Skip to main content

Applications of Magnetic Nanoparticles in Biomedicine

  • Chapter
  • First Online:
Book cover Nanoscale Magnetic Materials and Applications

Abstract

In recent years, magnetic nanoparticles have played an increasing role in biomedical applications and have been the subject of extensive research investigations. Physical properties, including nanoparticle size, composition, and surface chemistry, vary widely and influence their biological and pharmacological properties and, ultimately, their clinical applications. Among different magnetic nanoparticles, superparamagnetic iron oxide nanoparticles (SPIOs) were found nontoxic and used as magnetic resonance imaging (MRI) contrast agents, in molecular and cellular imaging applications. SPIOs are used in detection of liver metastases, metastatic lymph nodes, and inflammatory and/or neural degenerative diseases. In addition, drug delivery via magnetic targeting, hyperthermia, and labeling/ tracking of stem cells have also been explored as potential therapeutic options.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

Ab:

antibody

AG:

arabinogalactan

AOT:

dioctyl sulfosuccinate sodium salt

CCK:

cholecystokinin

α-CD:

α-cyclodextrin

CEA:

carcinoembryonic antigen

CLIO:

cross-linked iron oxide

CNS:

central nervous system

CT:

computed tomography

DMAP:

4-(dimethyl-amino) pyridine

DMSA:

meso-2,3-dimercaptosuccinic acid

DSPE-PEG:

1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethylene glycol)]

EAE:

experimental autoimmune encephalomyelitis

Gd-BOPTA:

gadobenate dimeglumine

GI:

gastrointestinal tract

GSH:

glutathione

hCG:

human chorionic gonadotropin

HSA:

human serum albumin

IgG:

Immunoglobulin G

mAb:

monoclonal antibody

MDT:

magnetic drug targeting

MRI:

magnetic resonance imaging

MION:

monocrystalline iron oxide nanoparticles

MEIO:

magnetism-engineered iron oxide

MI:

myocardial infarction

Ms :

saturation magnetization

MSC:

mesenchymal stem cells

MPM:

malignant pleural mesothelioma

MPS:

mononuclear phagocytic system

MPM:

malignant pleural mesothelioma

OMP:

oral magnetic particles

PCL-b-PEG:

poly(ɛ-caprolactone)-b-poly(ethylene glycol)

PEG:

polyethylene glycols

PEO:

poly(ethylene oxide)

PLL:

poly(l-lysine)

PPO:

poly(propylene oxide)

PSA:

polysialic acids

RES:

reticuloendothelial system

RGD:

arginine–glycine–aspartic acid containing synthetic peptide

SC:

stem cells

SPIO:

superparamagnetic iron oxide

SSPIO:

standard superparamagnetic iron oxide

TAT:

transactivator of transcription peptide

TCL-SPION:

thermal cross-linked superparamagnetic iron oxide

USPIO:

ultra-small superparamagnetic iron oxide

VCAM-1:

vascular cell adhesion molecule-1

References

  1. Ai, H., et al.: Magnetite-loaded polymeric micelles as ultrasensitive magnetic-resonance probes. Adv. Mater. 17, 1949–1952 (2005)

    Article  Google Scholar 

  2. Albregts, M., et al.: A feasibility study in oesophageal carcinoma using deep loco-regional hyperthermia combined with concurrent chemotherapy followed by surgery. Int. J. Hyperthermia 20, 647–659 (2004)

    Article  Google Scholar 

  3. Alexiou, C., et al.: Locoregional cancer treatment with magnetic drug targeting. Cancer Res. 60, 6641–6648 (2000)

    Google Scholar 

  4. Alexiou, C., et al.: Magnetic drug targeting: biodistribution and dependency on magnetic field strength. J. Magn. Magn. Mater. 252, 363–366 (2002)

    Article  Google Scholar 

  5. Alexiou, C., et al.: In vitro and in vivo investigations of targeted chemotherapy with magnetic nanoparticles. J. Magn. Magn. Mater. 293, 389–393 (2005)

    Article  Google Scholar 

  6. Alvarez Secord, A., et al.: Phase I/II trial of intravenous Doxil® and whole abdomen hyperthermia in patients with refractory ovarian cancer. Int. J. Hyperthermia 21, 333–347 (2005)

    Article  Google Scholar 

  7. Amsalem, Y., et al.: Iron-oxide labeling and outcome of transplanted mesenchymal stem cells in the infarcted myocardium. Circulation 116(suppl. I), I-38–I-45 (2007)

    Article  Google Scholar 

  8. Anastase, S., et al.: Affinity chromatography of human anti-dextran antibodies: isolation of two distinct populations. J. Chromatogr. B, Biomed. Sci. Appl. 686, 141–150 (1996)

    Article  Google Scholar 

  9. Anderson, S.A., et al.: Noninvasive MR imaging of magnetically labeled stem cells to directly identify neovasculature in a glioma model. Blood 105, 420–425 (2005)

    Article  Google Scholar 

  10. Anzai, Y., et al.: Initial clinical experience with dextran-coated superparamagnetic iron oxide for detection of lymph node metastases in patients with head and neck cancer. Radiology 192, 709–715 (1994)

    Google Scholar 

  11. Anzai, Y., et al.: Initial clinical experience with dextran-coated superparamagnetic iron oxide for detection of lymph node metastases in patients with head and neck cancer. J. Magn. Reson. Imaging 7, 75–81 (1997)

    Article  Google Scholar 

  12. Anzai, Y., et al.: Evaluation of neck and body metastases to nodes with ferumoxtran 10-enhanced MR imaging: phase III safety and ffficacy study. Radiology 228, 777–788 (2003)

    Article  Google Scholar 

  13. Arbab, A.S., et al.: Ferumoxides-enhanced double-echo T2-weighted MR imaging in differentiating metastases from nonsolid benign lesions of the liver. Radiology 225, 151–158 (2002)

    Article  Google Scholar 

  14. Arbab, A.S., et al.: Characterization of biophysical and metabolic properties of cells labeled with superparamagnetic iron oxide nanoparticles and transfection agent for cellular MR imaging. Radiology 229, 838–846 (2003)

    Article  Google Scholar 

  15. Arbab, A.S., et al.: In vivo trafficking and targeted delivery of magnetically labelled stem cells. Hum. Gene Ther. 15, 351–360 (2004)

    Article  Google Scholar 

  16. Arbab, A.S., et al.: Comparison of transfection agents in forming complexes with ferumoxides, cell labeling efficiency, and cellular viability. Mol. Imag. 3, 24–32 (2004)

    Article  Google Scholar 

  17. Arbab, A.S., et al.: Labeling of cells with ferumoxides-protamine sulfate complexes does not inhibit function or differentiation capacity of hematopoietic or mesenchymal stem cells. NMR Biomed. 18, 553–559 (2005)

    Article  Google Scholar 

  18. Arbab, A.S., et al.: Labeled endothelial progenitor cells trafficking to sites of tumor angiogenesis magnetic resonance imaging and confocal microscopy studies of magnetically. Stem Cells 24, 671–678 (2006)

    Article  Google Scholar 

  19. Arruebo, M., et al.: Antibody-functionalized hybrid superparamagnetic nanoparticles. Adv. Funct. Mater. 17, 1473–1479 (2007)

    Article  Google Scholar 

  20. Artemov, D., et al.: MR molecular imaging of the Her-2/neu receptor in breast cancer cells using targeted iron oxide nanoparticles. Magn. Reson. Med. 49, 403–408 (2003)

    Article  Google Scholar 

  21. Artemov, D., et al.: Magnetic resonance molecular imaging of the HER-2/neu receptor. Cancer Res. 63, 2723–2727 (2003)

    Google Scholar 

  22. Babes, L., et al.: Synthesis of iron oxide nanoparticles used as MRI contrast agents: a parametric study. J. Colloid Interface Sci. 212, 474–482 (1999)

    Article  Google Scholar 

  23. Bach-Gansmo, T.: Ferrimagnetic susceptibility contrast agents. Acta Radiol. Suppl. 387, 1–30 (1993)

    Google Scholar 

  24. Bach-Gansmo, T., et al.: Abdominal MRI using a negative contrast agent. Br. J. Radiol. 66, 420–425 (1993)

    Article  Google Scholar 

  25. Bayer HealthCare Pharmaceuticals: Feridex®. http://imaging.bayerhealthcare.com/html/feridex/index.html (2007). Accessed 5 November 2007

  26. Bee, A., et al.: Synthesis of very fine maghemite particles. J. Magn. Magn. Mater. 149, 6–9 (1995)

    Article  Google Scholar 

  27. Belin, T., et al.: Influence of grain size, oxygen stoichiometry, and synthesis conditions on the γ-Fe2O3 vacancies ordering and lattice parameters. J. Solid State Chem. 163, 459–465 (2002)

    Article  Google Scholar 

  28. Ben-Hur, T., et al.: Serial in vivo MR tracking of magnetically labeled neural spheres transplanted in chronic EAE mice. Magn. Reson. Med. 57, 164–171 (2007)

    Article  Google Scholar 

  29. Bjørnerud, A., et al.: Assessment of T1 and T2 * effects in vivo and ex vivo using iron oxide nanoparticles in steady state—dependence on blood volume and water exchange. Magn. Reson. Med. 47, 461–471 (2002)

    Google Scholar 

  30. Bonnemain, B.: Superparamagnetic agents in magnetic resonance imaging. Physicochemical characteristics and clinical application. A review. J. Drug Target. 6, 167–174 (1998)

    Article  Google Scholar 

  31. Bos, C., et al.: In vivo MR imaging of intravascularly injected magnetically labeled stem cells in rat kidney and liver. Radiology 233, 781–789 (2004)

    Article  Google Scholar 

  32. Boudghëne, F.P., et al.: Contribution of oral magnetic particles in MR imaging of the abdomen with spin-echo and gradient-echo sequences. J. Magn. Reson. Imaging 3, 107–112 (1993)

    Article  Google Scholar 

  33. Brusentsov, N.A., et al.: Evaluation of ferromagnetic fluids and suspensions for the site-specific radiofrequency-induced hyperthermia of MX11 sarcoma cells in vitro. J. Magn. Magn. Mater. 225, 113–117 (2001)

    Article  Google Scholar 

  34. Bulte, J.W.M., et al.: Neurotransplantation of magnetically labeled oligodendrocytes progenitors: magnetic resonance tracking of cell migration and myelination. Proc. Natl. Acad. Sci. 96, 15256–15261 (1999)

    Article  Google Scholar 

  35. Bulte, J.W.M. and Kraitchman, D.L.: Iron oxide MR contrast agents for molecular and cellular imaging. NMR Biomed. 17, 484–499 (2004)

    Article  Google Scholar 

  36. Butle, J.W., et al.: Specific MR imaging of human lymphocytes by monoclonal antibody-guided dextran-magnetite particles. Magn. Reson. Med. 25, 148–157 (1992)

    Article  Google Scholar 

  37. Cahill, K.S., et al.: Noninvasive monitoring and tracking of muscle stem cell transplant. Transplantation 78, 1626–1633 (2004)

    Article  Google Scholar 

  38. Carreño, T.G., et al.: Preparation of homogeneous Zn/Co mixed oxides by spray pyrolysis. Mater. Chem. Phys. 27, 287–296 (1991)

    Article  Google Scholar 

  39. Cerdan, S., et al.: Monoclonal antibody-coated magnetite particles as contrast agents in magnetic resonance imaging of tumors. Magn. Reson. Med. 12, 151–163 (1989)

    Article  Google Scholar 

  40. Cheng, F.-Y., et al.: Characterization of aqueous dispersions of Fe3O4 nanoparticles and their biomedical applications. Biomaterials 26, 729–738 (2005)

    Article  Google Scholar 

  41. Choi, H.S., et al.: Renal clearance of quantum dots. Nat. Biotechnol. 25, 1165–1170 (2007)

    Article  Google Scholar 

  42. Choi, J.-S., et al.: Biocompatible heterostructured nanoparticles for multimodal biological detection. J. Am. Chem. Soc. 128, 15982–15983 (2006)

    Article  Google Scholar 

  43. Corot, C., et al.: Recent advances in iron oxide nanocrystal technology for medical imaging. Adv. Drug Del. Rev. 58, 1471–1504 (2006)

    Article  Google Scholar 

  44. Daldrup-Link, H.E., et al.: Macromolecular contrast medium (Feruglose) versus small molecular contrast medium (Gadopentetate) enhanced magnetic resonance imaging: differentiation of benign and malignant breast lesions. Acad. Radiol. 10, 1237–1246 (2003)

    Article  Google Scholar 

  45. Damadian, R.: Tumor detection by nuclear magnetic resonance. Science 171, 1151–1153 (1971)

    Article  Google Scholar 

  46. Damadian, R.: Apparatus and method for detecting cancer in tissue. US Patent 3,789,832: February 5, 1974

    Google Scholar 

  47. Dandamudi, S. and Campbell, R.B.: The drug loading, cytotoxicty and tumor vascular targeting characteristics of magnetite in magnetic drug targeting. Biomaterials 28, 4673–4683 (2007)

    Article  Google Scholar 

  48. Decher, G.: Fuzzy nanoassemblies: toward layered polymeric multicomposites. Science 277, 1232–1237 (1997)

    Article  Google Scholar 

  49. Deng, Y., et al.: Preparation of magnetic polymeric particles via inverse microemulsion polymerization process. J. Magn. Magn. Mater. 257, 69–78 (2003)

    Article  Google Scholar 

  50. Duterloo, H.S.: Historic publication on the first use of magnets in orthodontics. Am. J. Orthod. Dentofacial Orthop. 108, 15A–16A (1995)

    Google Scholar 

  51. Dutton, A.H., et al.: Iron-dextran antibody conjugates: general method for simultaneous staining of two components in high-resolution immunoelectron microscopy. Proc. Natl. Acad. Sci. 76, 3392–3396 (1979)

    Article  Google Scholar 

  52. Fajardo, L.F.: Pathological effects of hyperthermia in normal tissues. Cancer Res. 44(suppl.), 4826s–4835s (1984)

    Google Scholar 

  53. Fauconnier, N., et al.: Thiolation of maghemite nanoparticles by dimercaptosuccinic acid. J. Colloid Interface Sci. 194, 427–433 (1997)

    Article  Google Scholar 

  54. Fishbane, S., et al.: The safety of intravenous iron dextran in hemodialysis patients. Am. J. Kidney Dis. 28, 529–534 (1996)

    Article  Google Scholar 

  55. Forbes, Z.G., et al.: An approach to targeted drug delivery based on uniform magnetic fields. IEEE Trans. Magn. 39, 3372–3377 (2003)

    Article  Google Scholar 

  56. Funovics, M.A., et al.: MR imaging of the her2/neu and 9.2.27 tumor antigens using immunospecific contrast agents. Magn. Reson. Imaging 22, 843–850 (2004)

    Article  Google Scholar 

  57. Gallo, J.M., et al.: Targeting anticancer drugs to the brain: II. Physiological pharmacokinetic model of oxantrazole following intraarterial administration to rat glioma-2 (RG-2) bearing rats. J. Pharmacokin. Biopharm. 21, 575–592 (1993)

    Article  Google Scholar 

  58. Gittins, D.I. and Caruso, F.: Spontaneous phase transfer of nanoparticulate metals from organic to aqueous media. Angew. Chem. Int. Ed. 40, 3001–3004 (2001)

    Article  Google Scholar 

  59. Glöckl, G., et al.: The effect of field parameters, nanoparticle properties and immobilization on the specific heating power in magnetic particle hyperthermia. J. Phys.: Condens. Matter 18, S2935–S2949 (2006)

    Article  Google Scholar 

  60. Gomi, T., et al.: Evaluation of the changes in signals from the spleen using ferucarbotran. Radiat. Med. 25, 135–138 (2007)

    Article  Google Scholar 

  61. Goya, F.G., et al.: Static and dymanic magnetic properties of spherical magnetite nanoparticles. J. Appl. Phys. 94, 3520–3528 (2003)

    Article  Google Scholar 

  62. Grief, A.D. and Richardson, G.: Mathematical modelling of magnetically targeted drug delivery. J. Magn. Magn. Mater. 293, 455–463 (2005)

    Article  Google Scholar 

  63. Groman, E.V.: Biologically degradable superparamagnetic materials for use in clinical applications. US Patent 4,827,945: May 9, 1989

    Google Scholar 

  64. Gupta, A.K. and Wells, S.: Surface-modified superparamagnetic nanoparticles for drug delivery: preparation, characterization, and cytotoxicity. IEEE Trans. Nanobiosci. 3, 66–73 (2004)

    Article  Google Scholar 

  65. Gupta, A.K. and Curtis, A.S.G.: Surface modified superparamagnetic nanoparticles for drug delivery: interaction studies with human fibroblasts in culture. J. Mater. Sci.: Mater. Med. 15, 493–496 (2004)

    Article  Google Scholar 

  66. Gupta, A.K. and Gupta, M.: Cytotoxicity suppression and cellular uptake enhancement of surface modified magnetic nanoparticles. Biomaterials 26, 1565–1573 (2005)

    Article  Google Scholar 

  67. Gupta, A.K. and Gupta, M.: Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 26, 3995–4021 (2005)

    Article  Google Scholar 

  68. Guzman, R., et al.: Long-term monitoring of transplanted human neural stem cells in developmental and pathological contexts with MRI. Proc. Natl. Acad. Sci. 104, 10211–10216 (2007)

    Article  Google Scholar 

  69. Häfeli, U.: The History of Magnetism in Medicine. In: Andrä, W. and Nowak, H. (eds.) Magnetism in Medicine: A Handbook, Second Edition, pp. 1–25. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim (2007)

    Google Scholar 

  70. Hahn, P.F., et al.: First clinical trials of a new superparamagnetic iron oxide for the use as an oral gastrointestinal contrast agent in MR imaging. Radiology 175, 695–700 (1990)

    Google Scholar 

  71. Harisinghani, M.G., et al.: Splenic imaging with ultrasmall superparamagnetic iron oxide ferumoxtran-10 (AMI-7227): preliminary observations. J. Comput. Assist. Tomogr. 25, 770–776 (2001)

    Article  Google Scholar 

  72. Harisinghani, M.G., et al.: Noninvasive detection of clinically occult lymph-node metastases in prostate cancer. N. Engl. J. Med. 348, 2491–2499 (2003)

    Article  Google Scholar 

  73. Hasegawa, M. and Hokkoku, S.: Magnetic iron oxide-dextran complex and process for its production. US Patent 4,101,435: July 18, 1978

    Google Scholar 

  74. Hergt, R., et al.: Magnetic particle hyperthermia: nanoparticle magnetism and materials development for cancer therapy. J. Phys.: Condens. Matter 18, S2919–S2934 (2006)

    Article  Google Scholar 

  75. Hill, J.M., et al.: Serial cardiac magnetic resonance imaging of injected mesenchymal stem cells. Circulation 108, 1009–1014 (2003)

    Article  Google Scholar 

  76. Himes, N., et al.: In vivo MRI of embryonic stem cells in a mouse model of myocardial infarction. Magn. Reson. Med. 52, 1214–1219 (2004)

    Article  Google Scholar 

  77. Hogemann, D., et al.: High throughput magnetic resonance imaging for evaluating targeted nanoparticle probes. Bioconjug. Chem. 13, 116–121 (2002)

    Article  Google Scholar 

  78. Hong, R., et al.: Comparison of schemes for preparing magnetic Fe3O4 nanoparticles. China Particuology 5, 186–191 (2007)

    Article  Google Scholar 

  79. Hu, D.E., et al.: Monitoring T-lymphocyte trafficking in tumors undergoing immune rejection. Magn. Reson. Med. 54, 1473–1479 (2005)

    Article  Google Scholar 

  80. Hyeon, T., et al.: Synthesis of highly crystalline and monodisperse maghemite nanocrystallites without a size-selection process. J. Am. Chem. Soc. 123, 12798–12801 (2001)

    Article  Google Scholar 

  81. Hyeon, T., et al.: Synthesis of highly crystalline and monodisperse cobalt ferrite nanocrystals J. Phys. Chem. B 106, 6831–6833 (2002)

    Article  Google Scholar 

  82. Ichikawa, T., et al.: MRI of transgene expression: correlation to therapeutic gene expression. Neoplasia 4, 523–530 (2002)

    Article  Google Scholar 

  83. Igartua, M., et al.: Development and characterization of solid lipid nanoparticles loaded with magnetite. Int. J. Pharm. 233, 149–157 (2002)

    Article  Google Scholar 

  84. Ittrich, H., et al.: In vivo magnetic resonance imaging of iron oxide-labeled, arterially-injected mesenchymal stem cells in kidneys of rats with acute ischemic kidney injury: detection and monitoring at 3T. J. Magn. Reson. Imag. 25, 1179–1191 (2007)

    Article  Google Scholar 

  85. Jacobsen, T.F., et al.: Oral magnetic particles (ferristene) as a contrast medium in abdominal magnetic resonance imaging. Acad. Radiol. 3, 571–580 (1996)

    Article  Google Scholar 

  86. Jendelova, P., et al.: Magnetic resonance tracking of transplanted bone marrow and embryonic stem cells labeled by iron oxide nanoparticles in rat brain and spinal cord. J. Neurosci. Res. 76, 232–243 (2004)

    Article  Google Scholar 

  87. Johannsen, M., et al.: Clinical hyperthermia of prostate cancer using magnetic nanoparticles: presentation of a new interstitial technique. Int. J. Hyperthermia 21, 637–647 (2005)

    Article  Google Scholar 

  88. Johansson, L.O., et al.: A targeted contrast agent for magnetic resonance imaging of thrombus: implications of spatial resolution. J. Magn. Reson. Imaging 13, 615–618 (2001)

    Article  Google Scholar 

  89. Josephson, L., et al.: High-efficiency intracellular magnetic labeling with novel superparamagnetic-tat peptide conjugates. Bioconjug. Chem. 10, 186–191 (1999)

    Article  Google Scholar 

  90. Ju, S., et al.: In Vivo MR tracking of mesenchymal stem cells in rat liver after intrasplenic transplantation. Radiology 245, 206–215 (2007)

    Article  Google Scholar 

  91. Jun, Y.-W., et al.: Nanoscale size effect of magnetic nanocrystals and their utilization for cancer diagnosis via magnetic resonance imaging. J. Am. Chem. Soc. 127, 5732–5733 (2005)

    Article  Google Scholar 

  92. Jung, C.W. and Jacobs, P.: Physical and chemical properties of superparamagnetic iron oxide MR contrast agents: ferumoxides, ferumoxtran, ferumoxsil. Magn. Reson. Imaging 13, 661–674 (1995)

    Article  Google Scholar 

  93. Jurgons, R., et al.: Drug loaded magnetic nanoparticles for cancer therapy. J. Phys.: Condens. Matter 18, S2893–S2902 (2006)

    Article  Google Scholar 

  94. Kanematsu, M., et al.: Imaging liver metastases: review and update. Eur. J. Radiol. 58, 217–228 (2006)

    Article  Google Scholar 

  95. Kang, E., et al.: Direct synthesis of highly crystalline and monodisperse manganese ferrite nanocrystals. J. Phys. Chem. B 108, 13932–13935 (2004)

    Article  Google Scholar 

  96. Kang, H.W., et al.: Magnetic resonance imaging of inducible E-selectin expression in human endothelial cell culture. Bioconjug. Chem. 13, 122–127 (2002)

    Article  Google Scholar 

  97. Kang, Y.S., et al.: Synthesis and characterization of nanometer-size Fe3O4 and γ-Fe2O3 particles. Chem. Mater. 8, 2209–2211 (1996)

    Article  Google Scholar 

  98. Kato, H., et al.: Ferumoxide-enhanced MR imaging of hepatocellular carcinoma: correlation with histologic tumor grade and tumor vascularity. J. Magn. Reson. Imaging 19, 76–81 (2004)

    Article  Google Scholar 

  99. Kehagias, D.T., et al.: Diagnostic efficacy and safety of MRI of the liver with superparamagnetic iron oxide particles (SH U 555 A). J. Magn. Reson. Imaging 14, 595–601 (2001)

    Article  Google Scholar 

  100. Kelly, K.A., et al.: Detection of vascular adhesion molecule-1 expression using a novel multimodal nanoparticle. Circ. Res. 96, 327–336 (2005)

    Article  Google Scholar 

  101. Kim, D.K., et al.: Synthesis and characterization of surfactant-coated superparamagnetic monodispersed iron oxide nanoparticles. J. Magn. Magn. Mater. 225, 30–36 (2001)

    Article  Google Scholar 

  102. Kim, S.-H., et al.: Fabrication and estimation of Au-coated Fe3O4 nanocomposite powders for the separation and purification of biomolecules. Mater. Sci. Eng. A 449–451, 386–388 (2007)

    Google Scholar 

  103. Kim, Y.K., et al.: Detection of liver metastases: gadobenate dimeglumine-enhanced three-dimensional dynamic phases and one-hour delayed phase MR imaging versus superparamagnetic iron oxide-enhanced MR imaging. Eur. Radiol. 15, 220–228 (2005)

    Article  Google Scholar 

  104. Kircher, M.F., et al.: In vivo high resolution three-dimensional imaging of antigen-specific cytotoxic T-lymphocyte trafficking to tumors. Cancer Res. 63, 6838–6846 (2003)

    Google Scholar 

  105. Koh, D.-M., et al.: New horizons in oncologic imaging. N. Engl. J. Med. 348, 2487–2488 (2003)

    Article  Google Scholar 

  106. Kopp, A., et al.: MR imaging of the liver with resovist: safety,efficacy, and pharmacodynamic properties. Radiology 204, 749–756 (1997)

    Google Scholar 

  107. Kraitchman, D.L., et al.: In vivo magnetic resonance imaging of mesenchymal stem cells in myocardial infarction. Circulation 107, 2290–2293 (2003)

    Article  Google Scholar 

  108. Kresse, M., et al.: Targeting of ultrasmall superparamagnetic iron oxide (USPIO) particles to tumor cells in vivo by using transferrin receptor pathways. Magn. Reson. Med. 40, 236–242 (1998)

    Article  Google Scholar 

  109. Kullberg, M., et al.: Improved drug delivery to cancer cells: a method using magnetoliposomes that target epidermal growth factor receptors. Med. Hypoth. 64, 468–470 (2005)

    Article  Google Scholar 

  110. Laghi, A., et al.: Oral contrast agents for magnetic resonance imaging of the bowel. Top. Magn. Reson. Imaging 13, 389–396 (2002)

    Article  Google Scholar 

  111. Lawaczeck, R., et al.: Superparamagnetic iron oxide particles: contrast media for magnetic resonance imaging. Appl. Organometal. Chem. 18, 506–513 (2004)

    Article  Google Scholar 

  112. Lee, H., et al.: Thermally cross-linked superparamagnetic iron oxide nanoparticles: synthesis and application as a dual imaging probe for cancer in vivo. J. Am. Chem. Soc. 129, 12739–12745 (2007)

    Article  Google Scholar 

  113. Lee, J.-H., et al.: Dual-mode nanoparticle probes for high-performance magnetic resonance and fluorescence imaging of neuroblastoma. Angew. Chem. Int. Ed. 45, 8160–8162 (2006)

    Article  Google Scholar 

  114. Lee, J.-H., et al.: Artificially engineered magnetic nanoparticles for ultra-sensitive molecular imaging. Nat. Med. 13, 95–99 (2007)

    Article  Google Scholar 

  115. Lee, S.-J., et al.: Synthesis and characterization of superparamagnetic maghemite nanoparticles prepared by coprecipitation technique. J. Magn. Magn. Mater. 282, 147–150 (2004)

    Article  Google Scholar 

  116. Lee, Y., et al.: Large-scale synthesis of uniform and crystalline magnetite nanoparticles using reverse micelles as nanoreactors under reflux conditions. Adv. Funct. Mater. 15, 503–509 (2005)

    Article  Google Scholar 

  117. Lefebure, S., et al.: Monodisperse magnetic nanoparticles: preparation and dispersion in water and oils. J. Mater. Res. 13, 2975–2981 (1998)

    Article  Google Scholar 

  118. Lemke, A.-J., et al.: MRI after magnetic drug targeting in patients with advanced solid malignant tumors. Eur. Radiol. 14, 1949–1955 (2004)

    Article  Google Scholar 

  119. Lewin, M., et al.: Tat peptide-derivatized magnetic nanoparticles allow in vivo tracking and recovery of progenitor cells. Nat. Biotechnol. 18, 410–414 (2000)

    Article  Google Scholar 

  120. Li, S., et al.: Structured materials syntheses in a self-assembled surfactant mesophase. Colloids Surf. A 174, 275–281 (2000)

    Article  Google Scholar 

  121. Livesay, B.R.: 9th International Conference on rare earth magnets and their applications. (1987)

    Google Scholar 

  122. López, A., et al.: Magnetic properties of γ-Fe2O3 small particles prepared by spray pyrolysis. J. Magn. Magn. Mater. 140–144, 383–384 (1995)

    Article  Google Scholar 

  123. Lübbe, A.S., et al.: Clinical applications of magnetic drug targeting. J. Surg. Res. 95, 200–206 (2001)

    Article  Google Scholar 

  124. MacVicar, D., et al.: Phase III trial of oral magnetic particles in MRI of abdomen and pelvis. Clin. Radiol. 47, 183–188 (1993)

    Article  Google Scholar 

  125. Matuszewski, L., et al.: Cell tagging with clinically approved iron oxides: feasibility and effect of lipofection, particle size, and surface coating on labeling efficiency. Radiology 235, 155–161 (2005)

    Article  Google Scholar 

  126. McLachlan, S.J., et al.: Phase I clinical evaluation of a new iron oxide MR contrast agent. J. Magn. Reson. Imaging 43, 301–307 (1994)

    Article  Google Scholar 

  127. Metz, S., et al.: Capacity of human monocytes to phagocytose approved iron oxide MR contrast agents in vitro. Eur. Radiol. 14, 1851–1858 (2004)

    Article  Google Scholar 

  128. Moore, A., et al.: Measuring transferrin receptor gene expression by NMR imaging. Biochim. Biophys. Acta 1402, 239–249 (1998)

    Article  Google Scholar 

  129. Moore, A., et al.: In vivo targeting of underglycosylated MUC-1 tumor antigen using a multimodal imaging probe. Cancer Res. 64, 1821–1827 (2004)

    Article  Google Scholar 

  130. Mykhaylyk, O., et al.: Doxorubicin magnetic conjugate targeting upon intravenous injection into mice: high gradient magnetic field inhibits the clearance of nanoparticles from the blood. J. Magn. Magn. Mater. 293, 473–482 (2005)

    Article  Google Scholar 

  131. Namkung, S., et al.: Superparamagnetic iron oxide (SPIO)-enhanced liver MRI with ferucarbotran: efficacy for characterization of focal liver lesions. J. Magn. Reson. Imaging 25, 755–765 (2007)

    Article  Google Scholar 

  132. Nedkov, I., et al.: Surface oxidation, size and shape of nano-sized magnetite obtained by co-precipitation. J. Magn. Magn. Mater. 300, 358–367 (2006)

    Article  Google Scholar 

  133. Nishijima, S., et al.: A study on magnetically targeted drug delivery system using superconducting magnet. Physica C 463–465, 1311–1314 (2007)

    Article  Google Scholar 

  134. Nishimura, H., et al.: Preoperative esophageal cancer staging: magnetic resonance imaging of lymph node with ferumoxtran-10, an ultrasmall superparamagnetic iron oxide. J. Am. Coll. Surg. 202, 604–611 (2006)

    Article  Google Scholar 

  135. Oude Engberink, R.D., et al.: Comparison of SPIO and USPIO for in vitro labeling of human monocytes: MR detection and cell function. Radiology 243, 467–474 (2007)

    Article  Google Scholar 

  136. Papell, S.S.: Low viscosity magnetic fluid obtained by the colloidal suspension of magnetic particles. US Patent 3,215,572: November 2, 1965

    Google Scholar 

  137. Park, H.-Y., et al.: Fabrication of magnetic core@shell Fe oxide@Au nanoparticles for interfacial bioactivity and bio-separation. Langmuir 23, 9050–9056 (2007)

    Article  Google Scholar 

  138. Park, J., et al.: Ultra-large-scale syntheses of monodisperse nanocrystals. Nat. Mater. 3, 891–895 (2004)

    Article  Google Scholar 

  139. Park, J., et al.: One-nanometer-scale size-controlled synthesis of monodisperse magnetic iron oxide nanoparticles. Angew. Chem. Int. Ed. 44, 2872–2877 (2005)

    Article  Google Scholar 

  140. Pellegrino, T., et al.: Hydrophobic nanocrystals coated with an amphiphilic polymer shell: a general route to water soluble nanocrystals. Nano Lett. 4, 703–707 (2004)

    Article  Google Scholar 

  141. Pillai, V., et al.: Preparation of nanoparticles of silver halides, superconductors and magnetic materials using water-in-oil microemulsions as nano-reactors. Adv. Colloid Interface Sci. 55, 241–269 (1995)

    Article  Google Scholar 

  142. Pirko, I., et al.: In vivo magnetic resonance imaging of immune cells in the central nervous system with superparamagnetic antibodies. FASEB 18, 179–181 (2004)

    Google Scholar 

  143. Qin, J., et al.: A high-performance magnetic resonance imaging T2 contrast agent. Adv. Mater. 19, 1874–1878 (2007)

    Article  Google Scholar 

  144. Raaphorst, G.P.: Fundamental aspects of hyperthermic biology. In: Field, S.B. and Hand, J.W. (eds.) An Introduction to the Practical Aspects of Clinical Hyperthermia, pp. 10–54. Taylor and Francis, London (1990)

    Google Scholar 

  145. Rad, A.M., et al.: Quantification of superparamagnetic iron oxide (SPIO)-labeled cells using MRI. J. Magn. Reson. Imag. 26, 366–374 (2007)

    Article  Google Scholar 

  146. Reimer, P., et al.: Receptor imaging: application to MR imaging of liver cancer. Radiology 177, 729–734 (1990)

    Google Scholar 

  147. Reimer, P., et al.: Receptor-directed contrast agents for MR imaging: preclinical evaluation with affinity assays. Radiology 182, 565–569 (1992)

    Google Scholar 

  148. Reimer, P., et al.: Pancreatic receptors: initial feasibility studies with a targeted contrast agent for MR imaging. Radiology 193, 527–531 (1994)

    Google Scholar 

  149. Reimer, P. and Tombach, B.: Hepatic MRI with SPIO: detection and characterization of focal liver lesions. Eur. Radiol. 8, 1198–1204 (1998)

    Article  Google Scholar 

  150. Reimer, P. and Balzer, T.: Ferucarbotran (Resovist): a new clinically approved RES-specific contrast agent for contrast-enhanced MRI of the liver: properties, clinical development, and applications. Eur. Radiol. 13, 1266–1276 (2003)

    Google Scholar 

  151. Remsen, L.G., et al.: MR of carcinoma-specific monoclonal antibody conjugated to monocrystalline iron oxide nanoparticles: the potential for noninvasive diagnosis. Am. J. Neuroradiol. 17, 411–418 (1996)

    Google Scholar 

  152. Renshaw, P.F., et al.: Immunospecific NMR contrast agents. Magn. Reson. Imaging 4, 351–357 (1986)

    Article  Google Scholar 

  153. Ritter, J.A., et al.: Application of high gradient magnetic separation principles to magnetic drug targeting. J. Magn. Magn. Mater. 280, 184–201 (2004)

    Article  Google Scholar 

  154. Rockenberger, J., et al.: A new nonhydrolytic single-precursor approach to surfactant-capped nanocrystals of transition metal oxides. J. Am. Chem. Soc. 121, 11595–11596 (1999)

    Article  Google Scholar 

  155. Roger, J., et al.: Behavior of aqueous ferrofluids in presence of amino acids. Eur. J. Solid State Inorg. Chem. 26, 475–488 (1989)

    Google Scholar 

  156. Rohrer, M., et al.: Comparison of magnetic properties of MRI contrast media solutions at different magnetic field strengths. Invest. Radiol. 40, 715–724 (2005)

    Article  Google Scholar 

  157. Rudge, S.R., et al.: Preparation, characterization, and performance of magnetic iron-carbon composite microparticles for chemotherapy. Biomaterials 21, 1411–1420 (2000)

    Article  Google Scholar 

  158. Sanderson, C.J. and Wilson, D.V.: A simple method for coupling proteins to insoluble polysaccharides. Immunology 20, 1061–1065 (1971)

    Google Scholar 

  159. Savellano, M.D. and Hasan, T.: Targeting cells that overexpress the epidermal growth factor receptor with polyethylene glycolated BPD verteporfin photosensitizer immunoconjugates. Photochem. Photobiol. 77, 431–439 (2003)

    Article  Google Scholar 

  160. Schellenberger, E.A., et al.: Surface-functionalized nanoparticle library yields probes for apoptotic cells. Chem. Bio. Chem. 5, 275–279 (2004)

    Google Scholar 

  161. Schulze, E., et al.: Cellular uptake and trafficking of a prototypical magnetic iron oxide label in vitro. Invest. Radiol. 30, 604–610 (1995)

    Article  Google Scholar 

  162. Seip, C.T., et al.: Magnetic properties of a series of ferrite nanoparticles synthesized in reverse micelles. IEEE Trans. Magn. 34, 1111–1113 (1998)

    Article  Google Scholar 

  163. Semelka, R.C. and Helmberger, T.K.: Contrast agents for MR imaging of the liver. Radiology 218, 27–38 (2001)

    Google Scholar 

  164. Seo, W.S., et al.: FeCo/graphitic-shell nanocrystals as advanced magnetic-resonance-imaging and near-infrared agents. Nat. Mater. 5, 971–976 (2006)

    Article  Google Scholar 

  165. Shen, T., et al.: Monocrystalline iron oxide nanocompounds (MION): physicochemical properties. MRM 29, 599–604 (1993)

    Google Scholar 

  166. Shen, T.T., et al.: Magnetically labeled secretin retains receptor affinity to pancreas acinar cells. Bioconjug. Chem. 7, 311–316 (1996)

    Article  Google Scholar 

  167. Simon, G.H., et al.: Ultrasmall supraparamagnetic iron oxide-enhanced magnetic resonance imaging of antigen-induced arthritis. A comparative study between SHU 555 C, Ferumoxtran-10, and Ferumoxytol. Invest. Radiol. 41, 45–51 (2006)

    Article  Google Scholar 

  168. Sminia, P., et al.: Effect of hyperthermia on the central nervous system. Int. J. Hyperthermia 10, 1–130 (1994)

    Article  Google Scholar 

  169. Stark, D.D., et al.: Superparamagnetic iron oxide: clinical application as a contrast agent for MR imaging of the liver. Radiology 168, 297–301 (1988)

    Google Scholar 

  170. Stolnik, S., et al.: Long circulating microparticulate drug carriers. Adv. Drug Del. Rev. 16, 195–214 (1995)

    Article  Google Scholar 

  171. Sun, R., et al.: Physical and biological characterization of superparamagnetic iron oxide- and ultrasmall superparamagnetic iron oxide-labeled cells. Invest. Radiol. 40, 504–513 (2005)

    Google Scholar 

  172. Sun, S. and Zeng, H.: Size-controlled synthesis of magnetite nanoparticles. J. Am. Chem. Soc. 124, 8204–8205 (2002)

    Article  Google Scholar 

  173. Sun, S., et al.: Monodisperse MFe2O4 (M=Fe, Co, Mn) nanoparticles. J. Am. Chem. Soc. 126, 273–279 (2004)

    Article  Google Scholar 

  174. Suslick, K.S., et al.: Sonochemical synthesis of iron colloids. J. Am. Chem. Soc. 118, 11960–11961 (1996)

    Article  Google Scholar 

  175. Suwa, T., et al.: Magnetic Resonance imaging of esophageal squamous cell carcinoma using magnetite particles coated with anti-epidermal growth factor receptor antibody. Int. J. Cancer 75, 626–634 (1998)

    Article  Google Scholar 

  176. Takeda, S., et al.: Development of magnetically targeted drug delivery system using superconducting magnet. J. Magn. Magn. Mater. 311, 367–371 (2007)

    Article  Google Scholar 

  177. Tang, J., et al.: Magnetite Fe3O4 nanocrystals: spectroscopic observation of aqueous oxidation kinetics. J. Phys. Chem. B 107, 7501–7506 (2003)

    Article  Google Scholar 

  178. Taupitz, M., et al.: Phase I clinical evaluation of citrate-coated monocrystalline very small superparamagnetic iron oxide particles as a new contrast medium for magnetic resonance imaging. Invest. Radiol. 39, 394–405 (2004)

    Article  Google Scholar 

  179. Thorek, D.L.J., et al.: Superparamagnetic iron oxide nanoparticle probes for molecular imaging. Ann. Biomed. Eng. 34, 23–38 (2006)

    Article  Google Scholar 

  180. Tiefenauer, L.X., et al.: Antibody-magnetite nanoparticles: in vitro characterization of a potential tumor-specific contrast agent for magnetic resonance imaging. Bioconjug. Chem. 4, 347–352 (1993)

    Article  Google Scholar 

  181. Tiefenauer, L.X., et al.: In vivo evaluation of magnetite nanoparticles for use as a tumor contrast agent in MRI. Magn. Reson. Imaging 14, 391–402 (1996)

    Article  Google Scholar 

  182. Toma, A., et al.: Monoclonal antibody A7-superparamagnetic iron oxide as contrast agent of MR imaging of rectal carcinoma. Br. J. Cancer 93, 131–136 (2005)

    Article  Google Scholar 

  183. Torchilin, V.P.: Drug targeting. Eur. J. Pharm. Sci. 11(Suppl. 2), S81–S91 (2000)

    Article  Google Scholar 

  184. Treleaven, J.G., et al.: Removal of neuroblastoma cells from bone marrow with monoclonal antibodies conjugated to magnetic microspheres. The Lancet 14, 70–73 (1984)

    Article  Google Scholar 

  185. Treleaven, J.G.: Bone marrow purging: an appraisal of immunological and non-immunological methods. Adv. Drug Del. Rev. 2/3, 253–269 (1988)

    Article  Google Scholar 

  186. Udrea, L.E., et al.: An in vitro study of magnetic particle targeting in small blood vessels. Phys. Med. Biol. 51, 4869–4881 (2006)

    Article  Google Scholar 

  187. van der Zee, J.: Heating the patient: a promising approach? Ann. Oncol. 13, 1173–1184 (2002)

    Article  Google Scholar 

  188. Veintemillas-Verdaguer, S., et al.: Effect of the oxidation conditions on the maghemites production by laser pyrolysis. J. Appl. Organometal. Chem. 15, 365–372 (2001)

    Article  Google Scholar 

  189. Vlahos, L., et al.: A comparative study between Gd-DTPA and oral magnetic particles (OMP) as gastrointestinal (GI) contrast agents for MRI of the abdomen. Magn. Reson. Imaging 12, 719–726 (1994)

    Article  Google Scholar 

  190. Wadghiri, Y.Z., et al.: Detection of alzheimer’s amyloid in transgenic mice using magnetic resonance microimaging. Magn. Reson. Med. 50, 293–302 (2003)

    Article  Google Scholar 

  191. Walter, G.A., et al.: Noninvasive monitoring of stem cell transfer for muscle disorders. Magn. Reson. Med. 51, 273–277 (2004)

    Article  Google Scholar 

  192. Wang, F.H., et al.: Magnetic resonance tracking of nanoparticle labelled neural stem cells in a rat’s spinal cord. Nanotechnol. 17, 1911–1915 (2006)

    Article  Google Scholar 

  193. Wang, J., et al.: Stepwise directing of nanocrystals to self-assemble at water/oil interfaces. Angew. Chem. Int. Ed. 45, 7963–7966 (2006)

    Article  Google Scholar 

  194. Wang, X., et al.: The heating effect of magnetic fluids in an alternating magnetic field. J. Magn. Magn. Mater. 293, 334–340 (2005)

    Article  Google Scholar 

  195. Wang, Y.-X.J., et al.: Superparamagnetic iron oxide contrast agents: physicochemical characteristics and applications in MR imaging. Eur. Radiol. 11, 2319–2331 (2001)

    Article  Google Scholar 

  196. Wang, Y., et al.: “Pulling” nanoparticles into water: phase transfer of oleic acid stabilized monodisperse nanoparticles into aqueous solutions of α-cyclodextrin. Nano Lett. 3, 1555–1559 (2003)

    Article  Google Scholar 

  197. Weissleder, R., et al.: Superparamagnetic iron oxide: pharmacokinetics and toxicity. AJR 152, 167–173 (1989)

    Google Scholar 

  198. Weissleder, R., et al.: Ultrasmall superparamagnetic iron oxide: characterization of a new class of contrast agents for MR imaging. Radiology 175, 489–493 (1990)

    Google Scholar 

  199. Weissleder, R., et al.: MR receptor imaging: ultrasmall iron oxide particles targeted to asialoglycoprotein receptors. AJR 155, 1161–1167 (1990)

    Google Scholar 

  200. Weissleder, R., et al.: Polyclonal human immunoglobulin G labeled with polymeric iron oxide: antibody MR imaging. Radiology 181, 245–249 (1991)

    Google Scholar 

  201. Weissleder, R., et al.: Antimyosin-labeled monocrystalline iron oxide allows detection of myocardial infarct: MR antibody imaging. Radiology 182, 381–385 (1992)

    Google Scholar 

  202. Weissleder, R., et al.: Long-circulating iron oxides for MR imaging. Adv. Drug Del. Rev. 16, 321–334 (1995)

    Article  Google Scholar 

  203. Weissleder, R., et al.: In vivo magnetic resonance imaging of transgene expression. Nat. Med. 6, 351–355 (2000)

    Article  Google Scholar 

  204. Weissleder, R., et al.: Cell-specific targeting of nanoparticles by multivalent attachment of small molecules. Nat. Biotechnol. 23, 1418–1423 (2005)

    Article  Google Scholar 

  205. Whitehead, R.A.: Magnetic particles for use in separations. US Patent 4,554,088: November 19, 1985

    Google Scholar 

  206. Wondergem, J., et al.: Effects of local hyperthermia on the motor function of the rat sciatic nerve. Int. J. Radiat. Biol. 53, 429–439 (1988)

    Article  Google Scholar 

  207. Wunderbaldinger, P., et al.: Crosslinked iron oxides (CLIO): a new platform for the development of targeted MR contrast agents. Acad. Radiol. 9(suppl. 2), S304–S306 (2002)

    Article  Google Scholar 

  208. Xia, H., et al.: Hyperthermia combined with intra-thoracic chemotherapy and radiotherapy for malignant pleural mesothelioma. Int. J. Hyperthermia 22, 613–621 (2006)

    Article  Google Scholar 

  209. Xu, Z., et al.: Magnetic core/shell Fe3O4/Au and Fe3O4/Au/Ag nanoparticles with tunable plasmonic properties. J. Am. Chem. Soc. 129, 8698–8699 (2007)

    Article  Google Scholar 

  210. Zeng, H., et al.: Shape-controlled synthesis and shape-induced texture of MnFe2O4 nanoparticles. J. Am. Chem. Soc. 126, 11458–11459 (2004)

    Article  Google Scholar 

  211. Zhang, C., et al.: Silica- and alkoxysilane-coated ultrasmall superparamagnetic iron oxide particles: a promising tool to label cells for magnetic resonance imaging. Langmuir 23, 1427–1434 (2007)

    Article  Google Scholar 

  212. Zhang, Y., et al.: Surface modification of superparamagnetic magnetite nanoparticles and their intracellular uptake. Biomaterials 23, 1553–1561 (2002)

    Article  Google Scholar 

  213. Zhang, Y. and Zhang, J.: Surface modification of monodisperse magnetite nanoparticles for improved intracellular uptake to breast cancer cells. J. Colloid Interface Sci. 283, 352–357 (2005)

    Article  Google Scholar 

  214. Zhao, M., et al.: Non-invasive detection of apoptosis using magnetic resonance imaging and a targeted contrast agent. Nat. Med. 7, 1241–1244 (2001)

    Article  Google Scholar 

  215. Zhao, M., et al.: Differential conjugation of tat peptide to superparamagnetic nanoparticles and Its effect on cellular uptake. Bioconjug. Chem. 13, 840–844 (2002)

    Article  Google Scholar 

  216. Zinderman, C.E., et al.: Anaphylactoid reactions to dextran 40 and 70: reports to the United States Food and Drug Administration, 1969 to 2004. J. Vasc. Surg. 43, 1004–1009 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinming Gao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Bárcena, C., Sra, A.K., Gao, J. (2009). Applications of Magnetic Nanoparticles in Biomedicine. In: Liu, J., Fullerton, E., Gutfleisch, O., Sellmyer, D. (eds) Nanoscale Magnetic Materials and Applications. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-85600-1_20

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-85600-1_20

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-85598-1

  • Online ISBN: 978-0-387-85600-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics