    Article  Google Scholar 

  12. C. P. Fall, E. Marland, J. M. Wagner, and J. J. Tyson. Computational Cell Biology. Springer, New York, 2002.

    MATH  Google Scholar 

  13. S. Grillner and P. Wallén. Cellular bases of a vertebrate locomotor system-steering, intersegmental and segmental co-ordination and sensory control. Brain Res. Brain Res. Rev., 40:92–106, 2002.

    Article  Google Scholar 

  14. B. S. Gutkin, G. B. Ermentrout, and A. D. Reyes. Phase-response curves give the responses of neurons to transient inputs. J. Neurophysiol., 94:1623–1635, 2005.

    Article  Google Scholar 

  15. S. P. Hastings. On the existence of homoclinic and paeriodic orbits for the fitzhugh-naguo equations. Quart. J. Math. Oxford, 27:123–124, 1976.

    Article  MathSciNet  MATH  Google Scholar 

  16. R. B. Hoyle. Pattern Formation: An Introduction to Methods. Cambridge University Press, Cambridge, 2006.

    Book  MATH  Google Scholar 

  17. E. M. Izhikevich. Neural excitability, spiking and bursting. Int. J. Bifurcat. Chaos Appl. Sci. Eng., 10(6):1171–1266, 2000.

    Article  MathSciNet  MATH  Google Scholar 

  18. E. M. Izhikevich. Simple model of spiking neurons. IEEE Trans Neural Netw., 14:1569–1572, 2003.

    Article  Google Scholar 

  19. C. E. Jahr and C. F. Stevens. A quantitative description of NMDA receptor-channel kinetic behavior. J. Neurosci., 10:1830–1837, 1990.

    Google Scholar 

  20. B. Lindner, A. Longtin, and A. Bulsara. Analytic expressions for rate and CV of a type I neuron driven by white gaussian noise. Neural Comput., 15:1760–1787, 2003.

    Article  Google Scholar 

  21. A. Loebel and M. Tsodyks. Computation by ensemble synchronization in recurrent networks with synaptic depression. J. Comput. Neurosci., 13:111–124, 2002.

    Article  Google Scholar 

  22. J. Ritt. Evaluation of entrainment of a nonlinear neural oscillator to white noise. Phys. Rev. E Stat. Nonlin. Soft Matter Phys., 68:041915, Oct 2003.

    Article  MathSciNet  Google Scholar 

  23. R. Rodriguez and H. C. Tuckwell. Statistical properties of stochastic nonlinear dynamical models of single spiking neurons and neural networks. Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics, 54:5585–5590, 1996.

    Article  Google Scholar 

  24. J. N. Teramae and D. Tanaka. Robustness of the noise-induced phase synchronization in a general class of limit cycle oscillators. Phys. Rev. Lett., 93:204103, 2004.

    Article  Google Scholar 

  25. D. Terman. Chaotic spikes arising from a model of bursting in excitable membranes. SIAM J. Appl. Math., 51:1418–1450, 1991.

    Article  MathSciNet  MATH  Google Scholar 

  26. R. Traub and R. Miles. Neuronal Networks of the Hippocampus. Cambridge University Press, Cambridge, 1991.

    Book  Google Scholar 

  27. H. C. Tuckwell. Introduction to Theoretical Neurobiology. Vol. 2, Nonlinear and Stochastic Theories, volume 8 of Cambridge Studies in Mathematical Biology. Cambridge University Press, Cambridge, 1988.

    Google Scholar 

  28. R. J. Butera, J. Rinzel, and J. C. Smith. Models of respiratory rhythm generation in the pre-Botzinger complex. I. Bursting pacemaker neurons. J. Neurophysiol., 82:382–397, 1999.

    Google Scholar 

  29. C. Koch. Biophysics of Computation. Oxford University Press, London and New York, 1999.

    Google Scholar 

  30. R. W. Meech and G. O. Mackie. Ionic currents in giant motor axons of the jellyfish, Aglantha digitale. J. Neurophysiol., 69:884–893, 1993.

    Google Scholar 

  31. R. Stoop, K. Schindler, and L. A. Bunimovich. When pyramidal neurons lock, when they respond chaotically, and when they like to synchronize. Neurosci. Res., 36:81–91, 2000.

    Article  Google Scholar 

  32. R. F. Fox and Y. n. Lu. Emergent collective behavior in large numbers of globally coupled independently stochastic ion channels. Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics, 49:3421–3431, 1994.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Bard Ermentrout .

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Ermentrout, G.B., Terman, D.H. (2010). The Variety of Channels. In: Mathematical Foundations of Neuroscience. Interdisciplinary Applied Mathematics, vol 35. Springer, New York, NY. https://doi.org/10.1007/978-0-387-87708-2_4

Download citation

Publish with us

Policies and ethics