Skip to main content

Magnetic Manipulation of Colloidal Particles

  • Chapter
  • First Online:

Abstract

We review some recent advances in the field of magnetic manipulation techniques, with particular emphasis on the manipulation of mixed suspensions of magnetic and nonmagnetic colloidal particles. We will first discuss the theoretical framework for describing magnetic forces exerted on particles within fluid suspensions. We will then make a distinction between particle systems that are highly dependent upon Brownian influence and those that are deterministic. In both cases, we will discuss the type of structures which are observed in colloidal suspensions as a function of the size and type of particles in the fluid. We will discuss the theoretical issues that apply to modeling the behavior of these systems, and we will show that the recently developed theoretical models correlate strongly with the presented experimental work. This chapter will conclude with an overview of the potential applications of these magnetic manipulation techniques.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Grier, D.G.: A revolution in optical manipulation. Nature 424 (6950), 810–816 (2003)

    Article  Google Scholar 

  2. Ashkin, A., Dziedzic, J. M., Yamane, T.: Optical trapping and manipulation of single cells using infrared-laserbeams. Nature 330 (6150), 769–771 (1987)

    Article  Google Scholar 

  3. Huang, Y., Ewalt, K. L., Tirado, M., Haigis, T. R., Forster, A., Ackley, D., Heller, M. J., O'Connell, J. P., Krihak, M.: Electric manipulation of bioparticles and macromolecules on microfabricated electrodes. Analytical Chemistry 73 (7), 1549–1559 (2001)

    Article  Google Scholar 

  4. Pethig, R.: Dielectrophoresis: Using inhomogeneous AC electrical fields to separate and manipulate cells. Critical Reviews in Biotechnology 16 (4), 331–348 (1996)

    Article  Google Scholar 

  5. Helseth, L. E., Fischer, T. M., Johansen, T. H.: Domain wall tip for manipulation of magnetic particles. Physical Review Letters 91 (20), 208302 (2003)

    Article  Google Scholar 

  6. Yellen, B. B., Hovorka, O., Friedman, G.: Arranging matter by magnetic nanoparticle assemblers. Proceedings of the National Academy of Sciences 102 (25), 8860–8864 (2005)

    Google Scholar 

  7. Yellen, B. B., Erb, R. M., Halverson, D. S., Hovorka, O., Friedman, G.: Arraying nonmagnetic colloids by magnetic nanoparticle assemblers. IEEE Transactions on Magnetics 42 (10), 3548–3553 (2006)

    Article  Google Scholar 

  8. Yellen, B. B., Erb, R. M., Son, H. S., Hewlin Jr., R., Shang, H., Lee, G. U.: Traveling wave magnetophoresis for high resolution chip based separations. Lab on a Chip 7 , 1681–1688 (2007)

    Article  Google Scholar 

  9. Gerber, R., Takayasu, M., Friedlaender, F. J.: Generalization of HGMS theory – the capture of ultrafine particles. IEEE Transactions on Magnetics 19 (5), 2115–2117 (1983)

    Article  Google Scholar 

  10. Erb, R. M., Sebba, D. S., Lazarides, A. A., Yellen, B. B.: Magnetic field induced concentration gradients in magnetic nanoparticle suspensions: Theory and Experiment. Journal of Applied Physics. 103 (6), 063916–5 (2008)

    Article  Google Scholar 

  11. Adair, R. K.: Constraints on Biological Effects of Weak Extremely-Low-Frequency Electromagnetic Fields. Physical Review A 43 (2), 1039–1048 (1991)

    Article  Google Scholar 

  12. Grahl, T., Markl, H.: Killing of microorganisms by pulsed electric fields. Applied Microbiology and Biotechnology 45 (1–2), 148–157 (1996)

    Article  Google Scholar 

  13. Peterman, E. J. G., Gittes, F., Schmidt, C. F.: “Laser-induced heating in optical traps” Biophysical Journal 84 (2), 1308–1316 (2003)

    Article  Google Scholar 

  14. Friedman, G., Yellen, B.: Magnetic separation, manipulation and assembly of solid phase in fluids. Current Opinion in Colloid and Interface Science 10 (3–4), 158–166 (2005)

    Article  Google Scholar 

  15. Ito, A., Shinkai, M., Honda, H., Kobayashi, T.: Medical application of functionalized magnetic nanoparticles. Journal of Bioscience and Bioengineering 100 (1), 1–11 (2005)

    Article  Google Scholar 

  16. Gijs, M. A. M.: Magnetic bead handling on-chip: new opportunities for analytical applications. Microfluidics and Nanofluidics 1 (1), 22–40 (2004)

    Google Scholar 

  17. Gillies, G. T., Ritter, R. C., Broaddus, W. C., Grady, M. S., Howard, M. A., McNeil, R. G.: Magnetic manipulation instrumentation for medical physics research. Review of Scientific Instruments 65 (3), 533–562 (1994)

    Article  Google Scholar 

  18. Xia, N., Hunt, T. P., Mayers, B. T., Alsberg, E., Whitesides, G. M., Westervelt, R. M., Ingber, D. E.: Combined microfluidic-micromagnetic separation of living cells in continuous flow. Biomedical Microdevices 8 (4), 299–308 (2006)

    Article  Google Scholar 

  19. Hancock, J. P., Kemshead, J. T.: A rapid and highly selective approach to cell separations using an immunomagnetic colloid. Journal of Immunological Methods 164 (1), 51–60 (1993)

    Article  Google Scholar 

  20. Heermann, K. H., Hagos, Y., Thomssen, R.: Liquid-phase hybridization and capture of Hepatitis-B virus-DNA with magnetic beads and fluorescence detection of PCR product. Journal of Virological Methods 50 (1–3), 43–57 (1994)

    Article  Google Scholar 

  21. Pipper, J., Inoue, M., Ng, L. F. P., Neuzil, P., Zhang, Y., Novak, L.: Catching bird flu in a droplet. Nature Medicine 13 (10), 1259–1263 (2007)

    Article  Google Scholar 

  22. Kim, S. K., Devine, L., Angevine, M., DeMars, R., Kavathas, P. B.: Direct detection and magnetic isolation of Chlamydia trachomatis major outer membrane protein-specific CD8(+) CTLs with HLA class I tetramers. Journal of Immunology 165 (12), 7285–7292 (2000)

    Google Scholar 

  23. De Palma, R., Reekmans, G., Liu, C. X., Wirix-Speetjens, R., Laureyn, W., Nilsson, O., Lagae, L.: Magnetic bead sensing platform for the detection of proteins. Analytical Chemistry 79 (22), 8669–8677 (2007)

    Article  Google Scholar 

  24. Vatta, L. L., Sanderson, R. D., Koch, K. R.: Magnetic nanoparticles: Properties and potential applications. Pure and Applied Chemistry 78 (9), 1793–1801 (2006)

    Article  Google Scholar 

  25. Okuno, M., Hamaguchi, H. O., Hayashi, S.: Magnetic manipulation of materials in a magnetic ionic liquid. Applied Physics Letters 89 (13), 132506 (2006)

    Article  Google Scholar 

  26. Halverson, D., Kalghatgi, S., Yellen, B., Friedman, G.: Manipulation of nonmagnetic nanobeads in dilute ferrofluid. Journal of Applied Physics 99 (8), 08P504 (2006)

    Article  Google Scholar 

  27. Erb, R. M., Yellen, B. B.: Model of detecting nonmagnetic cavities in ferrofluid for biological sensing applications. IEEE Transactions on Magnetics 42 (10), 3554–3556 (2006)

    Article  Google Scholar 

  28. Erb, R. M., Yellen, B. B.: Concentration gradients in mixed magnetic and nonmagnetic colloidal suspensions. Journal of Applied Physics 103 : 07A312–3 (2008)

    Article  Google Scholar 

  29. Jones, T. B., Electromechanics of Particles. Cambridge University Press, New York (1995)

    Book  Google Scholar 

  30. Huang, Y., Pethig, R.: Electrode design for negative dielectrophoresis. Measurement Science and Technology 2 (12), 1142–1146 (1991)

    Article  Google Scholar 

  31. Shkel, Y. M., Klingenberg, D. J.: Magnetorheology and magnetostriction of isolated chains of nonlinear magnetizable spheres. Journal of Rheology 45 (2), 351–368 (2001)

    Article  Google Scholar 

  32. Ivanov, A. O., Wang, Z. W., Holm, C.: Applying the chain formation model to magnetic properties of aggregated ferrofluids. Physical Review E 69 (3), 031206 (2004)

    Article  Google Scholar 

  33. Philipse, A. P., Maas, D.: Magnetic colloids from magnetotactic bacteria: Chain formation and colloidal stability. Langmuir 18 (25), 9977–9984 (2002)

    Article  Google Scholar 

  34. Einstein, A.: The theory of the Brownian Motion. Annalen Der Physik 19 (2), 371–381 (1906)

    Article  MATH  Google Scholar 

  35. Boal, A. K., Frankamp, B. L., Uzun, O., Tuominen, M. T., Rotello, V. M.: Modulation of spacing and magnetic properties of iron oxide nanoparticles through polymer-mediated ‘bricks and mortar’ self-assembly. Chemistry of Materials 16 (7), 3252–3256 (2004)

    Article  Google Scholar 

  36. Lim, J. K., Tilton, R. D., Eggeman, A., Majetich, S. A.: Design and synthesis of plasmonic magnetic nanoparticles. Journal of Magnetism and Magnetic Materials 311 (1), 78–83 (2007)

    Article  Google Scholar 

  37. Sun, S., Murray, C. B., Weller, D., Folks, L., Moser, A.: Monodisperse FePt Nanoparticles and Ferromagnetic FePt Nanocrystal Superlattices. Science 287 (5460), 1989 (2000)

    Article  Google Scholar 

  38. Odenbach, S., Liu, M.: Invalidation of the Kelvin force in ferrofluids. Physical Review Letters 86 (2), 328–331 (2001)

    Article  Google Scholar 

  39. Bowen, W. R., Liang, Y., Williams, P. M.: Gradient diffusion coefficients – theory and experiment. Chemical Engineering Science 55 , 2359–2377 (2000)

    Article  Google Scholar 

  40. Israelachvili, J. N., Intermolecular and Surface Forces. Academic Press, New York (1985)

    Google Scholar 

  41. Kelland, D. R., Hiresaki, Y., Friedlaender, F. J., Takayasu, M.: Diamagnetic particle capture and mineral separation. IEEE Transactions Magnetics 17 , 2813–2815 (1981)

    Article  Google Scholar 

  42. Ferreira, H. A., Graham, D. L., Freitas, P. P., Cabral, J. M. S.: Biodetection using magnetically labeled biomolecules and arrays of spin valve sensors (invited). Journal of Applied Physics 93 (10), 7281–7286 (2003)

    Article  Google Scholar 

  43. Baselt, D. R., Lee, G. U., Natesan, M., Metzger, S. W., Sheehan, P. E., Colton, R. J.: A biosensor based on magnetoresistance technology. Biosens Bioelectron 13 , 731–739 (1998)

    Article  Google Scholar 

  44. Ivanov, A. O., Kantorovich, S. S., Reznikov, E. N., Holm, C., Pshenichnikov, A. F., Lebedev, A. V., Chremos, A., Camp, P. J.: Magnetic properties of polydisperse ferrofluids: A critical comparison between experiment, theory, and computer simulation. Physical Review E 75 (6), 061405 (2007)

    Article  Google Scholar 

  45. Bradbury, A., Menear, S., Chantrell, R. W.: A Monte-Carlo calculation of the magnetic-properties of a ferrofluid containing interacting polydispersed particles. Journal of Magnetism and Magnetic Materials 54 (7), 745–746 (1986)

    Article  Google Scholar 

  46. Brown, W. F.: Thermal fluctuations of a single-domain particle. Physical Review 130 (5), 1677–1686 (1963)

    Article  Google Scholar 

  47. Madou, M. J., Fundamentals of Microfabrication. CRC Press, New York (2002)

    Google Scholar 

  48. Morse, P. M., Feshbach, H., Methods of theoretical physics. McGraw-Hill, New York (1953)

    MATH  Google Scholar 

  49. McNaughton, B. H., Kehbein, K. A., Anker, J. N., Kopelman, R.: Sudden breakdown in linear response of a rotationally driven magnetic microparticle and application to physical and chemical microsensing. The Journal of Physical Chemistry. 110 , 18958–18964 (2006)

    Article  Google Scholar 

  50. Bonin, K., Kourmanov, B., Walker, T. G.: Light torque nanocontrol, nanomotors and nanorockers. Optics Express. 10 , 984–989 (2002)

    Google Scholar 

  51. Reichhardt, C., Nori, F.: Phase locking, devil’s staircases, Farey trees, and Arnold tongues in driven votex lattices with periodic pinning. Physical Review Letters. 82 , 414 (1999)

    Article  Google Scholar 

  52. Fermigier, M., Gast, A.: Structure evolution in a paramagnetic latex suspension. Journal of Colloid and Interface Science. 154 , 522–539 (1992)

    Article  Google Scholar 

  53. Promislow, J. H. E., Gast, A. P., Fermigier, M.: Aggregation kinetics of paramagnetic colloidal particles. The Journal of Physical Chemistry. 102 , 5492–5498 (1995)

    Article  Google Scholar 

  54. Hagenbuchle, M., Liu, J.: Chain formation and chain dynamics in a dilute magnetorheological fluid. Applied Optics 36 (30), 7664–7671 (1997)

    Article  Google Scholar 

  55. Yellen, B., Friedman, G., Feinerman, A.:  Analysis of interactions for magnetic particles assembling on magnetic templates. Journal of Applied Physics 91 (10), 8552–8554 (2002)

    Article  Google Scholar 

  56. Son, H.S., R.M. Erb, B. Samanta, V.M. Rotello, and B.B. Yellen, Magnetically actuated assembly of anisotropic micro- and nano-structures. Nature, 2008 (in submission): 1–4.

    Google Scholar 

  57. Camp, P. J., Allen, M. P., Hard ellipsoid rod-plate mixtures: Onsager theory and computer simulations. Physica A 229 (3–4), 410–427 (1996)

    Article  Google Scholar 

  58. San Martin, S. M., Sebastian, J. L., Sancbo, M., Miranda, J. M.: A study of the electric field distribution in erythrocyte and rod shape cells from direct RF exposure. Physics in Medicine and Biology. 48 (11), 1649–1659 (2003)

    Article  Google Scholar 

  59. Kao, K.C.: Some electromechanical effects on dielectrics. British Journal of Applied Physics. 12 , 629–632 (1961)

    Article  Google Scholar 

  60. Stratton, J.A., Electromagnetic Theory. McGraw-Hill, New York (1941)

    MATH  Google Scholar 

  61. Ooi, C., R.M. Erb, and B.B. Yellen, On the controllability of nanorod alignment in magnetic fluids. Journal of Applied Physics. 2008. 103 (7): 07E910-3.

    Article  Google Scholar 

  62. Crawford, G. P., OndrisCrawford, R. J., Doane, J. W.: Systematic study of orientational wetting and anchoring at a liquid-crystal-surfactant interface. Physical Review E. 53 (4), 3647–3661 (1996)

    Article  Google Scholar 

  63. Ooi, C., R.M. Erb, and B.B. Yellen, On the controllability of nanorod alignment in magnetic fluids. Journal of Applied Physics. 2008. 103 (7): 07E910-3.

    Article  Google Scholar 

  64. Tanase, M., Felton, E. J., Gray, D. S., Hultgren, A.: Chen, C. S., Reich, D. H., Assembly of multicellular constructs and microarrays of cells using magnetic nanowires. Lab on a Chip. 5 (6), 598–605 (2005)

    Article  Google Scholar 

  65. Truskey, G. A., Yuan, F., Katz, D. F., Transport Phenomena in Biological Systems. Pearson Education, Inc., Upper Saddle River (2004)

    Google Scholar 

  66. Meyer, M., Le Ru, E. C., Etchegoin, P. G.: Self-limiting aggregation leads to long-lived metastable clusters in colloidal solutions. The Journal of Physical Chemistry B. 110 (12), 6040–6047 (2006)

    Article  Google Scholar 

  67. Ivanov, A. O., Kuznetsova, O. B.: Magnetic properties of dense ferrofluids: An influence of interparticle correlations. Physical Review E. 64 (4), 041405–12 (2001)

    Article  Google Scholar 

  68. da Silva, M. F., Neto, A. M. F.: Optical- and x-ray-scattering studies of ionic ferrofluids of MnFe2O4, y-Fe2O3, and CoFe2O4. Physical Review E. 48 (6), 4483–4491 (1993)

    Article  Google Scholar 

  69. Weber, J. E., Goni, A. R., Pusiol, D. J., Thomsen, C.: Raman spectroscopy on surfacted ferrofluids in a magnetic field. Physical Review E. 66 (2), 021407-06 (2002)

    Article  Google Scholar 

  70. Kruse, T., Krauthäuser, H. G., Spanoudaki, A., Pelster, R.: Agglomeration and chain formation in ferrofluids: Two-dimensional x-ray scattering. Physical Review B. 67 (9), 094206-10 (2003)

    Article  Google Scholar 

  71. Yellen, B. B., Fridman, G., Friedman, G.: Ferrofluid lithography. Nanotechnology 15 (10), S562–S565 (2004)

    Article  Google Scholar 

  72. Yellen, B. B., Friedman, G., Barbee, K. A.: Programmable self-aligning ferrofluid masks for lithographic applications. IEEE Transactions on Magnetics, 40 (4), 2994–2996 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamin B. Yellen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Erb, R.M., Yellen, B.B. (2009). Magnetic Manipulation of Colloidal Particles. In: Liu, J., Fullerton, E., Gutfleisch, O., Sellmyer, D. (eds) Nanoscale Magnetic Materials and Applications. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-85600-1_19

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-85600-1_19

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-85598-1

  • Online ISBN: 978-0-387-85600-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics