Skip to main content

Hematopoietic Stem Cell Niches

  • Chapter
Molecular Basis of Hematopoiesis

Abstract

The hematopoietic stem cell (HSC) is probably the best characterized somatic stem cell and is still the only one regularly used in clinical practice. Nevertheless, expansion of HSCs in vitro has been surprisingly unsuccessful, limiting their full therapeutic potential. During homeostasis, the vast majority of HSCs are found in the bone marrow (BM) localized to specific microenvironments called stem cell “niches.” Over the last few years our knowledge of cellular niche components and the signaling molecules that coordinate the crosstalk between HSCs and niche cells has dramatically increased. Here we review the two main niche types found in the BM: the endosteal and the vascular niches, and provide an overview of the different signaling and cell adhesion molecules that form the HSC—niche synapse. Signals from BM niches not only control HSC dormancy, but also regulate the balance between self-renewal and differentiation. In the future, successful expansion of HSCs for therapeutic use will require three-dimensional reconstruction of a stem cell-niche unit.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams, G.B., Chabner, K.T., Alley, I.R., Olson, D.P., Szczepiorkowski, Z.M., Poznansky, M.C., Kos, C.H., Pollak, M.R., Brown, E.M., and Scadden, D.T. 2006. Stem cell engraftment at the endosteal niche is specified by the calcium-sensing receptor. Nature 439(7076): 599–603.

    PubMed  CAS  Google Scholar 

  • Ara, T., Tokoyoda, K., Sugiyama, T., Egawa, T., Kawabata, K., and Nagasawa, T. 2003. Long-term hematopoietic stem cells require stromal cell-derived factor-1 for colonizing bone marrow during ontogeny. Immunity 19(2): 257–267.

    PubMed  CAS  Google Scholar 

  • Arai, F. and Suda, T. 2007. Maintenance of quiescent hematopoietic stem cells in the osteoblastic niche. Ann N Y Acad Sci 1106: 41–53.

    PubMed  CAS  Google Scholar 

  • Arai, F., Hirao, A., Ohmura, M., Sato, H., Matsuoka, S., Takubo, K., Ito, K., Koh, G.Y., and Suda, T. 2004. Tie2/angiopoietin-1 signaling regulates hematopoietic stem cell quiescence in the bone marrow niche. Cell 118(2): 149–161.

    PubMed  CAS  Google Scholar 

  • Askenasy, N. and Farkas, D.L. 2003. In vivo imaging studies of the effect of recipient conditioning, donor cell phenotype and antigen disparity on homing of haematopoietic cells to the bone marrow. Br J Haematol 120(3): 505–515.

    PubMed  Google Scholar 

  • Avecilla, S.T., Hattori, K., Heissig, B., Tejada, R., Liao, F., Shido, K., Jin, D.K., Dias, S., Zhang, F., Hartman, T.E., et al. 2004. Chemokine-mediated interaction of hematopoietic progenitors with the bone marrow vascular niche is required for thrombopoiesis. Nat Med 10(1): 64–71.

    PubMed  CAS  Google Scholar 

  • Barker, J.E. 1994. Sl/Sld hematopoietic progenitors are deficient in situ. Exp Hematol 22(2): 174–177.

    PubMed  CAS  Google Scholar 

  • Barker, J.E. 1997. Early transplantation to a normal microenvironment prevents the development of Steel hematopoietic stem cell defects. Exp Hematol 25(6): 542–547.

    PubMed  CAS  Google Scholar 

  • Barker, N., van Es, J.H., Kuipers, J., Kujala, P., van den Born, M., Cozijnsen, M., Haegebarth, A., Korving, J., Begthel, H., Peters, P.J., et al. 2007. Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature 449(7165): 1003–1007.

    PubMed  CAS  Google Scholar 

  • Bhardwaj, G., Murdoch, B., Wu, D., Baker, D.P., Williams, K.P., Chadwick, K., Ling, L.E., Karanu, F.N., and Bhatia, M. 2001. Sonic hedgehog induces the proliferation of primitive human hematopoietic cells via BMP regulation. Nat Immunol 2(2): 172–180.

    PubMed  CAS  Google Scholar 

  • Blanpain, C., Horsley, V., and Fuchs, E. 2007. Epithelial stem cells: Turning over new leaves. Cell 128(3): 445–458.

    PubMed  CAS  Google Scholar 

  • Bradford, G.B., Williams, B., Rossi, R., and Bertoncello, I. 1997. Quiescence, cycling, and turnover in the primitive hematopoietic stem cell compartment. Exp Hematol 25(5): 445–453.

    PubMed  CAS  Google Scholar 

  • Calvi, L.M., Adams, G.B., Weibrecht, K.W., Weber, J.M., Olson, D.P., Knight, M.C., Martin, R.P., Schipani, E., Divieti, P., Bringhurst, F.R., et al. 2003. Osteoblastic cells regulate the haematopoietic stem cell niche. Nature 425(6960): 841–846.

    PubMed  CAS  Google Scholar 

  • Camargo, F.D., Chambers, S.M., Drew, E., McNagny, K.M., and Goodell, M.A. 2006. Hematopoietic stem cells do not engraft with absolute efficiencies. Blood 107(2): 501–507.

    PubMed  CAS  Google Scholar 

  • Cancelas, J.A., Lee, A.W., Prabhakar, R., Stringer, K.F., Zheng, Y., and Williams, D.A. 2005. Rac GTPases differentially integrate signals regulating hematopoietic stem cell localization . Nat Med 11(8): 886–891.

    PubMed  CAS  Google Scholar 

  • Chang, J.T., Palanivel, V.R., Kinjyo, I., Schambach, F., Intlekofer, A.M., Banerjee, A., Longworth, S.A., Vinup, K.E., Mrass, P., Oliaro, J., et al. 2007. Asymmetric T lymphocyte division in the initiation of adaptive immune responses. Science 315(5819): 1687–1691.

    PubMed  CAS  Google Scholar 

  • Chanprasert, S., Geddis, A.E., Barroga, C., Fox, N.E., and Kaushansky, K. 2006. Thrombopoietin (TPO) induces c-myc expression through a PI3K- and MAPK-dependent pathway that is not mediated by Akt, PKCzeta or mTOR in TPO-dependent cell lines and primary megakaryo-cytes. Cell Signal 18(8): 1212–1218.

    PubMed  CAS  Google Scholar 

  • Cheshier, S.H., Morrison, S.J., Liao, X., and Weissman, I.L. 1999. In vivo proliferation and cell cycle kinetics of long-term self-renewing hematopoietic stem cells . Proc Natl Acad Sci USA 96(6): 3120–3125.

    PubMed  CAS  Google Scholar 

  • Corral, D.A., Amling, M., Priemel, M., Loyer, E., Fuchs, S., Ducy, P., Baron, R., and Karsenty, G. 1998 . Dissociation between bone resorption and bone formation in osteopenic transgenic mice. Proc Natl Acad Sci USA 95(23): 13835–13840.

    PubMed  CAS  Google Scholar 

  • Cotsarelis, G., Sun, T.T., and Lavker, R.M. 1990. Label-retaining cells reside in the bulge area of pilosebaceous unit: Implications for follicular stem cells, hair cycle, and skin carcinogenesis . Cell 61(7): 1329–1337.

    PubMed  CAS  Google Scholar 

  • Czechowicz, A., Kraft, D., Weissman, I.L., and Bhattacharya, D. 2007. Efficient transplantation via antibody-based clearance of hematopoietic stem cell niches. Science 318(5854): 1296–1299.

    PubMed  CAS  Google Scholar 

  • Deguchi, K., Yagi, H., Inada, M., Yoshizaki, K., Kishimoto, T., and Komori, T. 1999. Excessive extramedullary hematopoiesis in Cbfa1-deficient mice with a congenital lack of bone marrow . Biochem Biophys Res Commun 255(2): 352–359.

    PubMed  CAS  Google Scholar 

  • Ducy, P., Schinke, T., and Karsenty, G. 2000. The osteoblast: A sophisticated fibroblast under central surveillance. Science 289(5484): 1501–1504.

    PubMed  CAS  Google Scholar 

  • Dykstra, B., Kent, D., Bowie, M., McCaffrey, L., Hamilton, M., Lyons, K., Lee, S.-J., Brinkman, R., and Eaves, C.J. 2007. Long-term propagation of distinct hematopoietic differentiation programs in vivo. Cell Stem Cell 1: 218–229.

    PubMed  CAS  Google Scholar 

  • Flanagan, J.G., Chan, D.C., and Leder, P. 1991. Transmembrane form of the kit ligand growth factor is determined by alternative splicing and is missing in the Sld mutant . Cell 64 (5) : 1025–1035.

    PubMed  CAS  Google Scholar 

  • Flynn, C.M. and Kaufman, D.S. 2007. Donor cell leukemia: Insight into cancer stem cells and the stem cell niche. Blood 109(7): 2688–2692.

    PubMed  CAS  Google Scholar 

  • Friedl, P. and Storim, J. 2004. Diversity in immune—cell interactions: States and functions of the immunological synapse. Trends Cell Biol 14(10): 557–567.

    PubMed  CAS  Google Scholar 

  • Gong, J.K. 1978. Endosteal marrow: A rich source of hematopoietic stem cells. Science 199(4336): 1443–1445.

    PubMed  CAS  Google Scholar 

  • Gu, Y., Filippi, M.D., Cancelas, J.A., Siefring, J.E., Williams, E.P., Jasti, A.C., Harris, C.E., Lee, A.W., Prabhakar, R., Atkinson, S.J., et al. 2003. Hematopoietic cell regulation by Rac1 and Rac2 guanosine triphosphatases. Science 302(5644): 445–449.

    PubMed  CAS  Google Scholar 

  • Haug, J.S., He, X.C., Grindley, J.C., Wunderlich, J.P., Gaudenz, K., Ross, J.T., Paulson, A., Wagner, K.P., Xie, Y., Zhu, R., et al. 2008. N-cadherin expression level distinguishes reserved versus primed states of hematopoietic stem cells. Cell Stem Cell 2(4): 367–379.

    PubMed  CAS  Google Scholar 

  • Heissig, B., Hattori, K., Dias, S., Friedrich, M., Ferris, B., Hackett, N.R., Crystal, R.G., Besmer, P., Lyden, D., Moore, M.A., et al. 2002. Recruitment of stem and progenitor cells from the bone marrow niche requires MMP-9 mediated release of kit-ligand. Cell 109(5): 625–637.

    PubMed  CAS  Google Scholar 

  • Ho, A.D. 2005. Kinetics and symmetry of divisions of hematopoietic stem cells. Exp Hematol 33(1): 1–8.

    PubMed  CAS  Google Scholar 

  • Hosokawa, K., Arai, F., Yoshihara, H., Nakamura, Y., Gomei, Y., Iwasaki, H., Miyamoto, K., Shima, H., Ito, K., and Suda, T. 2007. Function of oxidative stress in the regulation of hemat-opoietic stem cell—niche interaction. Biochem Biophys Res Commun 363(3): 578–583.

    PubMed  CAS  Google Scholar 

  • Huber, T.L., Kouskoff, V., Fehling, H.J., Palis, J., and Keller, G. 2004. Haemangioblast commitment is initiated in the primitive streak of the mouse embryo. Nature 432(7017): 625–630.

    PubMed  CAS  Google Scholar 

  • Ito, K., Hirao, A., Arai, F., Takubo, K., Matsuoka, S., Miyamoto, K., Ohmura, M., Naka, K., Hosokawa , K. , Ikeda , Y. , et al. 2006 . Reactive oxygen species act through p38 MAPK to limit the lifespan of hematopoietic stem cells. Nat Med 12(4): 446–451.

    PubMed  CAS  Google Scholar 

  • Jeannet, G., Scheller, M., Scarpellino, L., Duboux, S., Gardiol, N., Back, J., Kuttler, F., Malanchi, I., Birchmeier, W., Leutz, A., et al. 2008. Long-term, multilineage hematopoiesis occurs in the combined absence of beta-catenin and gamma-catenin. Blood 111(1): 142–149.

    PubMed  CAS  Google Scholar 

  • Jin, L., Hope, K.J., Zhai, Q., Smadja-Joffe, F., and Dick, J.E. 2006. Targeting of CD44 eradicates human acute myeloid leukemic stem cells. Nat Med 12(10): 1167–1174.

    PubMed  Google Scholar 

  • Karsenty, G. and Wagner, E.F. 2002. Reaching a genetic and molecular understanding of skeletal development. Dev Cell 2(4): 389–406.

    PubMed  CAS  Google Scholar 

  • Kiel, M.J., Yilmaz, O.H., Iwashita, T., Terhorst, C., and Morrison, S.J. 2005. SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells. Cell 121(7): 1109–1121.

    PubMed  CAS  Google Scholar 

  • Kiel, M.J., Radice, G.L., and Morrison, S.J. 2007. Lack of evidence that hematopoietic stem cells depend on N-cadherin-mediated adhesion to osteoblasts for their maintenance . Cell Stem Cell 1(2): 204–217.

    PubMed  CAS  Google Scholar 

  • Kinashi, T. and Springer, T.A. 1994. Steel factor and c-kit regulate cell—matrix adhesion. Blood 83(4): 1033–1038.

    PubMed  CAS  Google Scholar 

  • Knoblich, J.A. 2008. Mechanisms of asymmetric stem cell division. Cell 132(4): 583–597.

    PubMed  CAS  Google Scholar 

  • Koch, U., Wilson, A., Cobas, M., Kemler, R., Macdonald, H.R., and Radtke, F. 2008. Simultaneous loss of beta- and gamma-catenin does not perturb hematopoiesis or lymphopoiesis . Blood 111(1): 160–164.

    PubMed  CAS  Google Scholar 

  • Kollet, O., Dar, A., and Lapidot, T. 2007. The multiple roles of osteoclasts in host defense: Bone remodeling and hematopoietic stem cell mobilization. Annu Rev Immunol 25: 51–69.

    PubMed  CAS  Google Scholar 

  • Konno, D., Shioi, G., Shitamukai, A., Mori, A., Kiyonari, H., Miyata, T. , and Matsuzaki , F. 2008 . Neuroepithelial progenitors undergo LGN-dependent planar divisions to maintain self-renew-ability during mammalian neurogenesis. Nat Cell Biol 10(1): 93–101.

    PubMed  CAS  Google Scholar 

  • Kovach, N.L., Lin, N., Yednock, T., Harlan, J.M., and Broudy, V.C. 1995. Stem cell factor modulates avidity of alpha 4 beta 1 and alpha 5 beta 1 integrins expressed on hematopoietic cell lines. Blood 85(1): 159–167.

    PubMed  CAS  Google Scholar 

  • Lapidot, T. and Petit, I. 2002. Current understanding of stem cell mobilization: The roles of chem-okines, proteolytic enzymes, adhesion molecules, cytokines, and stromal cells . Exp Hematol 30(9): 973–981.

    PubMed  CAS  Google Scholar 

  • Lechler, T. and Fuchs, E. 2005. Asymmetric cell divisions promote stratification and differentiation of mammalian skin. Nature 437: 275–280.

    PubMed  CAS  Google Scholar 

  • Lerner, C. and Harrison, D.E. 1990. 5-Fluorouracil spares hemopoietic stem cells responsible for long-term repopulation. Exp Hematol 18(2): 114–118.

    PubMed  CAS  Google Scholar 

  • Li, W., Johnson, S.A., Shelley, W.C., Ferkowicz, M., Morrison, P., Li, Y., and Yoder, M.C. 2003. Primary endothelial cells isolated from the yolk sac and para-aortic splanchnopleura support the expansion of adult marrow stem cells in vitro. Blood 102(13): 4345–4353.

    PubMed  CAS  Google Scholar 

  • Li, W., Johnson, S.A., Shelley, W.C., and Yoder, M.C. 2004. Hematopoietic stem cell repopulat-ing ability can be maintained in vitro by some primary endothelial cells . Exp Hematol 32 (12) : 1226 – 1237 .

    PubMed  CAS  Google Scholar 

  • Lord, B.I., Testa, N.G., and Hendry, J.H. 1975. The relative spatial distributions of CFUs and CFUc in the normal mouse femur. Blood 46(1): 65–72.

    PubMed  CAS  Google Scholar 

  • Lyman, S.D. and Jacobsen, S.E. 1998. c-kit ligand and Flt3 ligand: Stem/progenitor cell factors with overlapping yet distinct activities. Blood 91(4): 1101–1134.

    PubMed  CAS  Google Scholar 

  • Maillard, I., Koch, U., Dumortier, A., Shestova, O., Xu, L., Sai, H., Pross, S.E., Aster, J.C., Bhandoola, A., Radtke, F., et al. 2008. Canonical notch signaling is dispensable for the maintenance of adult hematopoietic stem cells. Cell Stem Cell 2(4): 356–366.

    PubMed  CAS  Google Scholar 

  • Maloney, M.A. and Patt, H.M. 1975. On the origin of hematopoietic stem cells after local marrow extirpation. Proc Soc Exp Biol Med 149(1): 94–97.

    PubMed  CAS  Google Scholar 

  • Miyazawa, K., Williams, D.A., Gotoh, A., Nishimaki, J., Broxmeyer, H.E., and Toyama, K. 1995. Membrane-bound steel factor induces more persistent tyrosine kinase activation and longer life span of c-kit gene-encoded protein than its soluble form. Blood 85(3): 641–649.

    PubMed  CAS  Google Scholar 

  • Murphy, M.J., Wilson, A., and Trumpp, A. 2005. More than just proliferation: Myc function in stem cells. Trends Cell Biol 15(3): 128–137.

    PubMed  CAS  Google Scholar 

  • Nagasawa, T., Hirota, S., Tachibana, K., Takakura, N., Nishikawa, S., Kitamura, Y., Yoshida, N., Kikutani, H., and Kishimoto, T. 1996. Defects of B-cell lymphopoiesis and bone-marrow myelopoiesis in mice lacking the CXC chemokine PBSF/SDF-1. Nature 382(6592): 635–638.

    PubMed  CAS  Google Scholar 

  • Niche, W. Accession May 2008. Wikipedia http://en.wikipedia.org/wiki/niche

  • Nilsson, S.K., Johnston, H.M., and Coverdale, J.A. 2001. Spatial localization of transplanted hemopoietic stem cells: Inferences for the localization of stem cell niches . Blood 97 (8) : 2293–2299.

    PubMed  CAS  Google Scholar 

  • Nilsson, S.K., Johnston, H.M., Whitty, G.A., Williams, B., Webb, R.J., Denhardt , D.T. , Bertoncello, I., Bendall, L.J., Simmons, P.J., and Haylock, D.N. 2005. Osteopontin, a key component of the hematopoietic stem cell niche and regulator of primitive hematopoietic progenitor cells. Blood 106(4): 1232–1239.

    PubMed  CAS  Google Scholar 

  • Ohlstein, B., Kai, T., Decotto, E., and Spradling, A. 2004. The stem cell niche: Theme and variations. Curr Opin Cell Biol 16(6): 693–699.

    PubMed  CAS  Google Scholar 

  • Ohneda, O., Fennie, C., Zheng, Z., Donahue, C., La, H., Villacorta, R., Cairns, B., and Lasky, L.A. 1998 . Hematopoietic stem cell maintenance and differentiation are supported by embryonic aorta-gonad-mesonephros region-derived endothelium. Blood 92(3): 908–919.

    PubMed  CAS  Google Scholar 

  • Oostendorp, R.A., Harvey, K.N., Kusadasi, N., de Bruijn, M.F., Saris, C., Ploemacher, R.E., Medvinsky, A.L., and Dzierzak, E.A. 2002. Stromal cell lines from mouse aorta-gonads-mesonephros subregions are potent supporters of hematopoietic stem cell activity . Blood 99(4): 1183–1189.

    PubMed  CAS  Google Scholar 

  • Orford, K.W. and Scadden, D.T. 2008. Deconstructing stem cell self-renewal: Genetic insights into cell-cycle regulation. Nat Rev Genet 9(2): 115–128.

    PubMed  CAS  Google Scholar 

  • Osawa, M., Hanada, K., Hamada, H., and Nakauchi, H. 1996. Long-term lymphohematopoietic reconstitution by a single CD34-low/negative hematopoietic stem cell. Science 273(5272): 242–245.

    PubMed  CAS  Google Scholar 

  • Passegue, E., Wagers, A.J., Giuriato, S., Anderson, W.C., and Weissman, I.L. 2005. Global analysis of proliferation and cell cycle gene expression in the regulation of hematopoietic stem and progenitor cell fates. J Exp Med 202(11): 1599–1611.

    PubMed  CAS  Google Scholar 

  • Patt, H.M. and Maloney, M.A. 1972. Bone formation and resorption as a requirement for marrow development. Proc Soc Exp Biol Med 140(1): 205–207.

    PubMed  CAS  Google Scholar 

  • Ponomaryov, T., Peled, A., Petit, I., Taichman, R.S., Habler, L., Sandbank, J., Arenzana-Seisdedos, F., Magerus, A., Caruz, A., Fujii, N., et al. 2000. Induction of the chemokine stromal-derived factor-1 following DNA damage improves human stem cell function . J Clin Invest 106 (11) : 1331–1339.

    PubMed  CAS  Google Scholar 

  • Potten, C.S. and Loeffler, M. 1990. Stem cells: Attributes, cycles, spirals, pitfalls and uncertainties. Lessons for and from the crypt. Development 110(4): 1001–1020.

    PubMed  CAS  Google Scholar 

  • Puri, M.C. and Bernstein, A. 2003. Requirement for the TIE family of receptor tyrosine kinases in adult but not fetal hematopoiesis. Proc Natl Acad Sci USA 100(22): 12753–12758.

    PubMed  CAS  Google Scholar 

  • Qian, H., Buza-Vidas, N., Hyland, C.D., Jensen, C.T., Antonchuk, J., Mansson, R., Thoren, L.A., Ekblom, M., Alexander, W.S., and Jacobsen, S.E. 2007. Critical role of thrombopoietin in maintaining adult quiescent hematopoietic stem cells. Cell Stem Cell 1(6): 671–684.

    PubMed  CAS  Google Scholar 

  • Radice, G.L., Rayburn, H., Matsunami, H., Knudsen, K.A., Takeichi, M., and Hynes, R.O. 1997. Developmental defects in mouse embryos lacking N-cadherin. Dev Biol 181(1): 64–78.

    PubMed  CAS  Google Scholar 

  • Rafii, S., Mohle, R., Shapiro, F., Frey, B.M., and Moore, M.A. 1997. Regulation of hematopoiesis by microvascular endothelium. Leuk Lymphoma 27(5–6): 375–386.

    PubMed  CAS  Google Scholar 

  • Reya, T., Duncan, A.W., Ailles, L., Domen, J., Scherer, D.C., Willert, K., Hintz, L., Nusse, R., and Weissman, I.L. 2003. A role for Wnt signalling in self-renewal of haematopoietic stem cells. Nature 423(6938): 409–414.

    PubMed  CAS  Google Scholar 

  • Schofield, R. 1978. The relationship between the spleen colony-forming cell and the haemopoietic stem cell. Blood Cells 4(1–2): 7–25.

    PubMed  CAS  Google Scholar 

  • Shizuru, J.A., Negrin, R.S., and Weissman, I.L. 2005. Hematopoietic stem and progenitor cells: Clinical and preclinical regeneration of the hematolymphoid system . Annu Rev Med 56 : 509–538.

    PubMed  CAS  Google Scholar 

  • Solar, G.P., Kerr, W.G., Zeigler, F.C., Hess, D., Donahue, C., de Sauvage, F.J., and Eaton, D.L. 1998. Role of c-mpl in early hematopoiesis. Blood 92(1): 4–10.

    PubMed  CAS  Google Scholar 

  • Spangrude, G.J. and Johnson, G.R. 1990. Resting and activated subsets of mouse multipotent hematopoietic stem cells. Proc Natl Acad Sci USA 87(19): 7433–7437.

    PubMed  CAS  Google Scholar 

  • Spradling, A., Drummond-Barbosa, D., and Kai, T. 2001. Stem cells find their niche. Nature 414(6859): 98–104.

    PubMed  CAS  Google Scholar 

  • Stier, S., Cheng, T., Dombkowski, D., Carlesso, N., and Scadden, D.T. 2002. Notch1 activation increases hematopoietic stem cell self-renewal in vivo and favors lymphoid over myeloid lineage outcome. Blood 99(7): 2369–2378.

    PubMed  CAS  Google Scholar 

  • Stier, S., Ko, Y., Forkert, R., Lutz, C., Neuhaus, T., Grunewald, E., Cheng, T., Dombkowski, D., Calvi, L.M., Rittling, S.R., et al. 2005. Osteopontin is a hematopoietic stem cell niche component that negatively regulates stem cell pool size. J Exp Med 201(11): 1781–1791.

    PubMed  CAS  Google Scholar 

  • Suda, J., Suda, T., and Ogawa, M. 1984. Analysis of differentiation of mouse hemopoietic stem cells in culture by sequential replating of paired progenitors. Blood 64(2): 393–399.

    PubMed  CAS  Google Scholar 

  • Suda , T. , Arai , F. , and Hirao , A. 2005 . Hematopoietic stem cells and their niche . Trends Immunol 26(8): 426–433.

    PubMed  CAS  Google Scholar 

  • Sugiyama, T., Kohara, H., Noda, M., and Nagasawa, T. 2006. Maintenance of the hematopoietic stem cell pool by CXCL12-CXCR4 chemokine signaling in bone marrow stromal cell niches . Immunity 25(6): 977–988.

    PubMed  CAS  Google Scholar 

  • Taichman, R.S. 2005. Blood and bone: Two tissues whose fates are intertwined to create the hematopoietic stem-cell niche. Blood 105(7): 2631–2639.

    PubMed  CAS  Google Scholar 

  • Taichman, R.S. and Emerson, S.G. 1998. The role of osteoblasts in the hematopoietic microenvi-ronment. Stem Cells 16(1): 7–15.

    PubMed  CAS  Google Scholar 

  • Takano, H., Ema, H., Sudo, K., and Nakauchi, H. 2004. Asymmetric division and lineage commitment at the level of hematopoietic stem cells: Inference from differentiation in daughter cell and granddaughter cell pairs. J Exp Med 199(3): 295–302.

    PubMed  CAS  Google Scholar 

  • Thoren, L.A., Liuba, K., Bryder, D., Nygren, J.M., Jensen, C.T., Qian, H., Antonchuk, J., and Jacobsen, S.E. 2008. Kit regulates maintenance of quiescent hematopoietic stem cells. J Immunol 180(4): 2045–2053.

    PubMed  CAS  Google Scholar 

  • Till, J.E. and McCulloch, E.A. 1961. A direct measurement of the radiation sensitivity of normal mouse bone marrow cells. Radiat Res 14: 213–222.

    PubMed  CAS  Google Scholar 

  • Tokoyoda, K., Egawa, T., Sugiyama, T., Choi, B.I., and Nagasawa, T. 2004. Cellular niches controlling B lymphocyte behavior within bone marrow during development. Immunity 20(6): 707–718.

    PubMed  CAS  Google Scholar 

  • Tothova, Z., Kollipara, R., Huntly, B.J., Lee, B.H., Castrillon, D.H., Cullen, D.E., McDowell, E.P., Lazo-Kallanian, S., Williams, I.R., Sears, C., et al. 2007. FoxOs are critical mediators of hematopoietic stem cell resistance to physiologic oxidative stress. Cell 128(2): 325–339.

    PubMed  CAS  Google Scholar 

  • Trowbridge, J.J., Scott, M.P., and Bhatia, M. 2006. Hedgehog modulates cell cycle regulators in stem cells to control hematopoietic regeneration. Proc Natl Acad Sci USA 103(38): 14134–14139.

    PubMed  CAS  Google Scholar 

  • Trumpp, A. and Wiestler, O.D. 2008. Mechanisms of disease: Cancer stem cells-targeting the evil twin. Nat Clin Pract Oncol 5(6): 337–347.

    PubMed  CAS  Google Scholar 

  • Uchida, N., He, D., Friera, A.M., Reitsma, M., Sasaki, D., Chen, B., and Tsukamoto, A. 1997. The unexpected G0/G1 cell cycle status of mobilized hematopoietic stem cells from peripheral blood. Blood 89(2): 465–472.

    PubMed  CAS  Google Scholar 

  • Visnjic, D., Kalajzic, I., Gronowicz, G., Aguila, H.L., Clark, S.H., Lichtler, A.C., and Rowe, D.W. 2001 . Conditional ablation of the osteoblast lineage in Col2.3deltatk transgenic mice . J Bone Miner Res 16(12): 2222–2231.

    PubMed  CAS  Google Scholar 

  • Visnjic, D., Kalajzic, Z., Rowe, D.W., Katavic, V., Lorenzo, J., and Aguila, H.L. 2004. Hematopoiesis is severely altered in mice with an induced osteoblast deficiency. Blood 103(9): 3258–3264.

    PubMed  CAS  Google Scholar 

  • Waghmare, S.K., Bansal, R., Lee, J., Zhang, Y.V., McDermitt, D.J., and Tumbar, T. 2008. Quantitative proliferation dynamics and random chromosome segregation of hair follicle stem cells. EMBO J 27(9):1309–1320.

    PubMed  CAS  Google Scholar 

  • Wai, P.Y. and Kuo, P.C. 2008. Osteopontin: Regulation in tumor metastasis. Cancer Metastasis Rev 27(1): 103–118.

    PubMed  CAS  Google Scholar 

  • Walkley, C.R., Olsen, G.H., Dworkin, S., Fabb, S.A., Swann, J., McArthur, G.A., Westmoreland, S.V., Chambon, P., Scadden, D.T., and Purton, L.E. 2007a. A microenvironment-induced myeloproliferative syndrome caused by retinoic acid receptor gamma deficiency. Cell 129(6): 1097–1110.

    CAS  Google Scholar 

  • Walkley , C.R. , Shea , J.M. , Sims , N.A. , Purton , L.E. , and Orkin , S.H. 2007b. Rb regulates interactions between hematopoietic stem cells and their bone marrow microenvironment. Cell 129(6): 1081–1095.

    CAS  Google Scholar 

  • Weissman, I.L. 2000. Stem cells: Units of development, units of regeneration, and units in evolution. Cell 100(1): 157–168.

    PubMed  CAS  Google Scholar 

  • Williams, D.A., Zheng, Y., and Cancelas, J.A. 2008. Rho GTPases and regulation of hematopoi-etic stem cell localization. Methods Enzymol 439: 365–393.

    PubMed  CAS  Google Scholar 

  • Wilson, A. and Trumpp, A. 2006. Bone-marrow haematopoietic-stem-cell niches. Nat Rev Immunol 6: 93–106.

    PubMed  CAS  Google Scholar 

  • Wilson, A., Murphy, M.J., Oser, G.M., Oskarsson, T., Kaloulis, K., Bettess, M.D., Pasche, A.C., Knabenhans, C., MacDonald, H.R., and Trumpp, A. 2004. c-Myc controls the balance between hematopoietic stem cell self-renewal and differentiation. Genes Dev 18(22): 2747–2763.

    PubMed  CAS  Google Scholar 

  • Wilson, A., Oser, G.M., Jaworski, M., Blanco-Bose, W.E., Laurenti, E., Adolphe, C., Essers, M.A., Macdonald, H.R., and Trumpp, A. 2007. Dormant and self-renewing hematopoietic stem cells and their niches. Ann N Y Acad Sci 1106: 64–75.

    PubMed  CAS  Google Scholar 

  • Wilson, A., Laurenti, E., Oser, G.M., van der Wath, R.C., Blanco-Bose,, W., Jaworski, M., Offner, S., Dunant, C., Eshkind, L., Bockamp, E., Lio, P., MacDonald, H.R., and Trumpp, A. in press. Hematopoietic stem cells reversibly switch from dormancy to self-renewal during homeostasis and repair. Cell.

    Google Scholar 

  • Wright, D.E., Bowman, E.P., Wagers, A.J., Butcher, E.C., and Weissman, I.L. 2002. Hematopoietic stem cells are uniquely selective in their migratory response to chemokines . J Exp Med 195 (9) : 1145–1154.

    PubMed  CAS  Google Scholar 

  • Yoshihara, H., Arai, F., Hosokawa, K., Hagiwara, T., Takubo, K., Nakamura, Y., Gomei, Y., Iwasaki, H., Matsuoka, S., Miyamoto, K., et al. 2007. Thrombopoietin/MPL signaling regulates hematopoietic stem cell quiescence and interaction with the osteoblastic niche . Cell Stem Cell 1(6): 685–697.

    PubMed  CAS  Google Scholar 

  • Zhang, J., Niu, C., Ye, L., Huang, H., He, X., Tong, W.G., Ross, J., Haug, J., Johnson, T., Feng, J.Q., et al. 2003. Identification of the haematopoietic stem cell niche and control of the niche size. Nature 425(6960): 836–841.

    PubMed  CAS  Google Scholar 

  • Zou, Y.R., Kottmann, A.H., Kuroda, M., Taniuchi, I., and Littman, D.R. 1998. Function of the chemokine receptor CXCR4 in haematopoiesis and in cerebellar development . Nature 393(6685): 595–599.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Trumpp .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Wilson, A., Trumpp, A. (2009). Hematopoietic Stem Cell Niches. In: Wickrema, A., Kee, B. (eds) Molecular Basis of Hematopoiesis. Springer, New York, NY. https://doi.org/10.1007/978-0-387-85816-6_3

Download citation

Publish with us

Policies and ethics