Skip to main content

Leukemic Stem Cells: New Therapeutic Targets?

  • Chapter

Abstract

An emerging concept in cancer biology is that a subset of cancer cells among the heterogeneous cell mass that constitutes the tumor may drive the growth of the tumor. This so-called cancer stem cell (CSC) shared some main features with normal stem cells. These include self-renewal, differentiation into the cell types of the original cancer and potent tumor formation. Despite the clear importance of CSCs in the genesis and perpetuation of cancers, little is currently known about the biological and molecular properties that make CSCs distinct from normal stem cells, the developmental/cellular origin of CSCs, the mechanisms responsible for their emergence in the course of the disease, and identification of candidate molecular targets for therapeutic intervention. This report will focus more specifically on the blood-related cancer leukemia, which was the first disease where human CSCs, or leukemic stem cells (LSCs), were isolated. In this chapter we will summarize our knowledge of LSCs notably in acute myeloid leukemia (AML) and will discuss different issues that are arising in trying to eradicate these cells.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams, G. B., Chabner, K. T., Alley, I. R., Olson, D. P., Szczepiorkowski, Z. M., Poznansky, M. C., Kos, C. H., Pollak, M. R., Brown, E. M. & Scadden, D. T. (2006) Stem cell engraftment at the endosteal niche is specified by the calcium-sensing receptor . Nature , 439 , 599–03.

    Article  PubMed  CAS  Google Scholar 

  • Al-Hajj, M., Wicha, M. S., Benito-Hernandez, A., Morrison, S. J. & Clarke, M. F. (2003) Prospective identification of tumorigenic breast cancer cells . Proc Natl Acad Sci USA , 100 3983–3988.

    Article  PubMed  CAS  Google Scholar 

  • Arai, F., Hirao, A., Ohmura, M., Sato, H., Matsuoka, S., Takubo, K., Ito, K., Koh, G. Y. – Suda, T. (2004) Tie2/angiopoietin-1 signaling regulates hematopoietic stem cell quiescence in the bone marrow niche. Cell, 118, 149–161.

    Article  PubMed  CAS  Google Scholar 

  • Barabe, F., Kennedy, J. A., Hope, K. J. & Dick, J. E. (2007) Modeling the initiation and progression of human acute leukemia in mice . Science , 316, 600–604.

    Article  PubMed  CAS  Google Scholar 

  • Bardet, V., Tamburini, J., Ifrah, N., et al. (2006) Single cell analysis of phosphoinositide 3-kinase/Akt and ERK activation in acute myeloid leukemia by flow cytometry . Haematologica , 91, 757–764.

    PubMed  CAS  Google Scholar 

  • Bhatia, R., Holtz, M., Niu, N., et al. (2003) Persistence of malignant hematopoietic progenitors in chronic myelogenous leukemia patients in complete cytogenetic remission following imatinib mesylate treatment. Blood, 101, 4701–4707.

    Article  PubMed  CAS  Google Scholar 

  • Billottet, C., Grandage, V. L., Gale, R. E., et al. (2006) A selective inhibitor of the p110delta isoform of PI 3- kinase inhibits AML cell proliferation and survival and increases the cytotoxic effects of VP16. Oncogene, 25, 6648–6659.

    Article  PubMed  CAS  Google Scholar 

  • Blair, A. & Sutherland, H. J. (2000) Primitive acute myeloid leukemia cells with long-term pro-liferative ability in vitro and in vivo lack surface expression of c-kit (CD117) . Exp Hematol , 28, 660–671.

    Article  PubMed  CAS  Google Scholar 

  • Blair, A., Hogge, D. E., Ailles, L. E., Lansdorp, P. M. & Sutherland, H. J. (1997) Lack of expression of Thy-1 (CD90) on acute myeloid leukemia cells with long-term proliferative ability in vitro and in vivo. Blood, 89 , 3104–3112.

    PubMed  CAS  Google Scholar 

  • Blair, A., Hogge, D. E. & Sutherland, H. J. (1998) Most acute myeloid leukemia progenitor cells with long-term proliferative ability in vitro and in vivo have the phenotype CD34(+)/CD71(−)/ HLA-DR. Blood, 92, 4325–4335.

    PubMed  CAS  Google Scholar 

  • Blank, U., Karlsson, G., & Karlsson, S. (2008) Signaling pathways governing stem-cell fate. Blood, 111, 492–503.

    Article  PubMed  CAS  Google Scholar 

  • Bonnet, D. & Dick, J. E. (1997) Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell . Nat Med , 3, 730–737.

    Article  PubMed  CAS  Google Scholar 

  • Calvi, L. M., Adams, G. B., Weibrecht, K. W., Weber, J. M., Olson, D. P., Knight, M. C., Martin, R. P., Schipani, E., Divieti, P., Bringhurst, F. R., Milner, L. A., Kronenberg, H. M. & Scadden, D. T. (2003) Osteoblastic cells regulate the haematopoietic stem cell niche. Nature, 425, 841–846.

    Article  PubMed  CAS  Google Scholar 

  • Clarke, M. F. & Fuller, M. (2006) Stem cells and cancer: two faces of eve. Cell, 124, 1111–1115.

    Article  PubMed  CAS  Google Scholar 

  • Collins, A. T., Berry, P. A., Hyde, C., Stower, M. J., & Maitland, N. J. (2005) Prospective isolation of tumorogenic prostate cancer stem cells . Cancer Res , 65, 10946–10951.

    Article  PubMed  CAS  Google Scholar 

  • Copland, M., Hamilton, A., Elrick, L. J., et al. (2006) Dasatinib (BMS-354825) targets an earlier progenitor population than imatinib in primary CML but does not eliminate the quiescent fraction. Blood, 107, 4532–4539.

    Article  PubMed  CAS  Google Scholar 

  • Corral, J., Lavenir, I., Impey, H., Warren, A. J., Forster, A., Larson, T. A., Bell, S., Mckenzie, A. N., King, G. & Rabbitts, T. H. (1996) An Mll-AF9 fusion gene made by homologous recombination causes acute leukemia in chimeric mice: a method to create fusion onco-genes. Cell, 85 , 853–861.

    Article  PubMed  CAS  Google Scholar 

  • Costello, R. T., Mallet, F., Gaugler, B., Sainty, D., Arnoulet, C., Gastaut, J. A. & Olive, D. (2000) Human acute myeloid leukemia CD34 +/CD38− progenitor cells have decreased sensitivity to chemotherapy and Fas-induced apoptosis, reduced immunogenicity, and impaired dendritic cell transformation capacities. Cancer Res, 60 , 4403–4411.

    PubMed  CAS  Google Scholar 

  • Cozzio, A., Passegue, E., Ayton, P. M., Karsunky, H., Cleary, M. L. & Weissman, I. L. (2003) Similar MLL-associated leukemias arising from self-renewing stem cells and short-lived myeloid progenitors. Genes Dev, 17, 3029–3035.

    Article  PubMed  CAS  Google Scholar 

  • Delaney, C. & Bernstein, I. D. (2004) Establishment of a pluripotent preleukaemic stem cell line by expression of the AML1-ETO fusion protein in Notch1-immortalized HSCN1cl10 cells . Br J Haematol , 125 , 353 – 357 .

    Article  PubMed  CAS  Google Scholar 

  • Driessen, R. L., Johnston, H. M. & Nilsson, S. K. (2003) Membrane-bound stem cell factor is a key regulator in the initial lodgment of stem cells within the endosteal marrow region . Exp Hematol, 31, 1284–1291.

    Article  PubMed  CAS  Google Scholar 

  • Gale, K. B., Ford, A. M., Repp, R., et al. (1997) Backtracking leukemia to birth: identification of clonotypic gene fusion sequences in neonatal blood spots . Proc Natl Acad Sci USA , 94 13950–13954.

    Article  PubMed  CAS  Google Scholar 

  • Grimwade, D., Walker, H., Oliver, F., Wheatley, K., Harrison, C., Harrison, G., Rees, J., Hann, I., Stevens, R., Burnett, A. & Goldstone, A. (1998) The importance of diagnostic cytogenetics on outcome in AML: analysis of 1,612 patients entered into the MRC AML 10 trial. The Medical Research Council Adult and Children's Leukaemia Working Parties . Blood , 92, 2322–2333.

    PubMed  CAS  Google Scholar 

  • Grimwade, D., Walker, H., Harrison, G., Oliver, F., Chatters, S., Harrison, C. J., Wheatley, K., Burnett, A. K. & Goldstone, A. H. (2001) The predictive value of hierarchical cytogenetic classification in older adults with acute myeloid leukemia (AML): analysis of 1065 patients entered into the United Kingdom Medical Research Council AML11 trial . Blood , 98, 1312–1320.

    Article  PubMed  CAS  Google Scholar 

  • Guzman, M. L., Rossi, R. M., Karnischky, L., et al. (2005) The sesquiterpene lactone parthenolide induces apoptosis of human acute myelogenous leukemia stem and progenitor cells . Blood , 105, 4163–4169.

    Article  PubMed  CAS  Google Scholar 

  • Haylock, D. N. & Nilsson, S. K. (2005) Stem cell regulation by the hematopoietic stem cell niche. Cell Cycle, 4 , 1353–1355.

    PubMed  CAS  Google Scholar 

  • Hope, K. J., Jin, L. & Dick, J. E. (2004) Acute myeloid leukemia originates from a hierarchy of leukemic stem cell classes that differ in self-renewal capacity . Nat Immunol , 5, 738–743.

    Article  PubMed  CAS  Google Scholar 

  • Hong, D., Gupta, R., Ancliff, P., et al. (2008) Initiating and cancer-propagating cells in TEL-AML1-associated childhood leukemia . Science , 319, 336–339.

    Article  PubMed  CAS  Google Scholar 

  • Huang, X., Cho, S., & Spangrude, G. J. (2007) Hematopoietic stem cells: generation and self-renewal. Cell Death Differ, 14, 1851–1859.

    Article  PubMed  CAS  Google Scholar 

  • Huntly, B. J., Shigematsu, H., Deguchi, K., et al. (2004) MOZ-TIF2, but not BCR-ABL, confers properties of leukemic stem cells to committed murine hematopoietic progenitors . Cancer Cell, 6, 587–596.

    Article  PubMed  CAS  Google Scholar 

  • Ishikawa, F., Yoshida, S., Saito, Y., et al. (2007) Chemotherapy-resistant human AML stem cells home to and engraft within the bone-marrow endosteal region . Nat Biotechnol , M25 1315–1321.

    Article  CAS  Google Scholar 

  • Jamieson, C. H., Ailles, L. E., Dylla, S. J., et al. (2004) Granulocyte-macrophage progenitors as candidate leukemic stem cells in blast-crisis CML . N Engl J Med , 351, 657–667.

    Article  PubMed  CAS  Google Scholar 

  • Jelinek, J., Oki, Y., Gharibyan, V., et al. (2005) JAK2 mutation 1849G > T is rare in acute leuke-mias but can be found in CMML, Philadelphia chromosome-negative CML, and megakaryo-cytic leukemia. Blood, 106, 3370–3373.

    Article  PubMed  CAS  Google Scholar 

  • Jin, L., Hope, K. J., Zhai, Q., Smadja-Joffe, F., & Dick, J. E. (2006) Targeting of CD44 eradicates human acute myeloid leukemic stem cells . Nat Med , 12 , 1167–1174.

    Article  PubMed  Google Scholar 

  • Jordan, C. T., Upchurch, D., Szilvassy, S. J., Guzman, M. L., Howard, D. S., Pettigrew, A. L., Meyerrose, T., Rossi, R., Grimes, B., Rizzieri, D. A., Luger, S. M. & Phillips, G. L. (2000) The interleukin-3 receptor alpha chain is a unique marker for human acute myelogenous leukemia stem cells. Leukemia, 14, 1777–1784.

    Article  PubMed  CAS  Google Scholar 

  • Kim-Rouille, M. H., MacGregor, A., Wiedemann, L. M., Greaves, M. F. & Navarrete, C. (1999) MLL-AF4 gene fusions in normal newborns. Blood, 93, 1107–1108.

    PubMed  CAS  Google Scholar 

  • Lapidot, T. & Kollet, O. (2002) The essential roles of the chemokine SDF-1 and its receptor CXCR4 in human stem cell homing and repopulation of transplanted immune-deficient NOD/ SCID and NOD/SCID/B2m(null) mice. Leukemia, 16, 1992–2003.

    Article  PubMed  CAS  Google Scholar 

  • Lapidot, T., Sirard, C., Vormoor, J., Murdoch, B., Hoang, T., Caceres-Cortes, J., Minden, M., Paterson, B., Caligiuri, M. A. & Dick, J. E. (1994) A cell initiating human acute myeloid leukaemia after transplantation into SCID mice . Nature , 367, 645–648.

    Article  PubMed  CAS  Google Scholar 

  • Lessard, J. & Sauvageau, G. (2003) Bmi-1 determines the proliferative capacity of normal and leukaemic stem cells. Nature, 423, 255–260.

    Article  PubMed  CAS  Google Scholar 

  • Mikesch, J. H., Steffen, B., Berdel, W. E., Serve, H. & Muller-Tidow, C. (2007) The emerging role of Wnt signaling in the pathogenesis of acute myeloid leukemia . Leukemia , 21, 1638–1647.

    Article  PubMed  CAS  Google Scholar 

  • Muller-Tidow, C., Steffen, B., Cauvet T, et al. (2004) Translocation products in acute myeloid leukemia activate the Wnt signaling pathway in hematopoietic cells. Mol Cell Biol, 24, 2890–2904.

    Article  PubMed  Google Scholar 

  • Nemeth, M. J. & Bodine, D. M. (2007) Regulation of hematopoiesis and the hematopoietic stem cell niche by Wnt signaling pathways . Cell Res , 17, 746–758.

    Article  PubMed  CAS  Google Scholar 

  • Nilsson, S. K., Haylock, D. N., Johnston, H. M., Occhiodoro, T., Brown, T. J. & Simmons, P. J. (2003) Hyaluronan is synthesized by primitive hemopoietic cells, participates in their lodgment at the endosteum following transplantation, and is involved in the regulation of their proliferation and differentiation in vitro. Blood, 101, 856–862.

    Article  PubMed  CAS  Google Scholar 

  • Nilsson, S. K., Johnston, H. M., Whitty, G. A., Williams, B., Webb, R. J., Denhardt, D. T., Bertoncello, I., Bendall, L. J., Simmons, P. J. &Haylock, D. N. (2005) Osteopontin, a key component of the hematopoietic stem cell niche and regulator of primitive hematopoietic progenitor cells. Blood, 106, 1232–1239.

    Article  PubMed  CAS  Google Scholar 

  • O'Brien, C.A., Pollett, A., Gallinger, S. & Dick, J. E. (2007) A human colon cancer capable of initiating tumor growth in ummunodeficient mice . Nature , 445, 106–110.

    Article  PubMed  Google Scholar 

  • Park, I. K., Qian, D., Kiel, M., Becker, M. W., Pihalja, M., Weissman, I. L., Morrison, S. J. &Clarke, M. F. (2003) Bmi-1 is required for maintenance of adult self-renewing haematopoietic stem cells. Nature, 423, 302–305.

    Article  PubMed  CAS  Google Scholar 

  • Pearce, D. J., Taussig, D., Simpson, C., Allen, K., Rohatiner, A. Z., Lister, T. A. & Bonnet, D. (2005) Characterization of cells with a high aldehyde dehydrogenase activity from cord blood and acute myeloid leukemia samples . Stem Cells , 23, 752–760.

    Article  PubMed  CAS  Google Scholar 

  • Pearce, D. J., Taussig, D., Zibara, K., Smith, L. L., Ridler, C. M., Preudhomme, C., Young, B. D., Rohatiner, A. Z., Lister, T. A. & Bonnet, D. (2006) AML engraftment in the NOD/SCID assay reflects the outcome of AML: implications for our understanding of the heterogeneity of AML. Blood, 107, 1166–1173.

    Article  PubMed  CAS  Google Scholar 

  • Potocnik, A. J., Brakebusch, C. & Fassler, R. (2000) Fetal and adult hematopoietic stem cells require beta1 integrin function for colonizing fetal liver, spleen, and bone marrow . Immunity , 2 , 653–63.

    Article  Google Scholar 

  • Rabbitts, T. H., Appert, A., Chung, G., Collins, E. C., Drynan, L., Forster, A., Lobato, M. N., Mccormack, M. P., Pannell, R., Spandidos, A., Stocks, M. R., Tanaka, T. & Tse, E. (2001) Mouse models of human chromosomal translocations and approaches to cancer therapy . Blood Cells Mol Dis , 27, 249–59.

    Article  PubMed  CAS  Google Scholar 

  • Rafii, S., Mohle, R., Shapiro, F., Frey, B. M. & Moore, M. A. (1997) Regulation of hematopoiesis by microvascular endothelium. Leuk Lymphoma, 7, 375–386.

    Google Scholar 

  • Reya, T., Morrison, S. J., Clarke, M. F. & Weissman, I. L. (2001) Stem cells, cancer, and cancer stem cells. Nature, 414, 105–111.

    Article  PubMed  CAS  Google Scholar 

  • Ricci-Vitiani, L., Lombardi, D. G., Pilozzi, E., Biffoni, M., Todaro, M., Peschle, C. & De Maria, R. (2007) Identification and expansion of human colon-cancer-initiating cells. Nature, 445111–115.

    Article  PubMed  CAS  Google Scholar 

  • Rombouts, W. J., Martens, A. C. & Ploemacher, R. E. (2000) Identification of variables determining the engraftment potential of human acute myeloid leukemia in the immunodeficient NOD/SCID human chimera model. Leukemia, 14, 889–897.

    Article  PubMed  CAS  Google Scholar 

  • Schessl, C., Rawat, V. P., Cusan, M., Deshpande, A., Kohl, T. M., Rosten, P. M., Spiekermann, K., Humphries, R. K., Schnittger, S., Kern, W., Hiddemann, W., Quintanilla-Martinez, L., Bohlander, S. K., Feuring-Buske, M. & Buske, C. (2005) The AML1-ETO fusion gene and theFLT3 length mutation collaborate in inducing acute leukemia in mice . J Clin Invest , 1152159–2168.

    Article  PubMed  CAS  Google Scholar 

  • Singh, S. K., Hawkins, C., Clarke, I. D., Squire, J. A., Bayani, J., Hide, T., Henkelman, R. M., Cusimano, M. D. & Dirks, P. B. (2004) Identification of human brain tumour initiating cells. Nature, 432, 396–401.

    Article  PubMed  CAS  Google Scholar 

  • So, C. W., Karsunky, H., Passegue, E., Cozzio, A., Weissman, I. L. & Cleary, M. L. (2003) MLL-GAS7 transforms multipotent hematopoietic progenitors and induces mixed lineage leukemias in mice . Cancer Cell, 3, 161–171.

    Article  PubMed  CAS  Google Scholar 

  • Spoo, A. C., Lubbert, M., Wierda, W. G. & Burger, J. A. (2007) CXCR4 is a prognostic marker in acute myelogenous leukemia. Blood, 109, 786–791.

    Article  PubMed  CAS  Google Scholar 

  • Stier, S., Ko, Y., Forkert, R., Lutz, C., Neuhaus, T., Grunewald, E., Cheng, T., Dombkowski, D., Calvi , L. M. , Rittling , S. R. &; Scadden , D. T. (2005) Osteopontin is a hematopoietic stem cellniche component that negatively regulates stem cell pool size . J Exp Med , 201, 1781–1791.

    Article  PubMed  CAS  Google Scholar 

  • Suzuki, N., Ohneda, O., Minegishi, N., Nishikawa, M., Ohta, T., Takahashi, S., Engel, J. D. & Yamamoto, M. (2006) Combinatorial Gata2 and Sca1 expression defines hematopoietic stem cells in the bone marrow niche . Proc Natl Acad Sci USA , 103, 2202–2207.

    Article  PubMed  CAS  Google Scholar 

  • Tamburini, J., Elie, C., Bardet, V., et al. (2007) Constitutive phosphoinositide-3kinase/AKT activation represents a favourable prognostic factor in de novo AML patients . Blood , 110, 1025–1028.

    Article  PubMed  CAS  Google Scholar 

  • Taussig, D. C., Pearce, D. J., Simpson, C., Rohatiner, A. Z., Lister, T. A., Kelly, G., Luongo, J. L., Danet-Desnoyers, G. A. & Bonnet, D. (2005) Hematopoietic stem cells express multiple myeloid markers: implications for the origin and targeted therapy of acute myeloid leukemia . Blood, 106, 4086–4092.

    Article  PubMed  CAS  Google Scholar 

  • Taussig, D. C., Miraki-Moud, F., Anjos-Afonso, F., Pearce D.J., et al. (2008). Anti-CD38 antibody mediated clearancee of human repopulating cells masks the heterogeneity of leukemia initiating cells. Blood, In Press.

    Google Scholar 

  • Verfaillie, C. M. (1998)Adhesion receptors as regulators of the hematopoietic process. Blood, 922609–2612.

    PubMed  CAS  Google Scholar 

  • Wiemels, J. L., Ford, A. M., Van Wering, E. R., Postma, A., & Greaves, M. (1999) Protracted and variable latency of acute lymphoblastic leukemia after TEL-AML1 gene fusion in utero . Blood 94, 1057–1062.

    PubMed  CAS  Google Scholar 

  • Wiemels, J. L., Xiao, Z., Buffler P. A., et al. (2002) In utero origin of t(8;21) AML1-ETO trans-locations in childhood acute myeloid leukemia . Blood 99 , 3801–3805.

    Article  PubMed  CAS  Google Scholar 

  • Yalcintepe, L., Frankel, A. E., & Hogge, D. E. (2006) Expression of interleukin-3 receptor subu-nits on defined subpopulations of acute myeloid leukemia blasts predicts the cytotoxicity of diphtheria toxin interleukin-3 fusion protein against malignant progenitors that engraft in immunodeficient mice. Blood. 108, 3530–3537.

    Article  PubMed  CAS  Google Scholar 

  • Zhao, C., Blum, J., Chen, A., et al. (2007) Loss of beta-catenin impairs the renewal of normal and CML stem cells in vivo . Cancer Cell 12 , 528–541.

    Article  PubMed  CAS  Google Scholar 

  • Zhou, S., Schuetz, J. D., Bunting, K. D., Colapietro, A. M., Sampath, J., Morris, J. J., Lagutina, I., Grosveld, G. C., Osawa, M., Nakauchi, H. & Sorrentino, B. P. (2001) The ABC transporter Bcrp1/ABCG2 is expressed in a wide variety of stem cells and is a molecular determinant of the side-population phenotype. Nat Med, 7, 1028–1034.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dominique Bonnet .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Bonnet, D. (2009). Leukemic Stem Cells: New Therapeutic Targets?. In: Wickrema, A., Kee, B. (eds) Molecular Basis of Hematopoiesis. Springer, New York, NY. https://doi.org/10.1007/978-0-387-85816-6_10

Download citation

Publish with us

Policies and ethics