Skip to main content

Firing Rate Models

  • Chapter
  • First Online:

Part of the book series: Interdisciplinary Applied Mathematics ((IAM,volume 35))

Abstract

One of the most common ways to model large networks of neurons is to use a simplification called a firing rate model. Rather than track the spiking of every neuron, instead one tracks the averaged behavior of the spike rates of groups of neurons within the circuit. These models are also called population models since they can represent whole populations of neurons rather than single cells. In this book, we will call them rate models although their physical meaning may not be the actual firing rate of a neuron. In general, there will be some invertible relationship between the firing rate of the neuron and the variable at hand. We derive the individual model equation in several different ways, some of the derivations are rigorous and are directly related to some biophysical model and other derivations are ad hoc. After deriving the rate models, we apply them to a number of interesting phenomena, including working memory, hallucinations, binocular rivalry, optical illusions, and traveling waves. We also describe a number of theorems about asymptotic states as well as some of the now classical work on attractor networks.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. J. Anderson and E. Rosenfeld. Talking Nets: An Oral History of Neural Networks. MIT, Cambridge, MA, 1998.

    Google Scholar 

  2. R. Beer. On the dynamics of small continuous-time recurrent neural networks. Adapt. Behav., 3:471–511, 1995.

    Article  Google Scholar 

  3. R. Bellman and K. L. Cooke. Differential-Difference Equations. Academic, New York, 1963.

    MATH  Google Scholar 

  4. R. M. Borisyuk and A. B. Kirillov. Bifurcation analysis of a neural network model. Biol. Cybern., 66:319–325, 1992.

    Article  MATH  Google Scholar 

  5. P. Bressloff. Stochastic neural field theory and the system-size expansion. preprint, 2010.

    Google Scholar 

  6. M. A. Buice and J. D. Cowan. Statistical mechanics of the neocortex. Prog. Biophys. Mol. Biol., 99:53–86, 2009.

    Article  Google Scholar 

  7. D. Cai, L. Tao, A. V. Rangan, and D. W. McLaughlin. Kinetic theory for neuronal network dynamics. Commun. Math. Sci., 4(1):97–127, 2006.

    MathSciNet  MATH  Google Scholar 

  8. J. Cowan and G. Ermentrout. Some aspects of the eigenbehavior of neural nets. In S. Levin, editor, Studies Mathematical Biology, volume 15, pages 67–117. Mathematical Association of America, Providence, RI, 1978.

    Google Scholar 

  9. J. Cowan and D. Sharp. Neural networks and artificial intelligence. Daedalus, 117:85–121, 1988.

    Google Scholar 

  10. R. Curtu and B. Ermentrout. Oscillations in a refractory neural net. J. Math. Biol., 43:81–100, 2001.

    Article  MathSciNet  MATH  Google Scholar 

  11. G. B. Ermentrout and J. D. Cowan. Large scale spatially organized activity in neural nets. SIAM J. Appl. Math., 38(1):1–21, 1980.

    Article  MathSciNet  MATH  Google Scholar 

  12. N. Fourcaud and N. Brunel. Dynamics of the firing probability of noisy integrate-and-fire neurons. Neural Comput., 14:2057–2110, 2002.

    Article  MATH  Google Scholar 

  13. S. Grossberg, G. A. Carpenter. A massively parallel architecture for a self-organizing neural pattern recognition machine. In Computer Vision, Graphics, and Image Processing, pages 54–115, Academic, New York, 1987.

    Google Scholar 

  14. W. Gerstner and W. M. Kistler. Spiking Neuron Models: Single Neurons, Populations, Plasticity. Cambridge University Press, Cambridge, 2002.

    Book  MATH  Google Scholar 

  15. D. Holcman and M. Tsodyks. The emergence of up and down states in cortical networks. PLoS Comput. Biol., 2:e23, 2006.

    Article  Google Scholar 

  16. F. C. Hoppensteadt and E. M. Izhikevich. Weakly Connected Neural Networks, volume 126 of Applied Mathematical Sciences. Springer, New York, 1997.

    Book  Google Scholar 

  17. H. T. Kyriazi and D. J. Simons. Thalamocortical response transformations in simulated whisker barrels. J. Neurosci., 13:1601–1615, 1993.

    Google Scholar 

  18. S. R. Lehky. An astable multivibrator model of binocular rivalry. Perception, 17:215–228, 1988.

    Article  Google Scholar 

  19. J. McClelland and D. Rumelhart. Parallel Distributed Processes. MIT, Cambridge, MA, 1987.

    Google Scholar 

  20. D. J. Pinto, J. C. Brumberg, D. J. Simons, and G. B. Ermentrout. A quantitative population model of whisker barrels: re-examining the Wilson-Cowan equations. J. Comput. Neurosci., 3:247–264, 1996.

    Article  Google Scholar 

  21. D. J. Pinto, J. A. Hartings, J. C. Brumberg, and D. J. Simons. Cortical damping: analysis of thalamocortical response transformations in rodent barrel cortex. Cereb. Cortex, 13:33–44, Jan 2003.

    Article  Google Scholar 

  22. D. J. Pinto, S. L. Patrick, W. C. Huang, and B. W. Connors. Initiation, propagation, and termination of epileptiform activity in rodent neocortex in vitro involve distinct mechanisms. J. Neurosci., 25:8131–8140, 2005.

    Article  Google Scholar 

  23. A. D. Reyes. Synchrony-dependent propagation of firing rate in iteratively constructed networks in vitro. Nat. Neurosci., 6:593–599, 2003.

    Article  Google Scholar 

  24. A. Shpiro, R. Curtu, J. Rinzel, and N. Rubin. Dynamical characteristics common to neuronal competition models. J. Neurophysiol., 97:462–473, 2007.

    Article  Google Scholar 

  25. Y. Shu, A. Hasenstaub, and D. A. McCormick. Turning on and off recurrent balanced cortical activity. Nature, 423:288–293, 2003.

    Article  Google Scholar 

  26. J. Tabak, W. Senn, M. J. O’Donovan, and J. Rinzel. Modeling of spontaneous activity in developing spinal cord using activity-dependent depression in an excitatory network. J. Neurosci., 20:3041–3056, 2000.

    Google Scholar 

  27. M. Tsodyks, A. Uziel, and H. Markram. Synchrony generation in recurrent networks with frequency-dependent synapses. J. Neurosci., 20:RC50, 2000.

    Google Scholar 

  28. M. Volgushev, S. Chauvette, M. Mukovski, and I. Timofeev. Precise long-range synchronization of activity and silence in neocortical neurons during slow-wave oscillations [corrected]. J. Neurosci., 26:5665–5672, 2006.

    Article  Google Scholar 

  29. H. R. Wilson and J. D. Cowan. Excitatory and inhibitory interactions in localized populations of model neurons. Biophys. J., 12:1–24, 1972.

    Article  Google Scholar 

  30. H. R. Wilson, R. Blake, and S. H. Lee. Dynamics of travelling waves in visual perception. Nature, 412:907–910, 2001.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Bard Ermentrout .

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Ermentrout, G.B., Terman, D.H. (2010). Firing Rate Models. In: Mathematical Foundations of Neuroscience. Interdisciplinary Applied Mathematics, vol 35. Springer, New York, NY. https://doi.org/10.1007/978-0-387-87708-2_11

Download citation

Publish with us

Policies and ethics