Skip to main content
Book cover

Tropomyosin pp 168–186Cite as

Tropomyosin Function in Yeast

  • Chapter

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 644))

Abstract

Tropomyosins were discovered as regulators of actomyosin contractility in muscle cells, making yeasts and other fungi seem unlikely to harbor such proteins. Fungal cells are encased in a rigid cell wall and do not engage in the same sorts of contractile shape changes of animal cells. However, discovery of actin and myosin in yeast raised the possibility for a role for tropomyosin in regulating their interaction. [1,2], Through abiochemical search, fungal tropomyosins were identified with strong similarities to their animal counterparts in terms of protein structure and physical properties. Two particular fungi, the budding yeast Saccharomyces cerevisiae and the fission yeast Schizosaccharomyces pombe have provided powerful genetic systems for studying tropomyosins in nonmetazoans. In these yeasts, tropomyosins associate with subsets of actin filamentous structures. Mutational studies of tropomyosin genes and biochemical assyas of purified proteins point to roles for these proteins as factors that stabilize actin filaments, promote actin-based structures of particular architecture and help maintain distinct biochemical identities among different filament populations. Tropomyosin-enriched filaments are the cytoskeletal structures that promote the major cell shape changes of these organisms: polarized growth and cell division.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Koteliansky VE, Glukhova MA, Bejanian MV et al. Isolation and characterization of actin-like protein from yeast Saccharomyces cerevisiae. FEBS Lett 1979; 102 (1):55–58.

    Article  PubMed  CAS  Google Scholar 

  2. Watts FZ, Miller DM, Orr E. Identification of myosin heavy chain in Saccharomyces cerevisiae. Nature 1985; 316 (6023):83–85.

    Article  PubMed  CAS  Google Scholar 

  3. Altschul SF, Gish W, Miller W et al. Basic local alignment search tool. J Mol Biol 1990; 215(3):403–410.

    PubMed  CAS  Google Scholar 

  4. Phillips GN Jr, Lattman EE, Cummins P et al. Crystal structure and molecular interactions of tropomyosin. Nature 1979; 278(5703):413–417.

    Article  PubMed  CAS  Google Scholar 

  5. Liu HP, Bretscher A. Purification of tropomyosin from Saccharomyces cerevisiae and identification of related proteins in Schizosaccharomyces and Physarum. Proc Natl Acad Sci USA 1989; 86(1):90–93.

    Article  PubMed  CAS  Google Scholar 

  6. Maytum R, Geeves MA, Konrad M. Actomyosin regulatory properties of yeast tropomyosin are dependent upon N-terminal modification. Biochemistry 2000; 39(39):11913–11920.

    Article  PubMed  CAS  Google Scholar 

  7. Wen KK, Kuang B, Rubenstein PA. Tropomyosin-dependent filament formation by a polymerization-defective mutant yeast actin (V266G, L267G). J Biol Chem 2000; 275(51):40594–40600.

    Article  PubMed  CAS  Google Scholar 

  8. Drees B, Brown C, Barrell BG et al. Tropomyosin is essential in yeast, yet the TPM1 and TPM2 products perform distinct functions. J Cell Biol 1995; 128(3):383–392.

    Article  PubMed  CAS  Google Scholar 

  9. Skoumpla K, Coulton AT, Lehman W et al. Acetylation regulates tropomyosin function in the fission yeast Schizosaccharomyces pombe. J Cell Sci 2007; 120(Pt 9):1635–1645.

    Article  PubMed  CAS  Google Scholar 

  10. Hermann GJ, King EJ, Shaw JM. The yeast gene, MDM20, is necessary for mitochondrial inheritance and organization of the actin cytoskeleton. J Cell Biol 1997; 137(1):141–153.

    Article  PubMed  CAS  Google Scholar 

  11. Singer JM, Shaw JM. Mdm20 protein functions with Nat3 protein to acetylate Tpm 1 protein and regulate tropomyosin-actin interactions in budding yeast. Proc Natl Acad Sci USA 2003; 100(13):7644–7649.

    Article  PubMed  CAS  Google Scholar 

  12. Evangelista M, Pruyne D, Amberg DC et al. Formins direct Arp 2/3-independent actin filament assembly to polarize cell growth in yeast. Nat Cell Biol 2002; 4(3):260–269.

    Article  PubMed  CAS  Google Scholar 

  13. Polevoda B, Cardillo TS, Doyle TC et al. Nat3p and Mdm20p are required for function of yeast NatB Nalpha-terminal acetyltransferase and of actin and tropomyosin. J Biol Chem 2003; 278(33):30686–30697.

    Article  PubMed  CAS  Google Scholar 

  14. Maytum R, Konrad M, Lehrer SS et al. Regulatory properties of tropomyosin effects of length, isoform and N-terminal sequence. Biochemistry 2001; 40(24):7334–7341.

    Article  PubMed  CAS  Google Scholar 

  15. Liu HP, Bretscher A. Disruption of the single tropomyosin gene in yeast results in the disappearance of actin cables from the cytoskeleton. Cell 1989; 57(2):233–242.

    Article  PubMed  CAS  Google Scholar 

  16. Balasubramanian MK, Helfman DM, Hemmingsen SM. A new tropomyosin essential for cytokinesis in the fission yeast S. pombe. Nature 1992; 360(6399):84–87.

    Article  PubMed  CAS  Google Scholar 

  17. Cummings L, Riley L, Black L et al. Genomic BLAST: custom-defined virtual databases for complete and unfinished genomes. FEMS Microbiol Lett 2002; 216(2):133–138.

    Article  PubMed  CAS  Google Scholar 

  18. James TY, Kauff F, Schoch CL et al. Reconstructing the early evolution of Fungi using a six-gene phylogeny. Nature 2006; 443(7113):818–822.

    Article  PubMed  CAS  Google Scholar 

  19. Hitchcock-DeGregori SE, An Y. Integral repeats and a continuous coiled coil are required for binding of striated muscle tropomyosin to the regulated actin filament. J Biol Chem 1996; 271(7):3600–3603.

    Article  PubMed  CAS  Google Scholar 

  20. Hitchcock-DeGregori SE, Varnell TA. Tropomyosin has discrete actin-binding sites with sevenfold and fourteenfold periodicities. J Mol Biol 1990; 214(4):885–896.

    Article  PubMed  CAS  Google Scholar 

  21. Gunning PW, Schevzov G, Kee AJ et al. Tropomyosin isoforms: divining rods for actin cytoskeleton function. Trends Cell Biol 2005; 15(6):333–341.

    Article  PubMed  CAS  Google Scholar 

  22. Wolfe KH, Shields DC. Molecular evidence for an ancient duplication of the entire yeast genome. Nature 1997; 387(6634):708–713.

    Article  PubMed  CAS  Google Scholar 

  23. Pruyne DW, Schott DH, Bretcher A. Tropomyosin-containing actin cables direct the Myo2p-dependent polarized delivery of secretory vesicles in budding yeast. J Cell Biol 1998; 143(7):1931–1945.

    Article  PubMed  CAS  Google Scholar 

  24. Huckaba TM, Lipkin T, Pou LA. Roles of type II myosin and a tropomyosin isoform in retrograde actin flow in budding yeast. J Cell Biol 2006; 175(6):957–969.

    Article  PubMed  CAS  Google Scholar 

  25. Chant J, Mischke M, Mitchell E et al. Role of Bud3p in producing the axial budding pattern of yeast. J Cell Biol 1995; 129(3):767–778.

    Article  PubMed  CAS  Google Scholar 

  26. Marks J, Hyams J. Localization of F-action through the cell division cycle of Schizosaccharomyces pombe. Eur J Cell Biol 1985; 39:27–32.

    Google Scholar 

  27. Adams AE, Pringle JR. Relationship of actin and tubulin distribution to bud growth in wild-type and morphogenetic-mutant Saccharomyces cerevisiae. J Cell Biol 1984; 98(3):934–945.

    Article  PubMed  CAS  Google Scholar 

  28. Mulholland J, Preuss D, Moon A et al. Ultrastructure of the yeast actin cytoskeleton and its association with the plasma membrane. J Cell Biol 1994; 125(2):381–391.

    Article  PubMed  CAS  Google Scholar 

  29. Arai R, Nakano K, Mabuchi I. Subcellular localization and possible function of actin, tropomyosin and actin-related protein 3 (Arp3) in the fission yeast Schizoasaccharomyces pombe. Eur J Cell Biol 1998; 76(4):288–295.

    PubMed  CAS  Google Scholar 

  30. Sirotkin V, Beltzner CC, Marchand JB et al. Interactions of WASp, myosin-I and verprolin with Arp2/3 complex during actin patch assembly in fission yeast. J Cell Biol 2005; 170(4):637–648.

    Article  PubMed  CAS  Google Scholar 

  31. Moreau V, Madania A, Martin RP et al. The Saccharomyces cerevisiae actin-related protein Arp2 is involved in the actin cytoskeleton. J Cell Biol 1996; 134(1):117–132.

    Article  PubMed  CAS  Google Scholar 

  32. Kaksonen M, Toret CP, Drubin DG. A modular design for the clathrin-and actin-mediated endocytosis machinery. Cell 2005; 123(2):305–320.

    Article  PubMed  CAS  Google Scholar 

  33. Kaksonen M, Sun Y, Drubin DG. A pathway for association of receptors, adaptors and actin during endocytic internalization. Cell 2003; 115(4):475–487.

    Article  PubMed  CAS  Google Scholar 

  34. Winter D, Podtelejnikov AV, Mann M et al. The complex containing actin-related proteins Arp2 and Arp3 is required for the motility and integrity of yeast actin patches. Curr Biol 1997; 7(7):519–529.

    Article  PubMed  CAS  Google Scholar 

  35. McCollum D, Feoktistova A, Morphew M et al. The Schizosaccharomyces pombe actin-related protein, Arp3, is a component of the cortical actin cytoskeleton and interacts with profilin. EMBO J 1996; 15(23):6438–6446.

    PubMed  CAS  Google Scholar 

  36. Winter DC, Choe EY, Li R. Genetic dissection of the budding yeast Arp 2/3 complex: a comparison of the in vivo and structural roles of individual subunits. Proc Natl Acad Sci USA 1999; 96(13):7288–7293.

    Article  PubMed  CAS  Google Scholar 

  37. Tolliday N, VerPlank L, Li R. Rho 1 directs formin-mediated actin ring assembly during budding yeast cytokinesis. Curr Biol 2002; 12(21):1864–1870.

    Article  PubMed  CAS  Google Scholar 

  38. Sagot I, Klee SK, Pellman D. Yeast formins regulate cell polarity by controlling the assembly of actin cables. Nat Cell Biol 2002; 4(1):42–50.

    PubMed  CAS  Google Scholar 

  39. Bi E, Maddox P, Lew DJ et al. Involvement of an actomyosin contractile ring in Saccharomyces cerevisiae cytokinesis. J Cell Biol 1998; 142(5):1301–1312.

    Article  PubMed  CAS  Google Scholar 

  40. Feierbach B, Chang F. Roles of the fission yeast formin for3p in cell polarity, actin cable formation and symmetric cell division. Curr Biol 2001; 11(21):1656–1665

    Article  PubMed  CAS  Google Scholar 

  41. Chang F, Woollard A, Nurse P. Isolation and characterization of fission yeast mutants defective in the assembly and placement of the contractile actin ring. J Cell Sci 1996; 109 (Pt 1):131–142.

    PubMed  CAS  Google Scholar 

  42. Chang F, Drubin D, Nurse P. cdc12p, a protein required for cytokinesis in fission yeast, is a component of the cell division ring and interacts with profilin. J Cell Biol 1997; 137(1):169–182.

    Article  PubMed  CAS  Google Scholar 

  43. Petersen J, Nielsen O, Egel R et al. FH3, a domain found in formins, targets the fission yeast formin Fusl to the projection tip during conjugation. J Cell Biol 1998; 141(5):1217–1228.

    Article  PubMed  CAS  Google Scholar 

  44. Volkmann N, Amana KJ, Stoilova-McPhie S et al. Structure of Arp2/3 complex in its activated state and in actin filament branch junctions. Science 2001; 293(5539):2456–2459.

    Article  PubMed  CAS  Google Scholar 

  45. Young ME, Cooper JA, Bridgman PC. Yeast actin patches are networks of branched actin filaments. J Cell Biol 2004; 166(5):629–635.

    Article  PubMed  CAS  Google Scholar 

  46. Lehrer SS, Golitsina NL, Geeves MA. Actin-tropomyosin activation of myosin subfragment 1 ATPase and thin filament cooperativity. The role of tropomyosin flexibility and end-to-end interactions. Biochemistry 1997; 36(44):13449–13454.

    Article  PubMed  CAS  Google Scholar 

  47. Sagot I, Rodal AA, Moseley J et al. An actin nucleation mechanism mediated by Bnil and profilin. Nat Cell Biol 2002; 4(8):626–631.

    PubMed  CAS  Google Scholar 

  48. Pruyne D, Evangelista M, Yang C et al. Role of formins in actin assembly: nucleation and barbed-end association. Science 2002; 297(5581):612–615.

    Article  PubMed  CAS  Google Scholar 

  49. Xu Y, Moseley JB, Sagot I et al. Crystal structures of a Formin Homology-2 domain reveal a tethered dimer architecture. Cell 2004; 116(5):711–723.

    Article  PubMed  CAS  Google Scholar 

  50. Otomo T, Tomchick DR, Otomo C et al. Structural basis of actin filament nucleation and processive capping by a formin homology 2 domain. Nature 2005; 433(7025):488–494.

    Article  PubMed  CAS  Google Scholar 

  51. Pring M, Evangelista M, Boone C et al. Mechanism of formin-induced nucleation of actin filaments. Biochemistry 2003; 42(2):486–496.

    Article  PubMed  CAS  Google Scholar 

  52. Zigmond SH, Evangelista M, Boone C et al. Formin leaky cap allows elongation in the presence of tight capping proteins. Curr Biol 2003; 13(20):1820–1823.

    Article  PubMed  CAS  Google Scholar 

  53. Kovar DR, Kuhn JR, Tichy AL et al. The fission yeast cytokinesis formin Cdc12p is a barbed end actin filament capping protein gated by profilin. J Cell Biol 2003; 161(5):875–887.

    Article  PubMed  CAS  Google Scholar 

  54. Mosely JB, Sagot I, Manning AL et al. A conserved mechanism for Bnil-and mDial-induced actin assembly and dual regulation of Bnil by Bud6 and profilin. Mol Biol Cell 2004; 15(2):896–907.

    Article  CAS  Google Scholar 

  55. Kovar DR, Pollard TD. Insertional assembly of actin filament barbed ends in association with formins produces piconewton forces. Proc Natl Acad Sci USA 2004; 101(41):14725–14730.

    Article  PubMed  CAS  Google Scholar 

  56. Wawro B, Greenfield NJ, Wear MA et al. Tropomyosin Regulates Elongation by Formin at the Fast-Growing End of the Actin Filament. Biochemistry 2007; 46(27):8146–8155.

    Article  PubMed  CAS  Google Scholar 

  57. Blanchoin L, Pollard TD, Hitchcock-DeGregori SE. Inhibition of the Arp2/3 complex-nucleated actin polymerization and branch formation by tropomyosin. Curr Biol 2001; 11(16):1300–1304.

    Article  PubMed  CAS  Google Scholar 

  58. Liu H, Bretscher A. Characterization of TPM1 disrupted yeast cells indicates an involvement of tropomyosin in directed vesicular transport. J Cell Biol 1992; 118(2):285–299.

    Article  PubMed  CAS  Google Scholar 

  59. Nurse P, Thuriaux P, Nasmyth K. Genetic control of the cell division cycle in the fission yeast Schizosaccharomyces pombe. Mol Gen Genet 1976; 146(2):167–178.

    Article  PubMed  CAS  Google Scholar 

  60. Pelham RJ Jr, Chang F. Role of actin polymerization and actin cables in actin-patch movement in Schizosaccharomyces pombe. Nat Cell Biol 2001; 3(3):235–244.

    Article  PubMed  CAS  Google Scholar 

  61. Motegi F, Arai R, Mabuchi I. Identification of two type V myosins in fission yeast, one of which functions in polarized cell growth and moves rapidly in the cell. Mol Biol Cell 2001; 12(5):1367–1380.

    PubMed  CAS  Google Scholar 

  62. Broschat KO. Tropomyosin prevents depolymerization of actin filaments from the pointed end. J Biol Chem 1990; 265(34):21323–21329.

    PubMed  CAS  Google Scholar 

  63. Broschat KO, Weber A, Burgess DR. Tropomyosin stabilizes the pointed end of actin filaments by slowing depolymerization. Biochemistry 1989; 28(21):8501–8506.

    Article  PubMed  CAS  Google Scholar 

  64. Maciver SK. How ADF/cofilin depolymerizes actin filaments. Curr Opin Cell Biol 1998; 10(1):140–144.

    Article  PubMed  CAS  Google Scholar 

  65. Rodal AA, Tetreault JW, Lappalainen P et al. Aip 1p interacts with cofilin to disassemble actin filaments. J Cell Biol 1999; 145(6):1251–1264.

    Article  PubMed  CAS  Google Scholar 

  66. Okada K, Obinata T, Abe H. XAIP1: a Xenopus homologue of yeast actin interacting protein 1 (AIP1), which induces disassembly of actin filaments cooperatively with ADF/cofilin family proteins. J Cell Sci 1999; 112 (Pt 10): 1553–1565.

    PubMed  CAS  Google Scholar 

  67. Cooper JA. Actin dynamics: tropomyosin provides stability. Curr Biol 2002; 12(15):R523–525.

    Article  PubMed  CAS  Google Scholar 

  68. Nakano K, Mabuchi I. Actin-depolymerizing protein Adf1 is required for formation and maintenance of the contractile ring during cytokinesis in fission yeast. Mol Biol Cell 2006; 17(4):1933–1945.

    Article  PubMed  CAS  Google Scholar 

  69. Okada K, Ravi H, Smith EM et al. Aipl and cofilin promote rapid turnover of yeast actin patches and cables: a coordinated mechanism for severing and capping filaments. Mol Biol Cell 2006; 17(7):2855–2868.

    Article  PubMed  CAS  Google Scholar 

  70. Belmont LD, Drubin DG. The yeast V159N actin mutant reveals roles for actin dynamics in vivo. J Cell Biol 1998; 142(5):1289–1299.

    Article  PubMed  CAS  Google Scholar 

  71. Kamasaki T, Arai R, Osumi M et al. Directionality of F-actin cables changes during the fission yeast cell cycle. Nat Cell Biol 2005; 7(9):916–917.

    Article  PubMed  CAS  Google Scholar 

  72. Adams AE, Botstein D, Drubin DG. Requirement of yeast fimbrin for actin organization and morphogenesis in vivo. Nature 1991; 354(6352):404–408.

    Article  PubMed  CAS  Google Scholar 

  73. Drubin DG, Miller KG, Botstein D. Yeast actin-binding proteins: evidence for a role in morphogenesis. J Cell Biol 1988; 107(6 Pt 2):2551–2561.

    Article  PubMed  CAS  Google Scholar 

  74. Asakura T, Sasaki T, Nagano F et al. Isolation and characterization of a novel actin filament-binding protein from Saccharomyces cerevisiae. Oncogene 1998; 16(1):121–130.

    Article  PubMed  CAS  Google Scholar 

  75. Wu JQ, Bahler J, Pringle JR. Roles of a fimbrin and an alpha-actinin-like protein in fission yeast cell polarization and cytokinesis. Mol Biol Cell 2001; 12(4):1061–1077.

    PubMed  CAS  Google Scholar 

  76. Wu JQ, Pollard TD. Counting cytokinesis proteins globally and locally in fission yeast. Science 2005; 310(5746):310–314.

    Article  PubMed  CAS  Google Scholar 

  77. Karpova TS, McNally JG, Moltz SL et al. Assembly and function of the actin cytoskeleton of yeast: relationships between cables and patches. J Cell Biol 1998; 142(6):1501–1517.

    Article  PubMed  CAS  Google Scholar 

  78. Zigmond SH. Formin-induced nucleation of actin filaments. Curr Opin Cell Biol 2004; 16(1):99–105.

    Article  PubMed  CAS  Google Scholar 

  79. Huckaba TM, Gay AC, Pantalena LF et al. Live cell imaging of the assembly, disassembly and actin cable-dependent movement of endosomes and actin patches in the budding yeast, Saccharomyces cerevisiae. J Cell Biol 2004; 167(3):519–530.

    Article  PubMed  CAS  Google Scholar 

  80. Harold FM. Force and compliance: rethinking morphogenesis in walled cells. Fungal Genet Biol 2002; 37(3):271–282.

    Article  PubMed  CAS  Google Scholar 

  81. Chappell TG, Warren G. A galactosyltransferase from the fission yeast Schizosaccharomyces pombe. J Cell Biol 1989; 109(6) Pt 1):2693–2702.

    Article  PubMed  CAS  Google Scholar 

  82. Preuss D, Mulholland J, Franzusoff A et al. Characterization of the Saccharomyces Golgi complex through the cell cycle by immunoelectron microscopy. Mol Biol Cell 1992; 3(7):789–803.

    PubMed  CAS  Google Scholar 

  83. Chang F, Peter M. Yeasts make their mark. Nat Cell Biol 2003; 5(4):294–299.

    Article  PubMed  CAS  Google Scholar 

  84. Yang HC, Pon LA. Actin cable dynamics in budding yeast. Proc Natl Acad Sci USA 2002; 99(2):751–756.

    Article  PubMed  CAS  Google Scholar 

  85. Huffaker TC, Thomas JH, Botstein D. Diverse effects of beta-tubulin mutations on microtubule formation and function. J Cell Biol 1988; 106(6):1997–2010.

    Article  PubMed  CAS  Google Scholar 

  86. Sawin KE, Snaith HA. Role of microtubules and tealp in establishment and maintenance of fission yeast cell polarity. J Cell Sci 2004; 117(Pt 5):689–700.

    Article  PubMed  CAS  Google Scholar 

  87. Sellers JR, Veigel C. Walking with myosin V. Curr Opin Cell Biol 2006; 18(1):68–73.

    Article  PubMed  CAS  Google Scholar 

  88. Johnston GC, Prendergast JA, Singer RA. The Saccharomyces cerevisiae MYO2 gene encodes an essential myosin for vectorial transport of vesicles. J Cell Biol 1991; 113(3):539–551.

    Article  PubMed  CAS  Google Scholar 

  89. Govindan B, Bowser R, Novick P. The role of Myo2, a yeast class V myosin, in vesicular transport. J Cell Biol 1995; 128(6):1055–1068.

    Article  PubMed  CAS  Google Scholar 

  90. Win TZ, Gachet Y, Mulvihill DP et al. Two type V myosins with non-overlapping functions in the fission yeast Schizosaccharomyces pombe: Myo52 is concerned with growth polarity and cytokinesis, Myo51 is a component of the cytokinetic actin ring. J Cell Sci 2001; 114(Pt 1):69–79.

    PubMed  CAS  Google Scholar 

  91. Schott D, Ho J, Pruyne D et al. The COOH-terminal domain of Myo2p, a yeast myosin V, has a direct role in secretory vesicle targeting. J Cell Biol 1999; 147(4):791–808.

    Article  PubMed  CAS  Google Scholar 

  92. Mulvihill DP, Edwards SR, Hyams JS. A critical role for the type V myosin, Myo52, in septum deposition and cell fission during cytokinesis in Schizosaccharomyces pombe. Cell Motil Cytoskeleton 2006; 63(3):149–161.

    Article  PubMed  CAS  Google Scholar 

  93. Schott DH, Collins RN, Bretscher A. Secretory vesicle transport velocity in living cells depends on the myosin-V lever arm length. J Cell Biol 2002; 156(1):35–39.

    Article  PubMed  CAS  Google Scholar 

  94. Hill KL, Catlett NL, Weisman LS. Actin and myosin function in directed vacuole movement during cell division in Saccharomyces cerevisiae. J Cell Biol 1996; 135(6 Pt 1):1535–1549.

    Article  PubMed  CAS  Google Scholar 

  95. Takizawa PA, Sil A, Swedlow JR et al. Actin-dependent localization of an RNA encoding a cell-fate determinant in yeast. Nature 1997; 389(6646):90–93.

    Article  PubMed  CAS  Google Scholar 

  96. Long RM, Singer RH, Meng X et al. Mating type switching in yeast controlled by asymmetric localization of ASH1 mRNA. Science 1997; 277(5324):383–387.

    Article  PubMed  CAS  Google Scholar 

  97. Rossanese OW, Reinke CA, Bevis BJ et al. A role for actin, Cdc1p and Myo2p in the inheritance of late Golgi elements in Saccharomyces cerevisiae. J Cell Biol 2001; 153(1):47–62.

    Article  PubMed  CAS  Google Scholar 

  98. Hoepfner D, van den Berg M, Philippsen P et al. A role for Vps 1p, actin and the Myo2p motor in peroxisome abundance and inheritance in Saccharomyces cerevisiae. J Cell Biol 2001; 155(6):979–990.

    Article  PubMed  CAS  Google Scholar 

  99. Estrada P, Kim J, Coleman J et al. Myo4p and She3p are required for cortical ER inheritance in Saccharomyces cerevisiae. J Cell Biol 2003; 163(6):1255–1266.

    Article  PubMed  CAS  Google Scholar 

  100. Theesfeld CL, Irazoqui JE, Bloom K et al. The role of actin in spindle orientation changes during the Saccharomyces cerevisiae cell cycle. J Cell Biol 1999; 146(5):1019–1032.

    Article  PubMed  CAS  Google Scholar 

  101. Yin H, Pruyne D, Huffaker TC et al. Myosin V orientates the mitotic spindle in yeast. Nature 2000; 406(6799):1013–1015.

    Article  PubMed  CAS  Google Scholar 

  102. Beach DL, Thibodeaux J, Maddox P et al. The role of the proteins Kar9 and Myo2 in orienting the mitotic spindle of budding yeast. Curr Biol 2000; 10(23):1497–1506.

    Article  PubMed  CAS  Google Scholar 

  103. Hwang E, Kusch J, Barral Y et al. Spindle orientation in Saccharomyces cerevisiae depends on the transport of microtubule ends along polarized actin cables. J Cell Biol 2003; 161(3):483–488.

    Article  PubMed  CAS  Google Scholar 

  104. Simon VR, Karmon SL, Pon LA. Mitochondrial inheritance: cell cycle and actin cable dependence of polarized mitochondrial movements in Saccharomyces cerevisiae. Cell Motil Cytoskeleton 1997; 37(3):199–210.

    Article  PubMed  CAS  Google Scholar 

  105. Boldogh IR, Yang HC, Nowakowski WD et al. Arp2/3 complex and actin dynamics are required for actin-based mitochondrial motility in yeast. Proc Natl Acad Sci USA 2001; 98(6):3162–3167.

    Article  PubMed  CAS  Google Scholar 

  106. Mulvihill DP, Pollard PJ, Win TZ et al. Myosin V-mediated vacuole distribution and fusion in fission yeast. Curr Biol 2001; 11(14):1124–1127.

    Article  PubMed  CAS  Google Scholar 

  107. Gachet Y, Tournier S, Millar JB et al. Mechanism controlling perpendicular alignment of the spindle to the axis of cell division in fission yeast. EMBO J 2004; 23(6):1289–1300.

    Article  PubMed  CAS  Google Scholar 

  108. Catlett NL, Duex JE, Tang F et al. Two distinct regions in a yeast myosin-V tail domain are required for the movement of different cargoes. J Cell Biol 2000; 150(3):513–526.

    Article  PubMed  CAS  Google Scholar 

  109. Takizawa PA, Vale RD. The myosin motor, Myo4p, binds Ash1 mRNA via the adapter protein, She3p. Proc Natl Acad Sci USA 2000; 97(10):5273–5278.

    Article  PubMed  CAS  Google Scholar 

  110. Bohl F, Kruse C, Frank A et al. She2p, a novel RNA-binding protein tethers ASH1 mRNA to the Myo4p myosin motor via She3p. EMBO J 2000; 19(20):5514–5524.

    Article  PubMed  CAS  Google Scholar 

  111. Itoh T, Watabe A, Toh EA et al. Complex formation with Ypt11p, a rab-type small GTPase, is essential to facilitate the function of Myo2p, a class V myosin, in mitochondrial distribution in Saccharomyces cerevisiae. Mol Cell Biol 2002; 22(22):7744–7757.

    Article  PubMed  CAS  Google Scholar 

  112. Ishikawa K, Catlett NL, Novak JL et al. Identification of an organelle-specific myosin V receptor. J Cell Biol 2003; 160(6):887–897.

    Article  PubMed  CAS  Google Scholar 

  113. Tang F, Kauffman EJ, Novak JL et al. Regulated degradation of a class V myosin receptor directs movement of the yeast vacuole. Nature 2003; 422(6927):87–92.

    Article  PubMed  CAS  Google Scholar 

  114. Itoh T, Toh EA, Matsui Y. Mmr1p is a mitochodrial factor for Myo2p-dependent inheritance of mitochondria in the budding yeast. EMBO J 2004; 23(13):2520–2530.

    Article  PubMed  CAS  Google Scholar 

  115. Pashkova N, Catlett NL, Novak JL et al. Myosin V attachment to cargo requires the tight association of two functional subdomains. J Cell Biol 2005; 168(3):359–364.

    Article  PubMed  CAS  Google Scholar 

  116. Pashkova N, Catlett NL, Novak JL et al. A point mutation in the cargo-binding domain of myosin V affects its interaction with multiple cargoes. Eukaryot Cell 2005; 4(4):787–798.

    Article  PubMed  CAS  Google Scholar 

  117. Pashkova N, Jin Y, Ramaswamy S et al. Structural basis for myosin V discrimination between distinct cargoes. EMBO J 2006; 25(4):693–700.

    Article  PubMed  CAS  Google Scholar 

  118. Fagarasanu A, Fagarasanu M, Eitzen GA et al. The peroxisomal membrane protein Inp2p is the peroxisome-specific receptor for the myosin V motor Myo2p of Saccharomyces cerevisiae. Dev Cell 2006; 10(5):587–600.

    Article  PubMed  CAS  Google Scholar 

  119. Reck-Peterson SL, Tyska MJ, Novick PJ et al. The yeast class V myosins, Myo2p and Myo4p, are non-processive actin-based motors. J Cell Biol 2001; 153(5):1121–1126.

    Article  PubMed  CAS  Google Scholar 

  120. Balasubramanian MK, Bi E, Glotzer M. Comparative analysis of cytokinesis in budding yeast, fission yeast and animal cells. Curr Biol 2004; 14(18):R806–818.

    Article  PubMed  CAS  Google Scholar 

  121. Wolfe BA, Gould KL. Split decisions: coordinating cytokinesis in yeast. Trends Cell Biol 2005; 15(1):10–18.

    Article  PubMed  CAS  Google Scholar 

  122. Faty M, Fink M, Barral Y. Septins: a ring to part mother and daughter. Curr Genet 2002; 41(3):123–131.

    Article  PubMed  CAS  Google Scholar 

  123. Longtine MS, Bi E. Regulation of septin organization and function in yeast. Trends Cell Biol 2003; 13(8):403–409.

    Article  PubMed  CAS  Google Scholar 

  124. Versele M, Thorner J. Some assembly required: yeast septins provide the instruction manual. Trends Cell Biol 2005; 15(8):414–424.

    Article  PubMed  CAS  Google Scholar 

  125. Sohrmann M, Fankhauser C, Brodbeck C et al. The dmf1/mid1 gene is essential for correct positioning of the division septum in fission yeast. Genes Dev 1996; 10(21):2707–2719.

    Article  PubMed  CAS  Google Scholar 

  126. Santos B, Snyder M. Targeting of chitin synthase 3 to polarized growth sites in yeast requires Chs5p and Myo2p. J Cell Biol 1997; 136(1):95–110.

    Article  PubMed  CAS  Google Scholar 

  127. VerPlank L, Li R. Cell cycle-regulated trafficking of Chs2 controls actomyosin ring stability during cytokinesis. Mol Biol Cell 2005; 16(5):2529–2543.

    Article  PubMed  CAS  Google Scholar 

  128. Watts FZ, Shiels G, Orr E. The yeast MYO1 gene encoding a myosin-like protein Srrequired for cell division. EMBO J 1987; 6(11):3499–3505.

    PubMed  CAS  Google Scholar 

  129. Rodriguez JR, Paterson BM. Yeast myosin heavy chain mutant: maintenance of the cell type specific budding pattern and the normal deposition of chitin and cell wall components requires an intact myosin heavy chain gene. Cell Motil Cytoskeleton 1990; 17(4):301–308.

    Article  PubMed  CAS  Google Scholar 

  130. Schmidt M, Bowers B, Varma A et al. In budding yeast, contraction of the actomyosin ring and formation of the primary septum at cytokinesis depend on each other. J Cell Sci 2002; 115(Pt 2):293–302.

    PubMed  CAS  Google Scholar 

  131. Tolliday N, Pitcher M, Li R. Direct evidence for a critical role of myosin II in budding yeast cytokinesis and the evolvability of new cytokinetic mechanisms in the absence of myosin II. Mol Biol Cell 2003; 14(2):798–809.

    Article  PubMed  CAS  Google Scholar 

  132. Lippincott J, Li R. Sequential assembly of myosin II, an IQGAP-like protein and filamentous actin to a ring structure involved in budding yeast cytokinesis. J Cell Biol 1998; 140(2):355–366.

    Article  PubMed  CAS  Google Scholar 

  133. Kitayama C, Sugimoto A, Yamamoto M. Type II myosin heavy chain encoded by the myo2 gene composes the contractile ring during cytokinesis in Schizosaccharomyces pombe. J Cell Biol 1997; 137(6):1309–1319.

    Article  PubMed  CAS  Google Scholar 

  134. May KM, Watts FZ, Jones N et al. Type II myosin involved in cytokinesis in the fission yeast, Schizosaccharomyces pombe. Cell Motil Cytoskeleton 1997; 38(4):385–396.

    Article  PubMed  CAS  Google Scholar 

  135. Motegi F, Nakano K, Kitayama C et al. Identification of Myo3, a second type-II myosin heavy chain in the fission yeast Schizosaccharomyces pombe. FEBS Lett 1997; 420(2–3):161–166.

    Article  PubMed  CAS  Google Scholar 

  136. Bezanilla M, Forsburg SL, Pollard TD. Identification of a second myosin-II in Schizosaccharomyces pombe: Myp2p is conditionally required for cytokinesis. Mol Biol Cell 1997; 8(12):2693–2705.

    PubMed  CAS  Google Scholar 

  137. McCollum D, Balasubramanian MK, Pelcher LE et al. Schizosaccharomyces pombe cdc4+ gene encodes a novel EF-hand protein essential for cytokinesis. J Cell Biol 1995; 130(3):651–660.

    Article  PubMed  CAS  Google Scholar 

  138. Epp JA, Chant J. An IQGAP-related protein controls actin-ring formation and cytokinesis in yeast. Curr Biol 1997; 7(12):921–929.

    Article  PubMed  CAS  Google Scholar 

  139. Eng K, Naqvi NI, Wong KC et al. Rng2p, a protein required for cytokinesis in fission yeast, is a component of the actomyosin ring and the spindle pole body. Curr Biol 1998; 8(11):611–621.

    Article  PubMed  CAS  Google Scholar 

  140. Naqvi NI, Eng K, Gould KL et al. Evidence for F-actin-dependent and-independent mechanisms involved in assembly and stability of the medial actomyosin ring in fission yeast. EMBO J 1999; 18(4):854–862.

    Article  PubMed  CAS  Google Scholar 

  141. Shannon KB, Li R. The multiple roles of Cyk1p in the assembly and function of the actomyosin ring in budding yeast. Mol Biol Cell 1999; 10(2):283–296.

    PubMed  CAS  Google Scholar 

  142. Liu J, Tang X, Wang H et al. The localization of the integral membrane protein Cps1p to the cell division site is dependent on the actomyosin ring and the septation-inducing network in Schizosaccharomyces pombe. Mol Biol Cell 2002; 13(3):989–1000.

    Article  PubMed  CAS  Google Scholar 

  143. Itoh T, Erdmann KS, Roux A et al. Dynamin and the actin cytoskeleton cooperatively regulate plasma membrane invagination by BAR and F-BAR proteins. Dev Cell 2005; 9(6):791–804.

    Article  PubMed  CAS  Google Scholar 

  144. Tsujita K, Suetsugu S, Sasaki N et al. Coordination between the actin cytoskeleton and membrane deformation by a novel membrane tubulation domain of PCH proteins is involved in endocytosis. J Cell Biol 2006; 172(2):269–279.

    Article  PubMed  CAS  Google Scholar 

  145. Carnahan RH, Gould KL. The PCH family protein, Cdc15p, recruits two F-actin nucleation pathways to coordinate cytokinetic actin ring formation in Schizosaccharomyces pombe. J Cell Biol 2003; 162(5):851–862.

    Article  PubMed  CAS  Google Scholar 

  146. Kamei T, Tanaka K, Hihara T et al. Interaction of Bnr1p with a novel Src homology 3 domain-containing Hof1p. Implication in cytokinesis in Saccharomyces cerevisiae. J Biol Chem 1998; 273(43):28341–28345.

    Article  PubMed  CAS  Google Scholar 

  147. Wachtler V, Huang Y, Karagiannis J et al. Cell cycle-dependent roles for the FCH-domain protein Cdc15p in formation of the actomyosin ring in Schizosaccharomyces pombe. Mol Biol Cell 2006; 17(7):3254–3266.

    Article  PubMed  CAS  Google Scholar 

  148. Lippincott J, Li R. Dual function of Cyk2, a cdc15/PSTPIP family protein, in regulating actomyosin ring dynamics and septin distribution J Cell Biol 1998; 143(7):1947–1960.

    Article  PubMed  CAS  Google Scholar 

  149. Wu JQ, Kuhn JR, Kovar DR et al. Spatial and temporal pathway for assembly and constriction of the contractile ring in fission yeast cytokinesis. Dev Cell 2003; 5(5):723–734.

    Article  PubMed  CAS  Google Scholar 

  150. Ayscough KR, Stryker J, Pokala N et al. High rates of actin filament turnover in budding yeast and roles for actin in establishment and maintenance of cell polarity revealed using the actin inhibitor latrunculin-A. J Cell Biol 1997; 137(2):399–416.

    Article  PubMed  CAS  Google Scholar 

  151. Moseley JB, Goode BL. The yeast actin cytoskeleton: from cellular function to biochemical mechanism. Microbiol Mol Biol Rev 2006; 70(3):605–645.

    Article  PubMed  CAS  Google Scholar 

  152. Liu J, Taylor DW, Krementsova EB et al. Three-dimensional structure of the myosin V inhibited state by cryoelectron tomography. Nature 2006; 442(7099):208–211.

    PubMed  CAS  Google Scholar 

  153. Thirumurugan K, Sakamoto T, Hammer JA 3rd et al. The cargo-binding domain regulates structure and activity of myosin 5. Nature 2006; 442(7099):212–215.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Pruyne, D. (2008). Tropomyosin Function in Yeast. In: Gunning, P. (eds) Tropomyosin. Advances in Experimental Medicine and Biology, vol 644. Springer, New York, NY. https://doi.org/10.1007/978-0-387-85766-4_14

Download citation

Publish with us

Policies and ethics