Skip to main content

Development of Megakaryocytes

  • Chapter
Molecular Basis of Hematopoiesis

Abstract

Megakaryocytes (MKs) comprise a rare population of bone marrow cells, responsible for the production of platelets. MKs are derived from hematopoietic stem cells and share some common progenitors with the erythroid lineage. Through a partially elucidated interplay of transcription and growth factors, cells committed to the MK lineage are formed. Diploid MKs undergo multiple rounds of endomitosis, including aborted mitosis and cytokinesis. The mediators of endomitosis include cyclins, proteins involved in mitosis and cytokinesis, and other yet unrecognized proteins. Several signaling pathways are activated during endomitosis but their precise role remains largely uncharacterized. Endomitosis leads to high states of ploidy, which are accompanied by a cytoplasmatic volume increase. During the final stages of the MK life cycle biogenesis of platelets occurs. The precise mechanism of this aspect remained controversial for many years, but the implementation of sophisticated imaging modalities has gradually elucidated the process of proplatelet formation. Several disorders have been described affecting MK and platelet physiology. For some of them, the molecular pathology has been elucidated. Translational research has led to the development of thrombopoietic agents that are engineered to overcome changes in platelet levels associated with these states. In this chapter, we discuss key aspects of MK physiology and structure and we explore the molecular pathways governing these fascinating cells under normal and some pathological conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams, G. B., D. T. Scadden (2006). “The hematopoietic stem cell in its place.”Nat Immunol 7(4): 333–337.

    Article  PubMed  CAS  Google Scholar 

  • Adolfsson, J., R. Mansson, et al. (2005). “Identification of Flt3 + lympho-myeloid stem cells lacking erythro-megakaryocytic potential a revised road map for adult blood lineage commitment.”Cell 121(2): 295–306.

    Article  PubMed  CAS  Google Scholar 

  • Akashi, K., D. Traver, et al. (2000). “A clonogenic common myeloid progenitor that gives rise to all myeloid lineages.”Nature 404(6774): 193–197.

    Article  PubMed  CAS  Google Scholar 

  • Akkerman, J. W. (2006). “Thrombopoietin and platelet function.”Semin Thromb Hemost 32(3): 295–304.

    Article  PubMed  CAS  Google Scholar 

  • Altieri, D. C. (2006). “The case for survivin as a regulator of microtubule dynamics and cell-death decisions.”Current Opinion in Cell Biology 18(6): 609–615.

    Article  PubMed  CAS  Google Scholar 

  • Andonegui, G., S. M. Kerfoot, et al. (2005). “Platelets express functional Toll-like receptor-4 ”Blood 106(7): 2417–2423.

    Article  PubMed  CAS  Google Scholar 

  • Uren, A. G., L. Wong, M. Pakusch, K. J. Fowler, F. J. Burrows, D. L. Vaux, K. H. Choo (2000). “ Survivin and the inner centromere protein INCENP show similar cell-cycle localization and gene knockout phenotype.”Current Biology 10(21): 1319–1328.

    Article  PubMed  CAS  Google Scholar 

  • Aravind, L., E. V. Koonin (2000). “SAP — a putative DNA-binding motif involved in chromosomal organization.”Trends Biochem Sci 25(3): 112–114.

    Article  PubMed  CAS  Google Scholar 

  • Arber, D. A. (2001). “Realistic pathologic classification of acute myeloid leukemias.”Am J Clin Pathol 115(4): 552–560.

    Article  PubMed  CAS  Google Scholar 

  • Athanasiou, M., P. A. Clausen, et al. (1996). “Increased expression of the ETS-related transcription factor FLI-1/ERGB correlates with and can induce the megakaryocytic phenotype.”Cell Growth Differ 7(11): 1525–1534.

    PubMed  CAS  Google Scholar 

  • Avecilla, S. T., K. Hattori, et al. (2004). “Chemokine-mediated interaction of hematopoietic progenitors with the bone marrow vascular niche is required for thrombopoiesis.”Nat Med 10(1): 64–71.

    Article  PubMed  CAS  Google Scholar 

  • Baker, S. J., S. G. Rane, et al. (2007). “Hematopoietic cytokine receptor signaling.”Oncogene 26(47): 6724–6737.

    Article  PubMed  CAS  Google Scholar 

  • Balduini, C. L., A. Savoia (2004). “Inherited thrombocytopenias: molecular mechanisms.”Semin Thromb Hemost 30(5): 513–523.

    Article  PubMed  CAS  Google Scholar 

  • Ballmaier, M., M. Germeshausen, et al. (2001). “c-mpl mutations are the cause of congenital amegakaryocytic thrombocytopenia.”Blood 97(1): 139–146.

    Article  PubMed  CAS  Google Scholar 

  • Barr, F. A., U. Gruneberg (2007). “Cytokinesis: placing and making the final cut.”Cell 131(5): 847–860.

    Article  PubMed  CAS  Google Scholar 

  • Beeton, C. A., S. Bord, et al. (2006). “Osteoclast formation and bone resorption are inhibited by megakaryocytes.”Bone 39(5): 985–990.

    Article  PubMed  CAS  Google Scholar 

  • Begley, C. G., R. L. Basser (2000). “Biologic and structural differences of thrombopoietic growth factors.”Semin Hematol 37(2 Suppl 4): 19–27.

    Article  PubMed  CAS  Google Scholar 

  • Bennett, J. M., D. Catovsky, et al. (1985). “Criteria for the diagnosis of acute leukemia of megakaryo-cyte lineage (M7). A report of the French-American-British Cooperative Group.”Ann Intern Med 103(3): 460–462.

    PubMed  CAS  Google Scholar 

  • Bernstein, J., N. Dastugue, et al. (2000). “Nineteen cases of the t(1;22)(p13;q13) acute megakaryblas-tic leukaemia of infants/children and a review of 39 cases: report from a t(1;22) study group.”Leukemia 14(1): 216–218.

    Article  PubMed  CAS  Google Scholar 

  • Bloom, J., F. R. Cross (2007). “Multiple levels of cyclin specificity in cell-cycle control.”Nat Rev Mol Cell Biol 8(2): 149–160.

    Article  PubMed  CAS  Google Scholar 

  • Branehog, I., B. Ridell, et al. (1975). “Megakaryocyte quantifications in relation to thrombokinetics in primary thrombocythaemia and allied diseases.”Scand. J. Haematol. 15(5): 321–332.

    PubMed  CAS  Google Scholar 

  • Brass, L. F. (2005). “Did dinosaurs have megakaryocytes? New ideas about platelets and their progenitors.”J Clin Invest 115(12): 3329–3331.

    Article  PubMed  CAS  Google Scholar 

  • Briddell, R. A., J. E. Brandt, et al. (1989). “Characterization of the human burst-forming unit-megakaryocyte.”Blood 74(1): 145–151.

    PubMed  CAS  Google Scholar 

  • Bruno, E., L. J. Murray, et al. (1996). “Detection of a primitive megakaryocyte progenitor cell in human fetal bone marrow.”Exp Hematol 24(4): 552–558.

    PubMed  CAS  Google Scholar 

  • Carver-Moore, K., H. E. Broxmeyer, et al. (1996). “Low levels of erythroid and myeloid progenitors in thrombopoietin-and c-mpl-deficient mice.”Blood 88(3): 803–808.

    PubMed  CAS  Google Scholar 

  • Chang, A. N., A. B. Cantor, et al. (2002). “GATA-factor dependence of the multitype zinc-finger protein FOG-1 for its essential role in megakaryopoiesis.”Proc Natl Acad Sci USA 99(14): 9237–9242.

    Article  PubMed  CAS  Google Scholar 

  • Chang, Y., D. Bluteau, et al. (2007). “From hematopoietic stem cells to platelets.”J Thromb Haemost5 Suppl1: 318–327.

    Article  Google Scholar 

  • Cheng, T., H. Shen, et al. (1996). “Temporal mapping of gene expression levels during the differentiation of individual primary hematopoietic cells.”Proc Natl Acad Sci USA 93(23): 13158–13163.

    Article  PubMed  CAS  Google Scholar 

  • Ciurea, S. O., R. Hoffman (2007). “Cytokines for the treatment of thrombocytopenia.”Semin Hematol 44(3): 166–182.

    Article  PubMed  CAS  Google Scholar 

  • Crispino, J. D. (2005). “GATA1 in normal and malignant hematopoiesis.”Semin Cell Dev Biol 16(1): 137–147.

    Article  PubMed  CAS  Google Scholar 

  • Crow, C. E., N. E. Fox, et al. (2001). “Kinetics of endomitosis in primary murine megakaryocytes.”J Cell Physiol 188(3): 291–303.

    Article  Google Scholar 

  • Dahlen, D. D., V. C. Broudy, et al. (2003). “Internalization of the thrombopoietin receptor is regulated by 2 cytoplasmic motifs.”Blood 102(1): 102–108.

    Article  PubMed  CAS  Google Scholar 

  • Debili, N., F. Wendling, et al. (1995). “The Mpl-ligand or thrombopoietin or megakaryocyte growth and differentiative factor has both direct proliferative and differentiative activities on human megakaryocyte progenitors.”Blood 86(7): 2516–2525.

    PubMed  CAS  Google Scholar 

  • Debili, N., L. Coulombel, et al. (1996). “Characterization of a bipotent erythro-megakaryocytic progenitor in human bone marrow.”Blood 88(4): 1284–1296.

    PubMed  CAS  Google Scholar 

  • De Botton, S., S. Sabri, et al. (2002). “Platelet formation is the consequence of caspase activation within megakaryocytes.”Blood 100(4): 1310–1317.

    Article  PubMed  CAS  Google Scholar 

  • de Jong, J. L., L. I. Zon (2005). “Use of the zebrafish system to study primitive and definitive hematopoiesis.”Annu Rev Genet 39: 481–501.

    Article  PubMed  CAS  Google Scholar 

  • Deutsch, V. R., A. Tomer (2006). “Megakaryocyte development and platelet production.”Br J Haematol 134(5): 453–466.

    Article  PubMed  CAS  Google Scholar 

  • Drachman, J. G. (2004). “Inherited thrombocytopenia: when a low platelet count does not mean ITP.”Blood 103(2): 390–398.

    Article  PubMed  CAS  Google Scholar 

  • Drachman, J. G., K. Kaushansky (1997). “Dissecting the thrombopoietin receptor: functional elements of the Mpl cytoplasmic domain.”Proc Natl Acad Sci USA 94(6): 2350–2355.

    Article  PubMed  CAS  Google Scholar 

  • Du, X. X., T. Neben, et al. (1993). “Effects of recombinant human interleukin-11 on hematopoietic reconstitution in transplant mice: acceleration of recovery of peripheral blood neutrophils and platelets.”Blood 81(1): 27–34.

    PubMed  CAS  Google Scholar 

  • Duncan, A. W., F. M. Rattis, et al. (2005). “Integration of Notch and Wnt signaling in hematopoietic stem cell maintenance.”Nat Immunol 6(3): 314–322.

    Article  PubMed  CAS  Google Scholar 

  • Erickson-Miller, C. L., E. DeLorme, et al. (2005). “Discovery and characterization of a selective, nonpeptidyl thrombopoietin receptor agonist.”Exp Hematol 33(1): 85–93.

    Article  PubMed  CAS  Google Scholar 

  • Falik-Zaccai, T. C., Y. Anikster, et al. (2001). “A new genetic isolate of gray platelet syndrome (GPS): clinical, cellular, and hematologic characteristics.”Mol Genet Metab 74(3): 303–313.

    Article  PubMed  CAS  Google Scholar 

  • Favier, R., K. Jondeau, et al. (2003). “Paris-Trousseau syndrome: clinical, hematological, molecular data of ten new cases.”Thromb Haemost 90(5): 893–897.

    PubMed  CAS  Google Scholar 

  • Feese, M. D., T. Tamada, et al. (2004). “Structure of the receptor-binding domain of human throm-bopoietin determined by complexation with a neutralizing antibody fragment.”Proc Natl Acad Sci USA 101(7): 1816–1821.

    Article  PubMed  CAS  Google Scholar 

  • Fielder, P. J., A. L. Gurney, et al. (1996). “Regulation of thrombopoietin levels by c-mpl-mediated binding to platelets.”Blood 87(6): 2154–2161.

    PubMed  CAS  Google Scholar 

  • Fock, E. L., F. Yan, et al. (2008). “NF-E2-mediated enhancement of megakaryocytic differentiation and platelet production in vitro and in vivo.”Exp Hematol 36(1): 78–92.

    Article  PubMed  CAS  Google Scholar 

  • Folkman, J. (2007). “Angiogenesis: an organizing principle for drug discovery?”Nat Rev Drug Discov 6(4): 273–286.

    Article  PubMed  CAS  Google Scholar 

  • Forestier, F., F. Daffos, et al. (1991). “Developmental hematopoiesis in normal human fetal blood.”Blood 77(11): 2360–2363.

    PubMed  CAS  Google Scholar 

  • Fukuda, S., L. M. Pelus (2006). “Survivin, a cancer target with an emerging role in normal adult tissues.” Mol Cancer Ther 5(5): 1087–1098.

    Article  PubMed  CAS  Google Scholar 

  • Gaikwad, A., J. T. Prchal (2007). “Study of two tyrosine kinase inhibitors on growth and signal transduction in polycythemia vera.” Exp Hematol 35(11): 1647–1656.

    Article  PubMed  CAS  Google Scholar 

  • Gainsford, T., A. W. Roberts, et al. (1998). “Cytokine production and function in cQQQmplQQQdeficient mice: no physiologic role for interleukinQQQ3 in residual megakaryocyte and platelet production.” Blood 91(8): 2745–2752.

    PubMed  CAS  Google Scholar 

  • Gainsford, T., H. Nandurkar, et al. (2000). “The residual megakaryocyte and platelet production in cQQQmplQQQdeficient mice is not dependent on the actions of interleukinQQQ6, interleukinQQQ11, or leukemia inhibitory factor.” Blood 95(2): 528–534.

    PubMed  CAS  Google Scholar 

  • Ganem, N. J., Z. Storchova, et al. (2007). “Tetraploidy, aneuploidy and cancer.” Curr Opin Genet Dev 17(2): 157–162.

    Article  PubMed  CAS  Google Scholar 

  • Garimella, R., M. A. Kacena, et al. (2007). “Expression of bone morphogenetic proteins and their receptors in the bone marrow megakaryocytes of GATAQQQ1(low) mice: a possible role in osteosclerosis.” J Histochem Cytochem 55(7): 745–752.

    Article  PubMed  CAS  Google Scholar 

  • Ge, Y., T. L. Jensen, et al. (2004). “The role of cytidine deaminase and GATA1 mutations in the increased cytosine arabinoside sensitivity of Down syndrome myeloblasts and leukemia cell lines.” Cancer Res 64(2): 728–735.

    Article  PubMed  CAS  Google Scholar 

  • Geddis, A. E. (2006). “Inherited thrombocytopenia: congenital amegakaryocytic thrombocytopenia and thrombocytopenia with absent radii.” Semin Hematol 43(3): 196–203.

    Article  PubMed  CAS  Google Scholar 

  • Geddis, A. E., K. Kaushansky (2004). “Megakaryocytes express functional AuroraQQQB kinase in endomitosis.” Blood 104(4): 1017–1024.

    Article  PubMed  CAS  Google Scholar 

  • Geddis, A. E., K. Kaushansky (2006). “Endomitotic megakaryocytes form a midzone in anaphase but have a deficiency in cleavage furrow formation.” Cell Cycle 5(5): 538–545.

    PubMed  CAS  Google Scholar 

  • Geddis, A. E., N. E. Fox, et al. (2006). “The Mpl receptor expressed on endothelial cells does not contribute significantly to the regulation of circulating thrombopoietin levels.” Exp Hematol 34(1): 82–86.

    Article  PubMed  CAS  Google Scholar 

  • Geddis, A. E., N. E. Fox, et al. (2007). “Endomitotic megakaryocytes that form a bipolar spindle exhibit cleavage furrow ingression followed by furrow regression.” Cell Cycle 6(4): 455–460.

    PubMed  CAS  Google Scholar 

  • Geng, Y., Q. Yu, et al. (2003). “Cyclin E ablation in the mouse.” Cell 114(4): 431–443.

    Article  PubMed  CAS  Google Scholar 

  • Giammona, L. M., P. G. Fuhrken, et al. (2006). “Nicotinamide (vitamin B3) increases the polyploidisaQQQtion and proplatelet formation of cultured primary human megakaryocytes.” Br J Haematol 135(4): 554–566.

    Article  PubMed  CAS  Google Scholar 

  • Glover, D. M., H. Ohkura, et al. (1996). “Polo kinase: the choreographer of the mitotic stage?” J Cell Biol 135(6, Part 2): 1681–1684.

    Article  PubMed  CAS  Google Scholar 

  • Gnatenko, D. V., P. L. Perrotta, et al. (2006). “Proteomic approaches to dissect platelet function: half the story.” Blood 108(13): 3983–3991.

    Article  PubMed  CAS  Google Scholar 

  • Goerttler, P. S., C. Kreutz, et al. (2005). “Gene expression profiling in polycythaemia vera: overQQQexpression of transcription factor NFQQQE2.” Br J Haematol 129(1): 138–150.

    Article  PubMed  CAS  Google Scholar 

  • Goncalves, F., C. Lacout, et al. (1997). “Thrombopoietin does not induce lineageQQQrestricted commitment of MplQQQR expressing pluripotent progenitors but permits their complete erythroid and megakaryocytic differentiation.” Blood 89(10): 3544–3553.

    PubMed  CAS  Google Scholar 

  • Greenbaum, M. P., L. Ma, et al. (2007). “Conversion of midbodies into germ cell intercellular bridges.” Dev Biol 305(2): 389–396.

    Article  PubMed  CAS  Google Scholar 

  • Guerriero, R., I. Parolini, et al. (2006). “Inhibition of TPOQQQinduced MEK or mTOR activity induces opposite effects on the ploidy of human differentiating megakaryocytes.” J Cell Sci 119 (Part 4): 744–752.

    Article  PubMed  CAS  Google Scholar 

  • Gurbuxani, S., Y. Xu, et al. (2005). “Differential requirements for survivin in hematopoietic cell development.” Proc Natl Acad Sci USA 102(32): 11480–11485.

    Article  PubMed  CAS  Google Scholar 

  • Gurney, A. L., W. J. Kuang, et al. (1995a). “Genomic structure, chromosomal localization, and conserved alternative splice forms of thrombopoietin.” Blood 85(4): 981–988.

    CAS  Google Scholar 

  • Gurney, A. L., S. C. Wong, et al. (1995b). “Distinct regions of cQQQMpl cytoplasmic domain are coupled to the JAKQQQSTAT signal transduction pathway and Shc phosphorylation.” Proc Natl Acad Sci USA 92(12): 5292–5296.

    Article  CAS  Google Scholar 

  • Hart, A., F. Melet, et al. (2000). “FliQQQ1 is required for murine vascular and megakaryocytic development and is hemizygously deleted in patients with thrombocytopenia.” Immunity 13(2): 167–177.

    Article  PubMed  CAS  Google Scholar 

  • Hartwig, J. H., J. E. Italiano, Jr. (2003). “The birth of the platelet.” J Thromb Haemost 1(7): 1580–1586.

    Article  PubMed  CAS  Google Scholar 

  • Hartwig, J. H., J. E. Italiano, Jr. (2006). “Cytoskeletal mechanisms for platelet production.” Blood Cells Mol Dis 36(2): 99–103.

    Article  PubMed  CAS  Google Scholar 

  • Healy, A. M., M. D. Pickard, et al. (2006). “Platelet expression profiling and clinical validation of myeloidQQQrelated proteinQQQ14 as a novel determinant of cardiovascular events.” Circulation 113(19): 2278–2284.

    Article  PubMed  CAS  Google Scholar 

  • Heits, F., M. Stahl, et al. (1999). “Elevated serum thrombopoietin and interleukinQQQ6 concentrations in thrombocytosis associated with inflammatory bowel disease.” J Interferon Cytokine Res 19(7): 757–760.

    Article  PubMed  CAS  Google Scholar 

  • Hirasawa, R., R. Shimizu, et al. (2002). “Essential and instructive roles of GATA factors in eosinophil development.” J Exp Med 195(11): 1379–1386.

    Article  PubMed  CAS  Google Scholar 

  • Hitchcock, I. S., T. M. Skerry, et al. (2003). “NMDA receptorQQQmediated regulation of human megakaryocytopoiesis.” Blood 102(4): 1254–1259.

    Article  PubMed  CAS  Google Scholar 

  • Huang, H., D. J. Tindall (2007). “Dynamic FoxO transcription factors.” J Cell Sci 120 (Part 15): 2479–2487.

    Article  PubMed  CAS  Google Scholar 

  • IancuQQQRubin, C., C. A. Nasrallah, et al. (2005). “Stathmin prevents the transition from a normal to an endomitotic cell cycle during megakaryocytic differentiation.” Cell Cycle 4(12): 1774–1782.

    Google Scholar 

  • Ichikawa, M., T. Asai, et al. (2004). “AMLQQQ1 is required for megakaryocytic maturation and lymphocytic differentiation, but not for maintenance of hematopoietic stem cells in adult hematopoiesis.” Nat Med 10(3): 299–304.

    Article  PubMed  CAS  Google Scholar 

  • Ikonomi, P., C. E. Rivera, et al. (2000). “Overexpression of GATAQQQ2 inhibits erythroid and promotes megakaryocyte differentiation.” Exp Hematol 28(12): 1423–1431.

    Article  PubMed  CAS  Google Scholar 

  • Inoki, K., H. Ouyang, et al. (2005). “Signaling by target of rapamycin proteins in cell growth control.” Microbiol Mol Biol Rev 69(1): 79–100.

    Article  PubMed  CAS  Google Scholar 

  • Italiano, J. E., Jr., P. Lecine, et al. (1999). “Blood platelets are assembled principally at the ends of proplatelet processes produced by differentiated megakaryocytes.” J Cell Biol 147(6): 1299–1312.

    Article  PubMed  CAS  Google Scholar 

  • Ito, T., Y. Ishida, et al. (1996). “Recombinant human cQQQMpl ligand is not a direct stimulator of proplatelet formation in mature human megakaryocytes.” Br J Haematol 94(2): 387–390.

    Article  PubMed  CAS  Google Scholar 

  • Jackson, C. W. (1973). “Cholinesterase as a possible marker for early cells of the megakaryocytic series.” Blood 42(3): 413–421.

    PubMed  CAS  Google Scholar 

  • Jackson, C. W., N. K. Hutson, et al. (1990a). “Megakaryocytopoiesis in man and laboratory animals. Conclusions derived from comparative studies and recently discovered animal models with megakaryocyte anomalies.” Prog Clin Biol Res 356: 11–23.

    CAS  Google Scholar 

  • Jackson, C. W., S. A. Steward, et al. (1990b). “An analysis of megakaryocytopoiesis in the C3H mouse: an animal model whose megakaryocytes have 32N as the modal DNA class.” Blood 76(4): 690–696.

    CAS  Google Scholar 

  • Jackson, H., N. Williams, et al. (1994). “Classes of primitive murine megakaryocytic progenitor cells.” Exp Hematol 22(10): 954–958.

    PubMed  CAS  Google Scholar 

  • Jagerschmidt, A., V. Fleury, et al. (1998). “Human thrombopoietin structure—function relationships: identification of functionally important residues.” Biochem J 333 (Part 3): 729–734.

    PubMed  CAS  Google Scholar 

  • Jelinek, J., Y. Oki, et al. (2005). “JAK2 mutation 1849G > T is rare in acute leukemias but can be found in CMML, Philadelphia chromosomeQQQnegative CML, and megakaryocytic leukemia.” Blood 106(10): 3370–3373.

    Article  PubMed  CAS  Google Scholar 

  • Jones, D. L., A. J. Wagers (2008). “No place like home: anatomy and function of the stem cell niche.” Nat Rev Mol Cell Biol 9(1): 11–21.

    Article  PubMed  CAS  Google Scholar 

  • Junt, T., H. Schulze, et al. (2007). “Dynamic visualization of thrombopoiesis within bone marrow.” Science 317(5845): 1767–1770.

    Article  PubMed  CAS  Google Scholar 

  • Kacena, M. A., M. C. Horowitz (2006). “The role of megakaryocytes in skeletal homeostasis and rheumatoid arthritis.” Curr Opin Rheumatol 18(4): 405–410.

    Article  PubMed  Google Scholar 

  • Kacena, M. A., C. M. Gundberg, et al. (2005). “Loss of the transcription factor p45 NFQQQE2 results in a developmental arrest of megakaryocyte differentiation and the onset of a high bone mass phenotype.” Bone 36(2): 215–223.

    Article  PubMed  CAS  Google Scholar 

  • Kacena, M. A., C. M. Gundberg, et al. (2006a). “A reciprocal regulatory interaction between megakaryocytes, bone cells, and hematopoietic stem cells.” Bone 39(5): 978–984.

    Article  CAS  Google Scholar 

  • Kacena, M. A., T. Nelson, et al. (2006b). “MegakaryocyteQQQmediated inhibition of osteoclast development.” Bone 39(5): 991–999.

    Article  CAS  Google Scholar 

  • Kartsogiannis, V., H. Zhou, et al. (1999). “Localization of RANKL (receptor activator of NF kappa B ligand) mRNA and protein in skeletal and extraskeletal tissues.” Bone 25(5): 525–534.

    Article  PubMed  CAS  Google Scholar 

  • Kato, T., A. Matsumoto, et al. (1998). “Native thrombopoietin: structure and function.” Stem Cells 16(5): 322–328.

    Article  PubMed  CAS  Google Scholar 

  • Kaushansky, K. (1995). “Thrombopoietin: basic biology, clinical promise.” Int J Hematol 62(1): 7–15.

    Article  PubMed  CAS  Google Scholar 

  • Kaushansky, K. (2005). “The molecular mechanisms that control thrombopoiesis.” J Clin Invest 115(12): 3339–3347.

    Article  PubMed  CAS  Google Scholar 

  • Kaushansky, K., J. G. Drachman (2002). “The molecular and cellular biology of thrombopoietin: the primary regulator of platelet production.” Oncogene 21(21): 3359–3367.

    Article  PubMed  CAS  Google Scholar 

  • Kaushansky, K., V. C. Broudy, et al. (1995). “Thrombopoietin, the Mp1 ligand, is essential for full megakaryocyte development.” Proc Natl Acad Sci USA 92(8): 3234–3238.

    Article  PubMed  CAS  Google Scholar 

  • Kerrigan, S. W., M. Gaur, et al. (2004). “Caspase-12: a developmental link between G-protein-coupled receptors and integrin alphaIIbbeta3 activation.” Blood 104(5): 1327–1334.

    Article  PubMed  CAS  Google Scholar 

  • Kiel, M. J., O. H. Yilmaz, et al. (2005). “SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells.” Cell 121(7): 1109–1121.

    Article  PubMed  CAS  Google Scholar 

  • Kirito, K., K. Kaushansky (2006). “Transcriptional regulation of megakaryopoiesis: thrombopoie-tin signaling and nuclear factors.” Curr Opin Hematol 13(3): 151–156.

    Article  PubMed  CAS  Google Scholar 

  • Kirito, K., M. Osawa, et al. (2002). “A functional role of Stat3 in in vivo megakaryopoiesis.” Blood 99(9): 3220–3227.

    Article  PubMed  CAS  Google Scholar 

  • Kirito, K., N. Fox, et al. (2004). “Thrombopoietin induces HOXA9 nuclear transport in immature hematopoietic cells: potential mechanism by which the hormone favorably affects hematopoietic stem cells.” Mol Cell Biol 24(15): 6751–6762.

    Article  PubMed  CAS  Google Scholar 

  • Klopocki, E., H. Schulze, et al. (2007). “Complex inheritance pattern resembling autosomal recessive inheritance involving a microdeletion in thrombocytopenia-absent radius syndrome.” Am J Hum Genet 80(2): 232–240.

    Article  PubMed  CAS  Google Scholar 

  • Kosaki, G. (2005). “In vivo platelet production from mature megakaryocytes: does platelet release occur via proplatelets? ” Int J Hematol 81(3): 208–219.

    Article  PubMed  CAS  Google Scholar 

  • Kosugi, S., Y. Kurata, et al. (1996). “Circulating thrombopoietin level in chronic immune throm-bocytopenic purpura.” Br J Haematol 93(3): 704–706.

    Article  PubMed  CAS  Google Scholar 

  • Kotwaliwale, C., S. Biggins (2006). “Microtubule capture: a concerted effort.” Cell 127(6): 1105–1108.

    Article  PubMed  CAS  Google Scholar 

  • Kretzschmar, H. A. (1993). “Human prion diseases (spongiform encephalopathies).” Arch Virol Suppl 7: 261–293.

    PubMed  CAS  Google Scholar 

  • Kuter, D. J. (2007). “New thrombopoietic growth factors.” Blood 109(11): 4607–4616.

    Article  PubMed  CAS  Google Scholar 

  • Kuter, D. J., C. G. Begley (2002). “Recombinant human thrombopoietin: basic biology and evaluation of clinical studies.” Blood 100(10): 3457–3469.

    Article  PubMed  CAS  Google Scholar 

  • Kuter, D. J., R. D. Rosenberg (1995). “The reciprocal relationship of thrombopoietin (c-Mpl ligand) to changes in the platelet mass during busulfan-induced thrombocytopenia in the rabbit.” Blood 85(10): 2720–2730.

    PubMed  CAS  Google Scholar 

  • Kuter, D. J., D. M. Gminski, et al. (1992). “Transforming growth factor beta inhibits megakaryocyte growth and endomitosis.” Blood 79(3): 619–626.

    PubMed  CAS  Google Scholar 

  • Kuter, D. J., D. L. Beeler, et al. (1994). “The purification of megapoietin: a physiological regulator of megakaryocyte growth and platelet production.” Proc Natl Acad Sci USA 91(2 3) : 11104–11108.

    Article  PubMed  CAS  Google Scholar 

  • Lam, L. T., C. Ronchini, et al. (2000). “Suppression of erythroid but not megakaryocytic differentiation of human K562 erythroleukemic cells by notch-1.” J Biol Chem 275(26): 19676–19684.

    Article  PubMed  CAS  Google Scholar 

  • Lambert, M. P., L. Rauova, et al. (2007). “Platelet factor 4 is a negative autocrine in vivo regulator of megakaryopoiesis: clinical and therapeutic implications.” Blood 110(4): 1153–1160.

    Article  PubMed  CAS  Google Scholar 

  • Lecine, P., V. Blank, et al. (1998). “Characterization of the hematopoietic transcription factor NF-E2 in primary murine megakaryocytes.” J Biol Chem 273(13): 7572–7578.

    Article  PubMed  CAS  Google Scholar 

  • Lecine, P., J. E. Italiano, Jr., et al. (2000). “Hematopoietic-specific beta 1 tubulin participates in a pathway of platelet biogenesis dependent on the transcription factor NF-E2.” Blood 96(4): 1366–1373.

    PubMed  CAS  Google Scholar 

  • Lens, S. M. A., G. Vader, et al. (2006). “The case for survivin as mitotic regulator.” Curr Opin Cell Biol 18(6): 616–622.

    Article  PubMed  CAS  Google Scholar 

  • Levin, J., S. Ebbe (1994). “Why are recently published platelet counts in normal mice so low?” Blood 83(12): 3829–3831.

    PubMed  CAS  Google Scholar 

  • Levine, R. F., K. C. Hazzard, et al. (1982). “The significance of megakaryocyte size.” Blood 60(5): 1122–1131.

    PubMed  CAS  Google Scholar 

  • Li, R. (2007). “Cytokinesis in development and disease: variations on a common theme.” Cell Mol Life Sci 64(23): 3044–3058.

    Article  PubMed  CAS  Google Scholar 

  • Li, Z., L. Li (2006). “Understanding hematopoietic stem-cell microenvironments.” Trends Biochem Sci 31(10): 589–595.

    Article  PubMed  CAS  Google Scholar 

  • Li, Z., F. J. Godinho, et al. (2005). “Developmental stage-selective effect of somatically mutated leukemogenic transcription factor GATA1.” Nat Genet 37(6): 613–619.

    Article  PubMed  CAS  Google Scholar 

  • Linden, H. M., K. Kaushansky (2000). “The glycan domain of thrombopoietin enhances its secretion.” Biochemistry 39(11): 3044–3051.

    Article  PubMed  CAS  Google Scholar 

  • Lippert, E., M. Boissinot, et al. (2006). “The JAK2-V617F mutation is frequently present at diagnosis in patients with essential thrombocythemia and polycythemia vera.” Blood 108(6): 1865–1867.

    Article  PubMed  CAS  Google Scholar 

  • Ma, Z., S. W. Morris, et al. (2001). “Fusion of two novel genes, RBM15 and MKL1, in the t(1;22) (p13;q13) of acute megakaryoblastic leukemia.” Nat Genet 28(3): 220–221.

    Article  PubMed  CAS  Google Scholar 

  • MacGregor, I., J. Hope, et al. (1999). “Application of a time-resolved fluoroimmunoassay for the analysis of normal prion protein in human blood and its components.” Vox Sang 77(2): 88–96.

    Article  PubMed  CAS  Google Scholar 

  • Malumbres, M., M. Barbacid (2001). “To cycle or not to cycle: a critical decision in cancer.” Nat Rev Cancer 1(3): 222–231.

    Article  PubMed  CAS  Google Scholar 

  • Mandal, R. V., E. J. Mark, et al. (2007). “Megakaryocytes and platelet homeostasis in diffuse alveolar damage.” Exp Mol Pathol 83: 327–331.

    Article  PubMed  CAS  Google Scholar 

  • Margolis, R. L., O. D. Lohez, et al. (2003). “G1 tetraploidy checkpoint and the suppression of tumorigenesis.” J Cell Biochem 88(4): 673–683.

    Article  PubMed  CAS  Google Scholar 

  • Mattia, G., F. Vulcano, et al. (2002). “Different ploidy levels of megakaryocytes generated from peripheral or cord blood CD34+ cells are correlated with different levels of platelet release.” Blood 99(3): 888–897.

    Article  PubMed  CAS  Google Scholar 

  • McCrann, D. J., H. G. Nguyen, et al. (2008a). “Vascular smooth muscle cell polyploidy: an adaptive or maladaptive response? ” J Cell Physiol 215: 588–592

    Article  CAS  Google Scholar 

  • McCrann, D. J., T. Yezefski, et al. (2008b). “Survivin overexpression alone does not alter meg-akaryocyte ploidy nor interfere with erythroid/megakaryocytic lineage development in transgenic mice.” Blood 111: 4092–4095

    Article  CAS  Google Scholar 

  • Mercher, T., M. B. Coniat, et al. (2001). “Involvement of a human gene related to the Drosophila spen gene in the recurrent t(1;22) translocation of acute megakaryocytic leukemia.” Proc Natl Acad Sci USA 98(10): 5776–5779.

    Article  PubMed  CAS  Google Scholar 

  • Miller, J. L., A. Castella (1982). “Platelet-type von Willebrand's disease: characterization of a new bleeding disorder.” Blood 60(3): 790–794.

    PubMed  CAS  Google Scholar 

  • Miller, J. S., Y. Soignier, et al. (2005). “Successful adoptive transfer and in vivo expansion of human haploidentical NK cells in patients with cancer.” Blood 105(8): 3051–3057.

    Article  PubMed  CAS  Google Scholar 

  • Miyakawa, Y., A. Oda, et al. (1995). “Recombinant thrombopoietin induces rapid protein tyrosine phosphorylation of Janus kinase 2 and Shc in human blood platelets.” Blood 86(1): 23–27.

    PubMed  CAS  Google Scholar 

  • Moliterno, A. R., D. M. Williams, et al. (2004). “Mpl Baltimore: a thrombopoietin receptor polymorphism associated with thrombocytosis.” Proc Natl Acad Sci USA 101(31): 11444–11447.

    Article  PubMed  CAS  Google Scholar 

  • Mori, M., J. Tsuchiyama, et al. (1993). “Proliferation, migration and platelet release by megakaryocytes in long-term bone marrow culture in collagen gel.” Cell Struct Funct 18(6): 409–417.

    Article  PubMed  CAS  Google Scholar 

  • Moroy, T., C. Geisen (2004). “Cyclin E.” Int J Biochem Cell Biol 36(8): 1424–1439.

    Article  PubMed  CAS  Google Scholar 

  • Muntean, A. G., L. Pang, et al. (2007). “Cyclin D-Cdk4 is regulated by GATA-1 and required for megakaryocyte growth and polyploidization.” Blood 109: 5199–5207.

    Article  PubMed  CAS  Google Scholar 

  • Murata-Hori, M., M. Tatsuka, et al. (2002). “Probing the dynamics and functions of Aurora B kinase in living cells during mitosis and cytokinesis.” Mol. Biol. Cell 13(4): 1099–1108.

    Article  PubMed  CAS  Google Scholar 

  • Musacchio, A., E. D. Salmon (2007). “The spindle-assembly checkpoint in space and time.” Nat Rev Mol Cell Biol 8(5): 379–393.

    Article  PubMed  CAS  Google Scholar 

  • Muta, T., S. Iwanaga (1996). “The role of hemolymph coagulation in innate immunity.” Curr Opin Immunol 8(1): 41–47.

    Article  PubMed  CAS  Google Scholar 

  • Nagata, Y., Y. Muro, et al. (1997). “Thrombopoietin-induced polyploidization of bone marrow megakaryocytes is due to a unique regulatory mechanism in late mitosis.” J. Cell Biol. 139(2): 449–457.

    Article  PubMed  CAS  Google Scholar 

  • Nagler, A., V. R. Deutsch, et al. (1995). “Recombinant human interleukin-6 accelerates in-vitro megakaryocytopoiesis and platelet recovery post autologous peripheral blood stem cell transplantation.” Leuk Lymphoma 19(3–4): 343–349.

    PubMed  CAS  Google Scholar 

  • Nakao, T., A. E. Geddis, et al. (2007). “PI3K/Akt/FOXO3a pathway contributes to thrombopoie-tin-induced proliferation of primary megakaryocytes in vitro and in vivo via modulation of p27(Kip1).” Cell Cycle 7(2): 257–266.

    PubMed  Google Scholar 

  • Nakorn, T. N., T. Miyamoto, et al. (2003). “Characterization of mouse clonogenic megakaryocyte progenitors.” Proc Natl Acad Sci 100(1): 205–210.

    Article  PubMed  CAS  Google Scholar 

  • Newland, A. (2007). “Thrombopoietin mimetic agents in the management of immune thrombocy-topenic purpura.” Semin Hematol 44(4 Suppl 5): S35–S45.

    Article  PubMed  CAS  Google Scholar 

  • Ney, P. A., N. C. Andrews, et al. (1993). “Purification of the human NF-E2 complex: cDNA cloning of the hematopoietic cell-specific subunit and evidence for an associated partner.” Mol Cell Biol 13(9): 5604–5612.

    PubMed  CAS  Google Scholar 

  • Nguyen, H. G., K. Ravid (2006). “Tetraploidy/aneuploidy and stem cells in cancer promotion: the role of chromosome passenger proteins.” J Cell Physiol 208(1): 12–22.

    Article  PubMed  CAS  Google Scholar 

  • Nguyen, H. G., D. Chinnappan, et al. (2005). “Mechanism of Aurora-B degradation and its dependency on intact KEN and A-boxes: identification of an aneuploidy-promoting property.” Mol Cell Biol 25(12): 4977–4992.

    Article  PubMed  CAS  Google Scholar 

  • Nurden, A. T., P. Nurden (2007a). “The gray platelet syndrome: clinical spectrum of the disease.” Blood Rev 21(1): 21–36.

    Article  CAS  Google Scholar 

  • Nurden, A. T., P. Nurden (2007b). “Inherited thrombocytopenias.” Haematologica 92(9): 1158–1164.

    Article  Google Scholar 

  • Oda, A., Y. Miyakawa, et al. (1996). “Thrombopoietin primes human platelet aggregation induced by shear stress and by multiple agonists.” Blood 87(11): 4664–4670.

    PubMed  CAS  Google Scholar 

  • Onodera, K., J. A. Shavit, et al. (2000). “Perinatal synthetic lethality and hematopoietic defects in compound mafG::mafK mutant mice.” EMBO J 19(6): 1335–1345.

    Article  PubMed  CAS  Google Scholar 

  • Orazi, A. (2007). “Histopathology in the diagnosis and classification of acute myeloid leukemia, myelodysplastic syndromes, and myelodysplastic/myeloproliferative diseases.” Pathobiology 74(2): 97–114.

    Article  PubMed  Google Scholar 

  • Orkin, S. H. (1992). “GATA-binding transcription factors in hematopoietic cells.” Blood 80(3): 575–581.

    PubMed  CAS  Google Scholar 

  • Pasquet, J. M., B. S. Gross, et al. (2000). “Thrombopoietin potentiates collagen receptor signaling in platelets through a phosphatidylinositol 3-kinase-dependent pathway.” Blood 95(11): 3429–3434.

    PubMed  CAS  Google Scholar 

  • Patel, S. R., J. H. Hartwig, et al. (2005a). “The biogenesis of platelets from megakaryocyte pro-platelets.” J. Clin. Invest. 115(12): 3348–3354.

    Article  CAS  Google Scholar 

  • Patel, S. R., J. L. Richardson, et al. (2005b). “Differential roles of microtubule assembly and sliding in proplatelet formation by megakaryocytes106: 4076–4085.

    Google Scholar 

  • Peck-Radosavljevic, M., M. Wichlas, et al. (2000). “Thrombopoietin induces rapid resolution of thrombocytopenia after orthotopic liver transplantation through increased platelet production.” Blood 95(3): 795–801.

    PubMed  CAS  Google Scholar 

  • Perry, M. J., K. A. Redding, et al. (2007). “Mice rendered severely deficient in megakaryocytes through targeted gene deletion of the thrombopoietin receptor c-Mpl have a normal skeletal phenotype.” Calcif Tissue Int 81(3): 224–231.

    Article  PubMed  CAS  Google Scholar 

  • Poellinger, L., R. S. Johnson (2004). “HIF-1 and hypoxic response: the plot thickens.” Curr Opin Genet Dev 14(1): 81–85.

    Article  PubMed  CAS  Google Scholar 

  • Quesenberry, P. J., J. N. Ihle, et al. (1985). “The effect of interleukin 3 and GM-CSA-2 on megakaryocyte and myeloid clonal colony formation.” Blood 65(1): 214–217.

    PubMed  CAS  Google Scholar 

  • Raslova, H., E. Komura, et al. (2004). “FLI1 monoallelic expression combined with its hemizygous loss underlies Paris-Trousseau/Jacobsen thrombopenia.” J Clin Invest 114(1): 77–84.

    PubMed  CAS  Google Scholar 

  • Raslova, H., V. Baccini, et al. (2006). “Mammalian target of rapamycin (mTOR) regulates both proliferation of megakaryocyte progenitors and late stages of megakaryocyte differentiation.” Blood 107(6): 2303–2310.

    Article  PubMed  CAS  Google Scholar 

  • Raslova, H., A. Kauffmann, et al. (2007). “Interrelation between polyploidization and megakaryocyte differentiation: a gene profiling approach.” Blood 109(8): 3225–3234.

    Article  PubMed  CAS  Google Scholar 

  • Ravid, K., T. Doi, et al. (1991) “Transcriptional regulation of the rat platelet factor 4 gene: interaction between an enhancer/silencer domain and the GATA site.” Mol Cell Biol 11(12): 6116–6127.

    PubMed  CAS  Google Scholar 

  • Ravid, K., J. Lu, et al. (2002) “Roads to polyploidy: the megakaryocyte example.” J Cell Physiol 190(1): 7–20.

    Article  PubMed  CAS  Google Scholar 

  • Ribeiro, R. C., M. S. Oliveira, et al. (1993) “Acute megakaryoblastic leukemia in children and adolescents: a retrospective analysis of 24 cases.” Leuk Lymphoma 10(4–5): 299–306.

    PubMed  CAS  Google Scholar 

  • Rojnuckarin, P., K. Kaushansky (2001) “Actin reorganization and proplatelet formation in murine megakaryocytes: the role of protein kinase calpha.” Blood 97(1): 154–161.

    Article  PubMed  CAS  Google Scholar 

  • Rouyez, M. C., C. Boucheron, et al. (1997) “Control of thrombopoietin-induced megakaryocytic differentiation by the mitogen-activated protein kinase pathway.” Mol Cell Biol 17(9): 4991–5000.

    PubMed  CAS  Google Scholar 

  • Roy, L., P. Coullin, et al. (2001) “Asymmetrical segregation of chromosomes with a normal metaphase/anaphase checkpoint in polyploid megakaryocytes.” Blood 97(8): 2238–2247.

    Article  PubMed  CAS  Google Scholar 

  • Royer, Y., J. Staerk, et al. (2005) “Janus kinases affect thrombopoietin receptor cell surface localization and stability.” J Biol Chem 280(29): 27251–27261.

    Article  PubMed  CAS  Google Scholar 

  • Rubin, C. I., D. L. French, et al. (2003) “Stathmin expression and megakaryocyte differentiation: a potential role in polyploidy.” Exp Hematol 31(5): 389–397.

    Article  PubMed  CAS  Google Scholar 

  • Ruchaud, S., M. Carmena, et al. (2007) “Chromosomal passengers: conducting cell division.” Nat Rev Mol Cell Biol 8(10): 798–812.

    Article  PubMed  CAS  Google Scholar 

  • Sakamaki, S., Y. Hirayama, et al. (1999) “Transforming growth factor-beta1 (TGF-beta1) induces thrombopoietin from bone marrow stromal cells, which stimulates the expression of TGF-beta receptor on megakaryocytes and, in turn, renders them susceptible to suppression by TGF-beta itself with high specificity.” Blood 94(6): 1961–1970.

    PubMed  CAS  Google Scholar 

  • Samii, K., E. Pasteur (1998). “Images in hematology. Emperipolesis.” Am J Hematol 59(1): 64.

    Article  PubMed  CAS  Google Scholar 

  • Sauer, K., J. A. Knoblich, et al. (1995). “Distinct modes of cyclin E/cdc2c kinase regulation and S-phase control in mitotic and endoreduplication cycles of Drosophila embryogenesis.” Genes Dev 9(11): 1327–1339.

    Article  PubMed  CAS  Google Scholar 

  • Schipper, L. F., A. Brand, et al. (2003) “Differential maturation of megakaryocyte progenitor cells from cord blood and mobilized peripheral blood.” Exp Hematol 31(4): 324–330.

    Article  PubMed  Google Scholar 

  • Schmitt, A., J. Guichard, et al. (2001) “Of mice and men: comparison of the ultrastructure of megakaryocytes and platelets.” Exp Hematol 29(11): 1295–1302.

    Article  PubMed  CAS  Google Scholar 

  • Schulze, H., M. Korpal, et al. (2006) “Characterization of the megakaryocyte demarcation membrane system and its role in thrombopoiesis.” Blood 107(10): 3868–3875.

    Article  PubMed  CAS  Google Scholar 

  • Scott, T., M. D. Owens (2008) “Thrombocytes respond to lipopolysaccharide through Toll-like receptor-4, and MAP kinase and NF- κ B pathways leading to expression of interleukin-6 and cyclooxygenase-2 with production of prostaglandin E2.” Mol Immunol 45(4): 1001–1008.

    Article  PubMed  CAS  Google Scholar 

  • Seri, M., R. Cusano, et al. (2000) “Mutations in MYH9 result in the May-Hegglin anomaly, and Fechtner and Sebastian syndromes. The May-Heggllin/Fechtner Syndrome Consortium.” Nat Genet 26(1): 103–105.

    Article  PubMed  CAS  Google Scholar 

  • Shivdasani, R. A., M. F. Rosenblatt, et al. (1995) “Transcription factor NF-E2 is required for platelet formation independent of the actions of thrombopoietin/MGDF in megakaryocyte development.” Cell 81(5): 695–704.

    Article  PubMed  CAS  Google Scholar 

  • Shivdasani, R. A., P. Fielder, et al. (1997a) “Regulation of the serum concentration of throm-bopoietin in thrombocytopenic NF-E2 knockout mice.” Blood 90(5): 1821–1827.

    CAS  Google Scholar 

  • Shivdasani, R. A., Y. Fujiwara, et al. (1997b) “A lineage-selective knockout establishes the critical role of transcription factor GATA-1 in megakaryocyte growth and platelet development.” EMBO J 16(13): 3965–3973.+

    Article  CAS  Google Scholar 

  • Sipe, J. B., J. Zhang, et al. (2004) “Localization of bone morphogenetic proteins (BMPs)-2, −4, and −6 within megakaryocytes and platelets.” Bone 35(6): 1316–1322.

    Article  PubMed  CAS  Google Scholar 

  • Snow, J. W., N. Abraham, et al. (2002) “STAT5 promotes multilineage hematolymphoid development in vivo through effects on early hematopoietic progenitor cells.” Blood 99(1): 95–101.

    Article  PubMed  CAS  Google Scholar 

  • Solar, G. P., W. G. Kerr, et al. (1998) “Role of c-mpl in early hematopoiesis.” Blood 92(1): 4–10.

    PubMed  CAS  Google Scholar 

  • Song, W. J., M. G. Sullivan, et al. (1999) “Haploinsufficiency of CBFA2 causes familial thrombocy-topenia with propensity to develop acute myelogenous leukaemia.” Nat Genet 23(2): 166–175.

    Article  PubMed  CAS  Google Scholar 

  • Sonoda, Y., Y. Kuzuyama, et al. (1993). “Human interleukin-4 inhibits proliferation of meg-akaryocyte progenitor cells in culture.” Blood 81(3): 624–630.

    PubMed  CAS  Google Scholar 

  • Staerk, J., C. Lacout, et al. (2006). “An amphipathic motif at the transmembrane-cytoplasmic junction prevents autonomous activation of the thrombopoietin receptor.” Blood 107(5): 1864–1871.

    Article  PubMed  CAS  Google Scholar 

  • Starke, R., P. Harrison, et al. (2005). “The expression of prion protein (PrP(C)) in the megakaryo-cyte lineage.” J Thromb Haemost 3(6): 1266–1273.

    Article  PubMed  CAS  Google Scholar 

  • Steensma, D. P., A. Tefferi (2002). “Cytogenetic and molecular genetic aspects of essential throm-bocythemia.” Acta Haematol 108(2): 55–65.

    Article  PubMed  CAS  Google Scholar 

  • Straight, A. F., C. M. Field (2000). “Microtubules, membranes and cytokinesis.” Curr Biol 10(20): R760–R770.

    Article  PubMed  CAS  Google Scholar 

  • Sumara, I., J. F. Gimenez-Abian, et al. (2004). “Roles of polo-like kinase 1 in the assembly of functional mitotic spindles.” Curr Biol 14(19): 1712–1722.

    Article  PubMed  CAS  Google Scholar 

  • Sungaran, R., B. Markovic, et al. (1997). “Localization and regulation of thrombopoietin mRNa expression in human kidney, liver, bone marrow, and spleen using in situ hybridization.” Blood 89(1): 101–107.

    PubMed  CAS  Google Scholar 

  • Sungaran, R., O. T. Chisholm, et al. (2000). “The role of platelet alpha-granular proteins in the regulation of thrombopoietin messenger RNA expression in human bone marrow stromal cells.” Blood 95(10): 3094–3101.

    PubMed  CAS  Google Scholar 

  • Suva, L. J., E. Hartman, et al. (2008). “Platelet dysfunction and a high bone mass phenotype in a murine model of platelet-type von Willebrand disease.” Am J Pathol 172: 430–439.

    Article  PubMed  CAS  Google Scholar 

  • Tablin, F., M. Castro, et al. (1990). “Blood platelet formation in vitro. The role of the cytoskeleton in megakaryocyte fragmentation.” J Cell Sci 97 (Part 1): 59–70.

    Google Scholar 

  • Tajika, K., H. Nakamura, et al. (2000). “Thrombopoietin can influence mature megakaryocytes to undergo further nuclear and cytoplasmic maturation.” Exp Hematol 28(2): 203–209.

    Article  PubMed  CAS  Google Scholar 

  • Takahashi, S., T. Komeno, et al. (1998). “Role of GATA-1 in proliferation and differentiation of definitive erythroid and megakaryocytic cells in vivo.” Blood 92(2): 434–442.

    PubMed  CAS  Google Scholar 

  • Tallman, M. S., D. Neuberg, et al. (2000). “Acute megakaryocytic leukemia: the Eastern Cooperative Oncology Group experience.” Blood 96(7): 2405–2411.

    PubMed  CAS  Google Scholar 

  • Tanaka, M., J. Zheng, et al. (2004). “Differentiation status dependent function of FOG-1.” Genes Cells 9(12): 1213–1226.

    Article  PubMed  CAS  Google Scholar 

  • Tavassoli, M., M. Aoki (1981). “Migration of entire megakaryocytes through the marrow–blood barrier.” Br J Haematol 48(1): 25–29.

    Article  PubMed  CAS  Google Scholar 

  • Tavassoli, M., M. Aoki (1989). “Localization of megakaryocytes in the bone marrow.” Blood Cells 15(1): 3–14.

    PubMed  CAS  Google Scholar 

  • Tepler, I., L. Elias, et al. (1996). “A randomized placebo-controlled trial of recombinant human interleukin-11 in cancer patients with severe thrombocytopenia due to chemotherapy.” Blood 87(9): 3607–3614.

    PubMed  CAS  Google Scholar 

  • Tiwari, S., J. E. Italiano, Jr., et al. (2003). “A role for Rab27b in NF-E2-dependent pathways of platelet formation.” Blood 102(12): 3970–3979.

    Article  PubMed  CAS  Google Scholar 

  • Tober, J., A. Koniski, et al. (2007). “The megakaryocyte lineage originates from hemangioblast precursors and is an integral component both of primitive and of definitive hematopoiesis.” Blood 109(4): 1433–1441.

    Article  PubMed  CAS  Google Scholar 

  • Tober, J., K. E. McGrath, et al. (2008). “Primitive erythropoiesis and megakaryopoiesis in the yolk sac are independent of c-myb.” Blood 111(5): 2636–2639.

    Article  PubMed  CAS  Google Scholar 

  • Tomer, A. (2004). “Human marrow megakaryocyte differentiation: multiparameter correlative analysis identifies von Willebrand factor as a sensitive and distinctive marker for early (2N and 4N) megakaryocytes.” Blood 104(9): 2722–2727.

    Article  PubMed  CAS  Google Scholar 

  • Tsai, F. Y., G. Keller, et al. (1994). “An early haematopoietic defect in mice lacking the transcription factor GATA-2.” Nature 371(6494): 221–226.

    Article  PubMed  CAS  Google Scholar 

  • Tsang, A. P., J. E. Visvader, et al. (1997). “FOG, a multitype zinc finger protein, acts as a cofactor for transcription factor GATA-1 in erythroid and megakaryocytic differentiation.” Cell 90(1): 109–119.

    Article  PubMed  CAS  Google Scholar 

  • Tsang, A. P., Y. Fujiwara, et al. (1998). “Failure of megakaryopoiesis and arrested erythropoiesis in mice lacking the GATA-1 transcriptional cofactor FOG.” Genes Dev 12(8): 1176–1188.

    Article  PubMed  CAS  Google Scholar 

  • Tulasne, D., T. Bori, et al. (2002). “Regulation of RAS in human platelets. Evidence that activation of RAS is not sufficient to lead to ERK1-2 phosphorylation.” Eur J Biochem 269(5): 1511–1517.

    Article  PubMed  CAS  Google Scholar 

  • van Hensbergen, Y., L. F. Schipper, et al. (2006). “Ex vivo culture of human CD34+ cord blood cells with thrombopoietin (TPO) accelerates platelet engraftment in a NOD/SCID mouse model.” Exp Hematol 34(7): 943–950.

    Article  PubMed  CAS  Google Scholar 

  • van Vugt, M. A., B. C. van de Weerdt, et al. (2004). “Polo-like kinase-1 is required for bipolar spindle formation but is dispensable for anaphase promoting complex/Cdc20 activation and initiation of cytokinesis.” J Biol Chem 279(35): 36841–36854.

    Article  PubMed  CAS  Google Scholar 

  • Vannucchi, A. M., L. Bianchi, et al. (2005). “A pathobiologic pathway linking thrombopoietin, GATA-1, and TGF-beta1 in the development of myelofibrosis.” Blood 105(9): 3493–3501.

    Article  PubMed  CAS  Google Scholar 

  • Vigon, I., J. P. Mornon, et al. (1992). “Molecular cloning and characterization of MPL, the human homolog of the v-mpl oncogene: identification of a member of the hematopoietic growth factor receptor superfamily.” Proc Natl Acad Sci USA 89(12): 5640–5644.

    Article  PubMed  CAS  Google Scholar 

  • Villeval, J. L., K. Cohen-Solal, et al. (1997). “High thrombopoietin production by hematopoietic cells induces a fatal myeloproliferative syndrome in mice.” Blood 90(11): 4369–4383.

    PubMed  CAS  Google Scholar 

  • von Hundelshausen, P., F. Petersen, et al. (2007). “Platelet-derived chemokines in vascular biology.” Thromb Haemost 97(5): 704–713.

    Google Scholar 

  • Walters, D. K., T. Mercher, et al. (2006). “Activating alleles of JAK3 in acute megakaryoblastic leukemia.” Cancer Cell 10(1): 65–75.

    Article  PubMed  CAS  Google Scholar 

  • Wang, B., J. L. Nichol, et al. (2004). “Pharmacodynamics and pharmacokinetics of AMG 531, a novel thrombopoietin receptor ligand.” Clin Pharmacol Ther 76(6): 628–638.

    Article  PubMed  CAS  Google Scholar 

  • Wang, S., Q. Wang, et al. (1993). “Cloning and characterization of subunits of the T-cell receptor and murine leukemia virus enhancer core-binding factor.” Mol Cell Biol 13(6): 3324–3339.

    PubMed  CAS  Google Scholar 

  • Wang, Z., Y. Zhang, et al. (1995). “Cyclin D3 is essential for megakaryocytopoiesis.” Blood 86(10): 3783–3788.

    PubMed  CAS  Google Scholar 

  • Watson, D. K., F. E. Smyth, et al. (1992). “The ERGB/Fli-1 gene: isolation and characterization of a new member of the family of human ETS transcription factors.” Cell Growth Differ 3(10): 705–713.

    PubMed  CAS  Google Scholar 

  • Wechsler, J., M. Greene, et al. (2002). “Acquired mutations in GATA1 in the megakaryoblastic leukemia of Down syndrome.” Nat Genet 32(1): 148–152.

    Article  PubMed  CAS  Google Scholar 

  • Weich, N. S., A. Wang, et al. (1997). “Recombinant human interleukin-11 directly promotes megakaryocytopoiesis in vitro.” Blood 90(10): 3893–3902.

    PubMed  CAS  Google Scholar 

  • Weinstein, R., M. B. Stemerman, et al. (1981). “The morphological and biochemical characterization of a line of rat promegakaryoblasts.” Blood 58(1): 110–121.

    PubMed  CAS  Google Scholar 

  • Wenger, S. L., P. D. Grossfeld, et al. (2006). “Molecular characterization of an 11q interstitial deletion in a patient with the clinical features of Jacobsen syndrome.” Am J Med Genet A 140(7): 704–708.

    PubMed  Google Scholar 

  • Wu, Y., T. Welte, et al. (2007). “PECAM-1: a multifaceted regulator of megakaryocytopoiesis.” Blood 110(3): 851–859.

    Article  PubMed  CAS  Google Scholar 

  • Yagi, M., G. J. Roth (2006). “Megakaryocyte polyploidization is associated with decreased expression of polo-like kinase (PLK).” J Thromb Haemost 4(9): 2028–2034.

    Article  PubMed  CAS  Google Scholar 

  • Yan, X. Q., D. Lacey, et al. (1995). “Chronic exposure to retroviral vector encoded MGDF (mpl-ligand) induces lineage-specific growth and differentiation of megakaryocytes in mice.” Blood 86(11): 4025–4033.

    PubMed  CAS  Google Scholar 

  • Yang, D., D. J. McCrann, et al. (2007). “Increased polyploidy in aortic vascular smooth muscle cells during aging is marked by cellular senescence.” Aging Cell 6(2): 257–260.

    Article  PubMed  CAS  Google Scholar 

  • Zakynthinos, S. G., S. Papanikolaou, et al. (2004). “Sepsis severity is the major determinant of circulating thrombopoietin levels in septic patients.” Crit Care Med 32(4): 1004–1010.

    Article  PubMed  Google Scholar 

  • Zhang, J., F. Varas, et al. (2007). “CD41-YFP mice allow in vivo labeling of megakaryocytic cells and reveal a subset of platelets hyperreactive to thrombin stimulation.” Exp Hematol 35(3): 490–499.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, Y., Z. Wang, et al. (1996). “The cell cycle in polyploid megakaryocytes is associated with reduced activity of cyclin B1-dependent cdc2 kinase.” J Biol Chem 271(8): 4266–4272.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, Y., Y. Nagata, et al. (2004). “Aberrant quantity and localization of Aurora-B/AIM-1 and survivin during megakaryocyte polyploidization and the consequences of Aurora-B/AIM-1-deregulated expression.” Blood 103(10): 3717–3726.

    Article  PubMed  CAS  Google Scholar 

  • Zheng, C., R. Yang, et al. (2008). “TPO-independent megakaryocytopoiesis.” Crit Rev Oncol Hematol 65(3): 212–222.

    Article  PubMed  Google Scholar 

  • Zimmet, J., K. Ravid (2000). “Polyploidy: occurrence in nature, mechanisms, and significance for the megakaryocyte-platelet system.” Exp Hematol 28: 3–16.

    Article  PubMed  CAS  Google Scholar 

  • Zimmet, J. M., D. Ladd, C. W. Jackson, P. E. Stenberg, K. Ravid. (1997). “ A role for cyclin D3 in the endomitotic cell cycle.” Mol Cell Biol 17(12): 7248–7259.

    PubMed  CAS  Google Scholar 

  • Zon, L. I., Y. Yamaguchi, et al. (1993). “Expression of mRNA for the GATA-binding proteins in human eosinophils and basophils: potential role in gene transcription.” Blood 81(12): 3234–3241.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katya Ravid .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Papadantonakis, N., Ravid, K. (2009). Development of Megakaryocytes. In: Wickrema, A., Kee, B. (eds) Molecular Basis of Hematopoiesis. Springer, New York, NY. https://doi.org/10.1007/978-0-387-85816-6_5

Download citation

Publish with us

Policies and ethics