Skip to main content

Spintronics and Novel Magnetic Materials for Advanced Spintronics

  • Chapter
  • First Online:

Abstract

This chapter contains both the description of advanced spintronic devices for logic and memory applications and the synthesis and characterization of some new magnetic materials that would lead to new paradigms in spintronics. The first part gives a brief introduction to spintronics and its history. First-generation spintronics has entered the mainstream of information technology through its utilization of the magnetic tunnel junction in applicable devices such as read head sensors for hard disk drives and magnetic random access memory. We also discuss the conceptual spintronic devices, including spin torque transfer random access memory, spin-polarized field-effect transistor, and spin-based qubit quantum processor, and their potential impacts on information technology. The future of spintronic devices requires next-generation spintronic materials. The second part of the chapter is dedicated to the synthesis and characterization of some novel magnetic materials, including ferromagnetic oxides and diluted magnetic Group IV semiconductors.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Additional Reading on Spintronics

  • S. Wolf and D. Treger, Spintronics: A new paradigm for electronics for the new millennium, IEEE Trans. Magnet. 36, 2748 (2000).

    Article  Google Scholar 

  • Proceedings of the IEEE special issue on Spintronics Technology, May 2003, vol. 91, no. 5.

    Google Scholar 

  • S. Wolf et al., Spintronics: A spin-based electronics vision for the future, Science 294, 1488–1495 (2001).

    Article  Google Scholar 

References

  1. I.K. Schuller. Transport properties of the compositionally modulated alloy Cu/Ni. in AIP Conf. Proc. 1979.

    Google Scholar 

  2. M.N. Baibich, J.M. Broto, A. Fert, F.N. Vandau, F. Petroff, P. Eitenne, G. Creuzet, A. Friederich, and J. Chazelas, Giant magnetoresistance of (001)Fe/(001) Cr magnetic superlattices. Physical Review Letters, 1988. 61(21): 2472–2475.

    Article  Google Scholar 

  3. G.A. Prinz, Device physics – Magnetoelectronics. Science, 1998. 282(5394): 1660–1663.

    Article  Google Scholar 

  4. S.A. Wolf, D.D. Awschalom, R.A. Buhrman, J.M. Daughton, S. von Molnar, M.L. Roukes, A.Y. Chtchelkanova, and D.M. Treger, Spintronics: A spin-based electronics vision for the future. Science, 2001. 294(5546): 1488–1495.

    Article  Google Scholar 

  5. S.S.P. Parkin, K.P. Roche, M.G. Samant, P.M. Rice, R.B. Beyers, R.E. Scheuerlein, E.J. O’Sullivan, S.L. Brown, J. Bucchigano, D.W. Abraham, Y. Lu, M. Rooks, P.L. Trouilloud, R.A. Wanner, and W.J. Gallagher, Exchange-biased magnetic tunnel junctions and application to nonvolatile magnetic random access memory (invited). Journal of Applied Physics, 1999. 85(8): 5828–5833.

    Article  Google Scholar 

  6. M. Durlam, D. Addie, J. Akerman, B. Butcher, P. Brown, J. Chan, M. DeHerrera, B.N. Engel, B. Feil, G. Grynkewich, J. Janesky, M. Johnson, K. Kyler, J. Molla, J. Martin, K. Nagel, J. Ren, N.D. Rizzo, T. Rodriguez, L. Savtchenko, J. Salter, J.M. Slaughter, K. Smith, J.J. Sun, M. Lien, K. Papworth, P. Shah, W. Qin, R. Williams, L. Wise, and S. Tehrani, A 0.18 μm 4 MB Toggling MRAM. IEDM Technical Digest, 2003, pp. 34.6.1–34.6.3.

    Google Scholar 

  7. D. Lammers, Freescale begins selling 4-Mbit MRAM. 2006. EE Times.

    Google Scholar 

  8. L. Berger, Emission of spin waves by a magnetic multilayer traversed by a current. Physical Review B, 1996. 54(13): 9353–9358.

    Article  Google Scholar 

  9. J.C. Slonczewski, Current-driven excitation of magnetic multilayers. Journal of Magnetism and Magnetic Materials, 1996. 159(1–2): L1–L7.

    Article  Google Scholar 

  10. J.A. Katine, F.J. Albert, R.A. Buhrman, E.B. Myers, and D.C. Ralph, Current-driven magnetization reversal and spin-wave excitations in Co/Cu/Co pillars. Physical Review Letters, 2000. 84(14): 3149–3152.

    Article  Google Scholar 

  11. International Technology Roadmap for Semiconductors, (2006).

    Google Scholar 

  12. K.C. Hall, W.H. Lau, K. Gundogdu, M.E. Flatte, and T.F. Boggess, Nonmagnetic semiconductor spin transistor. Applied Physics Letters, 2003. 83(14): 2937–2939.

    Article  Google Scholar 

  13. Y. Matsumoto, M. Murakami, T. Shono, T. Hasegawa, T. Fukumura, M. Kawasaki, P. Ahmet, T. Chikyow, S. Koshihara, and H. Koinuma, Room-temperature ferromagnetism in transparent transition metal-doped titanium dioxide. Science, 2001. 291(5505): 854–856.

    Article  Google Scholar 

  14. H. Ohno, Making nonmagnetic semiconductors ferromagnetic. Science, 1998. 281(5379): 951–956.

    Article  Google Scholar 

  15. D.P. Divincenzo, Quantum computation. Science, 1995. 270(5234): 255–261.

    Article  MathSciNet  MATH  Google Scholar 

  16. A. Steane, Quantum computing. Reports on Progress in Physics, 1998. 61(2): 117–173.

    Article  MathSciNet  Google Scholar 

  17. V.V. Zhurin, H.R. Kaufman, J.R. Kahn, and T.L. Hylton, Biased target deposition. Journal of Vacuum Science & Technology a-Vacuum Surfaces and Films, 2000. 18(1): 37–41.

    Article  Google Scholar 

  18. J.J. Quan, S.A. Wolf, and H.N.G. Wadley, Low energy ion beam assisted deposition of a spin valve. Journal of Applied Physics, 2007. 101(7): 074302.

    Google Scholar 

  19. J.J. Quan, X.W. Zhou, and H.N.G. Wadley, Low energy ion assisted atomic assembly of metallic superlattices. Surface Science, 2006. 600(11): 2275–2287.

    Article  Google Scholar 

  20. S. von Molnar, Spin electronics: From concentrated to diluted magnetic semiconductors and beyond. Journal of Superconductivity, 2003. 16(1): 1–5.

    Article  MathSciNet  Google Scholar 

  21. J.M.D. Coey and C.L. Chien, Half-metallic ferromagnetic oxides. Mrs Bulletin, 2003. 28(10): 720–724.

    Article  Google Scholar 

  22. K. Suzuki and P.M. Tedrow, Resistivity and magnetotransport in CrO2 films. Physical Review B, 1998. 58(17): 11597–11602.

    Article  Google Scholar 

  23. X.W. Li, A. Gupta, T.R. McGuire, P.R. Duncombe, and G. Xiao, Magnetoresistance and hall effect of chromium dioxide epitaxial thin films. Journal of Applied Physics, 1999. 85(8): 5585–5587.

    Article  Google Scholar 

  24. R.J. Soulen, J.M. Byers, M.S. Osofsky, B. Nadgorny, T. Ambrose, S.F. Cheng, P.R. Broussard, C.T. Tanaka, J. Nowak, J.S. Moodera, A. Barry, and J.M.D. Coey, Measuring the spin polarization of a metal with a superconducting point contact. Science, 1998. 282(5386): 85–88.

    Article  Google Scholar 

  25. K. Schwarz, Cro2 Predicted as a half-metallic ferromagnet. Journal of Physics F-Metal Physics, 1986. 16(9): L211–L215.

    Article  Google Scholar 

  26. H.A. Bullen and S.J. Garrett, Epitaxial growth of CrO2 thin films on TiO2(110) surfaces. Chemistry of Materials, 2002. 14(1): 243–248.

    Article  Google Scholar 

  27. W.J. DeSisto, P.R. Broussard, T.F. Ambrose, B.E. Nadgorny, and M.S. Osofsky, Highly spin-polarized chromium dioxide thin films prepared by chemical vapor deposition from chromyl chloride. Applied Physics Letters, 2000. 76(25): 3789–3791.

    Article  Google Scholar 

  28. S.J. Liu, J.Y. Juang, K.H. Wu, T.M. Uen, Y.S. Gou, and J.Y. Lin, Transport properties of CrO2 (110) films grown on TiO2 buffered Si substrates by chemical vapor deposition. Applied Physics Letters, 2002. 80(22): 4202–4204.

    Article  Google Scholar 

  29. L. Ranno, A. Barry, and J.M.D. Coey, Production and magnetotransport properties of CrO2 films. Journal of Applied Physics, 1997. 81(8): 5774–5776.

    Article  Google Scholar 

  30. K. Kohler, M. Maciejewski, H. Schneider, and A. Baiker, Chromia supported on titania .5. Preparation and characterization of supported CrO 2 , CrOOH, and Cr2O 3 . Journal of Catalysis, 1995. 157(2): 301–311.

    Article  Google Scholar 

  31. K.G. West, J.W. Lu, J. Yu, D.M. Kirkwood, W. Chen, Y. Pei, J. Claassen, and S.A. Wolf, Growth and characterization of vanadium dioxide thin films prepared by reactive-biased target ion beam deposition. Journal of Vacuum Science & Technology A, 2008. 26(1): 133–139.

    Article  Google Scholar 

  32. Y. Matsumoto, R. Takahashi, M. Murakami, T. Koida, X.J. Fan, T. Hasegawa, T. Fukumura, M. Kawasaki, S.Y. Koshihara, and H. Koinuma, Ferromagnetism in co-doped TiO 2 rutile thin films grown by laser molecular beam epitaxy. Japanese Journal of Applied Physics Part 2-Letters, 2001. 40(11B): L1204–L1206.

    Article  Google Scholar 

  33. H. Toyosaki, T. Fukumura, Y. Yamada, K. Nakajima, T. Chikyow, T. Hasegawa, H. Koinuma, and M. Kawasaki, Anomalous Hall effect governed by electron doping in a room-temperature transparent ferromagnetic semiconductor. Nature Materials, 2004. 3(4): 221–224.

    Article  Google Scholar 

  34. S.R. Shinde, S.B. Ogale, J.S. Higgins, H. Zheng, A.J. Millis, V.N. Kulkarni, R. Ramesh, R.L. Greene, and T. Venkatesan, Co-occurrence of superparamagnetism and anomalous Hall effect in highly reduced cobalt-doped rutile TiO 2 -delta films. Physical Review Letters, 2004. 92(16): 166601.

    Google Scholar 

  35. D.H. Kim, J.S. Yang, K.W. Lee, S.D. Bu, T.W. Noh, S.J. Oh, Y.W. Kim, J.S. Chung, H. Tanaka, H.Y. Lee, and T. Kawai, Formation of Co nanoclusters in epitaxial Ti0.96Co0.04O2 thin films and their ferromagnetism. Applied Physics Letters, 2002. 81(13): 2421–2423.

    Article  Google Scholar 

  36. S.A. Chambers, Ferromagnetism in doped thin-film oxide and nitride semiconductors and dielectrics. Surface Science Reports, 2006. 61(8): 345–381.

    Article  Google Scholar 

  37. H. Munekata, H. Ohno, S. Vonmolnar, A. Segmuller, L.L. Chang, and L. Esaki, Diluted magnetic III-V semiconductors. Physical Review Letters, 1989. 63(17): 1849–1852.

    Article  Google Scholar 

  38. J. De Boeck, R. Oesterholt, A. Van Esch, H. Bender, C. Bruynseraede, C. Van Hoof, and G. Borghs, Nanometer-scale magnetic MnAs particles in GaAs grown by molecular beam epitaxy. Applied Physics Letters, 1996. 68(19): 2744–2746.

    Article  Google Scholar 

  39. H. Ohno, A. Shen, F. Matsukura, A. Oiwa, A. Endo, S. Katsumoto, and Y. Iye, (Ga,Mn)As: A new diluted magnetic semiconductor based on GaAs. Applied Physics Letters, 1996. 69(3): 363–365.

    Article  Google Scholar 

  40. D.D. Awschalom and M.E. Flatté, Challenges for semiconductor spintronics. Nature Physics, 2007. 3(3): 153–159.

    Article  Google Scholar 

  41. A. Stroppa, S. Picozzi, A. Continenza, and A.J. Freeman, Electronic structure and ferromagnetism of Mn-doped group-IV semiconductors. Physical Review B, 2003. 68(15): 155203 .

    Google Scholar 

  42. H.M. Weng and J.M. Dong, First-principles investigation of transition-metal-doped group-IV semiconductors: R(x)Y1(-x) (R=Cr,Mn,Fe;Y=Si,Ge). Physical Review B, 2005. 71(3): 035201.

    Google Scholar 

  43. Y.D. Park, A. Wilson, A.T. Hanbicki, J.E. Mattson, T. Ambrose, G. Spanos, and B.T. Jonker, Magnetoresistance of Mn: Ge ferromagnetic nanoclusters in a diluted magnetic semiconductor matrix. Applied Physics Letters, 2001. 78(18): 2739–2741.

    Article  Google Scholar 

  44. Y.D. Park, A.T. Hanbicki, S.C. Erwin, C.S. Hellberg, J.M. Sullivan, J.E. Mattson, T.F. Ambrose, A. Wilson, G. Spanos, and B.T. Jonker, A group-IV ferromagnetic semiconductor: MnxGe1-x. Science, 2002. 295(5555): 651–654.

    Article  Google Scholar 

  45. L.F. Liu, N.F. Chen, C.L. Chen, Y.L. Li, Z.G. Yin, and F. Yang, Magnetic properties of Mn-implanted n-type Ge. Journal of Crystal Growth, 2004. 273(1–2): 106–110.

    Google Scholar 

  46. J.S. Kang, G. Kim, S.C. Wi, S.S. Lee, S. Choi, S. Cho, S.W. Han, K.H. Kim, H.J. Song, H.J. Shin, A. Sekiyama, S. Kasai, S. Suga, and B.I. Min, Spatial chemical inhomogeneity and local electronic structure of Mn-doped Ge ferromagnetic semiconductors. Physical Review Letters, 2005. 94(14): 147202.

    Google Scholar 

  47. A.P. Li, J.F. Wendelken, J. Shen, L.C. Feldman, J.R. Thompson, and H.H. Weitering, Magnetism in MnxGe1-x semiconductors mediated by impurity band carriers. Physical Review B, 2005. 72(19): 195205.

    Google Scholar 

  48. N. Pinto, L. Morresi, M. Ficcadenti, R. Murri, F. D’Orazio, F. Lucari, L. Boarino, and G. Amato, Magnetic and electronic transport percolation in epitaxial Ge1-xMnx films. Physical Review B, 2005. 72(16): 165203.

    Google Scholar 

  49. S. Ahlers, D. Bougeard, N. Sircar, G. Abstreiter, A. Trampert, M. Opel, and R. Gross, Magnetic and structural properties of GexMn1-x films: Precipitation of intermetallic nanomagnets. Physical Review B, 2006. 74(21): 214411.

    Google Scholar 

  50. M. Jamet, A. Barski, T. Devillers, V. Poydenot, R. Dujardin, P. Bayle-Guillemaud, J. Rothman, E. Bellet-Amalric, A. Marty, J. Cibert, R. Mattana, and S. Tatarenko, High-Curie-temperature ferromagnetism in self-organized Ge1-xMnx nanocolumns. Nature Materials, 2006. 5(8): 653–659.

    Article  Google Scholar 

  51. L. Ottaviano, P. Parisse, M. Passacantando, S. Picozzi, A. Verna, G. Impellizzeri, and F. Priolo, Nanometer-scale spatial inhomogeneities of the chemical and electronic properties of an ion implanted Mn-Ge alloy. Surface Science, 2006. 600(20): 4723–4727.

    Article  Google Scholar 

  52. M. Passacantando, L. Ottaviano, F. D’Orazio, F. Lucari, M. De Biase, G. Impellizzeri, and F. Priolo, Growth of ferromagnetic nanoparticles in a diluted magnetic semiconductor obtained by Mn+ implantation on Ge single crystals. Physical Review B, 2006. 73(19): 195207.

    Google Scholar 

  53. J.J. Chen, K.L. Wang, and K. Galatsis, Electrical field control magnetic phase transition in nanostructured MnxGe1-x. Applied Physics Letters, 2007. 90(1): 012501.

    Google Scholar 

  54. D. Bougeard, S. Ahlers, A. Trampert, N. Sircar, and G. Abstreiter, Clustering in a precipitate-free GeMn magnetic semiconductor. Physical Review Letters, 2006. 97(23): 237202.

    Google Scholar 

  55. H.L. Li, Y.H. Wu, Z.B. Guo, P. Luo, and S.J. Wang, Magnetic and electrical transport properties of Ge1-xMnx thin films. Journal of Applied Physics, 2006. 100(10): 103908.

    Google Scholar 

  56. A.P. Li, C. Zeng, K. van Benthem, M.F. Chisholm, J. Shen, S.V.S.N. Rao, S.K. Dixit, L.C. Feldman, A.G. Petukhov, M. Foygel, and H.H. Weitering, Dopant segregation and giant magnetoresistance in manganese-doped germanium. Physical Review B, 2007. 75(20).

    Google Scholar 

  57. N. Yamada, Atomic magnetic-moment and exchange interaction between Mn atoms in intermetallic compounds in Mn-Ge system. Journal of the Physical Society of Japan, 1990. 59(1): 273–288.

    Article  Google Scholar 

  58. C.G. Zeng, S.C. Erwin, L.C. Feldman, A.P. Li, R. Jin, Y. Song, J.R. Thompson, and H.H. Weitering, Epitaxial ferromagnetic Mn5Ge3 on Ge(111). Applied Physics Letters, 2003. 83(24): 5002–5004.

    Article  Google Scholar 

  59. A. Kaminski and S. Das Sarma, Polaron percolation in diluted magnetic semiconductors. Physical Review Letters, 2002. 88(24): 247202.

    Google Scholar 

Download references

Acknowledgment

The authors thank for the financial support from the Defense Advanced Research Projects Agency (DARPA), the Office of Naval Research (ONR), the Defense Microelectronics Activity (DMEA), and the joint program of National Science Foundation and Nanoelectronics Research Initiative (NRI).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stuart A. Wolf .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Lu, J. et al. (2009). Spintronics and Novel Magnetic Materials for Advanced Spintronics. In: Liu, J., Fullerton, E., Gutfleisch, O., Sellmyer, D. (eds) Nanoscale Magnetic Materials and Applications. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-85600-1_16

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-85600-1_16

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-85598-1

  • Online ISBN: 978-0-387-85600-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics