Skip to main content

Nanostructured Soft Magnetic Materials

  • Chapter
  • First Online:
Book cover Nanoscale Magnetic Materials and Applications

Abstract

Reduction of the grain size to less than 20 nm has provided major advances in soft magnetic materials performance, including reduced core losses and coercivities. These promising results have stimulated research efforts, worldwide, in the areas of nanocrystalline alloy design, alloy processing, materials performance evaluation, and transition to various applications. This chapter presents recent advances in nanocrystalline soft magnetic alloy processing methods, phase transformations, microstructure evaluation, magnetic property measurement and analysis, and applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. McHenry ME, Willard MA, Laughlin DE. Amorphous and nanocrystalline materials for applications as soft magnets. Progress in Materials Science. 1999;44(4):291–433.

    Article  Google Scholar 

  2. McHenry ME, Laughlin DE. Nano-scale materials development for future magnetic applications. Acta Materialia. 2000 Jan 1;48(1):223–38.

    Article  Google Scholar 

  3. Willard MA, Kurihara LK, Carpernter EE, Calvin S, Harris VG. Chemically prepared magnetic nanoparticles. International Materials Reviews. 2004;49(3–4):125–70.

    Article  Google Scholar 

  4. Skomski R. Nanomagnetics. Journal of Physics: Condensed Matter. 2003;15:R841–96.

    Article  Google Scholar 

  5. Makino A, Inoue A, Masumoto T. Nanocrystalline Soft-Magnetic Fe-M-B (M=Zr, Hf, Nb) Alloys Produced by Crystallization of Amorphous Phase (Overview). Materials Transactions JIM. 1995 Jul;36(7):924–38.

    Google Scholar 

  6. Yoshizawa Y, Yamauchi K, Yamane T, Sugihara H. Common-mode choke cores using the new Fe-based alloys composed of ultrafine grain-structure. Journal of Applied Physics. 1988 Nov 15;64(10):6047–9.

    Article  Google Scholar 

  7. Yoshizawa Y, Yamauchi K. Effects of magnetic-field annealing on magnetic properties in ultrafine crystalline Fe-Cu-Nb-Si-B alloys. IEEE Transactions on Magnetics. 1989 Sep;25(5):3324–6.

    Article  Google Scholar 

  8. Herzer G. Nanocrystalline soft magnetic materials. Journal of Magnetism and Magnetic Materials. 1992 Jul;112(1–3):258–62.

    Article  Google Scholar 

  9. Herzer G. Grain-size dependence of coercivity and permeability in nanocrystalline ferromagnets. IEEE Transactions on Magnetics. 1990 Sep;26(5):1397–402.

    Article  Google Scholar 

  10. Yoshizawa Y, Oguma S, Yamauchi K. New Fe-based soft magnetic-alloys composed of ultrafine grain-structure. Journal of Applied Physics. 1988 Nov 15;64(10):6044–6.

    Article  Google Scholar 

  11. Suzuki K, Kikuchi M, Makino A, Inoue A, Masumoto T. Changes in microstructure and soft magnetic-properties of an Fe86Zr7B6Cu1 amorphous alloy upon crystallization. Materials Transactions JIM. 1991 Oct;32(10):961–8.

    Google Scholar 

  12. Iwanabe H, Lu B, McHenry ME, Laughlin DE. Thermal stability of the nanocrystalline Fe-Co-Hf-B-Cu alloy. Journal of Applied Physics. 1999 Apr 15;85(8):4424–6.

    Article  Google Scholar 

  13. Willard MA, Laughlin DE, McHenry ME, Thoma D, Sickafus K, Cross JO, et al. Structure and magnetic properties of (Fe0.5Co0.5)88Zr7B4Cu1 nanocrystalline alloys. Journal of Applied Physics. 1998 Dec 15;84(12):6773–7.

    Article  Google Scholar 

  14. Swaminathan R, Willard MA, McHenry ME. Experimental observations and nucleation and growth theory of polyhedral magnetic ferrite nanoparticles synthesized using an RF plasma torch. Acta Materialia. 2006;54:807–16.

    Article  Google Scholar 

  15. Matsushita N, Chong CP, Mizutani T, Abe M. Ni-Zn ferrite with high permeability (μ'=∼30, μ"=∼30) at 1 GHz prepared at 90°C. Journal of Applied Physics. 2002;91(10):7376–8.

    Article  Google Scholar 

  16. Kataoka N, Shima T, Fujimori H. High-frequency permeability of nanocrystalline Fe-Cu-Nb-Si-B single and multilayer films. Journal of Applied Physics. 1991;70(10):6238–40.

    Article  Google Scholar 

  17. Osaka T, Takai M, Hayashi K, Ohashi K, Saito M, Yamada K. A soft magnetic CoNiFe film with high saturation magnetic flux density and low coercivity. Nature. 1998;392:796–8.

    Article  Google Scholar 

  18. Joshi SD, Yoon SD, Yang A, Vittoria C, Harris VG, Goswami R, et al. Structure and magnetism of pulsed laser deposited (Ni59Co22Fe7)88Zr7B4Cux (x=0,1) thin films. Journal of Applied Physics. 2006;99(8):08F115.

    Article  Google Scholar 

  19. Turgut Z, Scott JH, Huang MQ, Majetich SA, McHenry ME. Magnetic properties and ordering in C-coated FexCo1-x alloy nanocrystals. Journal of Applied Physics. 1998;83(11):6468–70.

    Article  Google Scholar 

  20. Kuhrt C, Schultz L. Formation and magnetic properties of nanocrystalline mechanically alloyed Fe-Co. Journal of Applied Physics. 1992;71(4):1896–900.

    Article  Google Scholar 

  21. McCaig M, Clegg AG. Permanent Magnets in Theory and Practice, 2nd ed. New York: John Wiley & Sons, 1987.

    Google Scholar 

  22. Willard MA. Structural and magnetic characterization of HITPERM soft magnetic materials for high temperature applications. Pittsburgh: Carnegie Mellon University, 2000.

    Google Scholar 

  23. Ayers JD, Harris VG, Sprague JA, Elam WT, Jones HN. On the formation of nanocrystals in the soft magnetic alloy Fe73.5Nb3Cu1Si13.5B9. Acta Materialia. 1998 Mar 23;46(6):1861–74.

    Article  Google Scholar 

  24. Hono K, Ping DH, Ohnuma M, Onodera H. Cu clustering and Si partitioning in the early crystallization stage of an Fe73.5Si13.5B9Nb3Cu1 amorphous alloy. Acta Materialia. 1999 Feb;47(3):997–1006.

    Article  Google Scholar 

  25. Massalski TB, ed. Binary Alloy Phase Diagrams, 2nd ed. Materials Park, OH: ASM International, 1990.

    Google Scholar 

  26. Herzer G. Soft-magnetic nanocrystalline materials. Scripta Metallurgica Et Materialia. 1995 Dec 1;33(10–11):1741–56.

    Article  Google Scholar 

  27. Yoshizawa Y, Yamauchi K. Fe-based soft magnetic-alloys composed of ultrafine grain-structure. Materials Transactions JIM. 1990 Apr;31(4):307–14.

    Google Scholar 

  28. Hono K, Zhang Y, Inoue A, Sakurai T. APFIM studies on nanocrystallization of amorphous alloys. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing. 1997 Jun 15;226:498–502.

    Article  Google Scholar 

  29. Ping DH, Wu YQ, Hono K, Willard MA, McHenry ME, Laughlin DE. Microstructural characterization of (Fe0.5Co0.5)88Zr7B4Cu1 nanocrystalline alloys. Scripta Materialia. 2001 Oct 10;45(7):781–6.

    Article  Google Scholar 

  30. Willard MA, Claassen JC, Stroud RM, Francavilla TL, Harris VG. (Ni,Fe,Co)-based nanocrystalline soft magnets with near-zero magnetostriction. IEEE Transactions on Magnetics. 2002 Sep;38(5):3045–50.

    Article  Google Scholar 

  31. Daniil M, Willard MA. Structure and magnetic properties of CoFeZrMBCu soft nanocrystalline alloys. Journal of Applied Physics. 2008;103:07E727.

    Google Scholar 

  32. Herzer G. Magnetic-field-induced anisotropy in nanocrystalline Fe-Cu-Nb-Si-B alloys. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing. 1994 May 15;182:876–9.

    Article  Google Scholar 

  33. Alves F, Desmoulins JB, Herisson D, Rialland JF, Costa F. Stress-induced anisotropy in Finemet- and Nanoperm-type nanocrystalline alloys using flash annealing. Journal of Magnetism and Magnetic Materials. 2000 Jun;215:387–90.

    Article  Google Scholar 

  34. Lachowicz HK, Neuweiler A, Poplawski F, Dynowska E. On the origin of stress-anneal-induced anisotropy in FINEMET-type nanocrystalline magnets. Journal of Magnetism and Magnetic Materials. 1997 Sep;173(3):287–94.

    Article  Google Scholar 

  35. Nielsen OV, Petersen JR, Herzer G. Temperature-dependence of the magnetostriction and the induced anisotropy in nanocrystalline FeCuNbSiB alloys, and their fluxgate properties. IEEE Transactions on Magnetics. 1994 Mar;30(2):1042–4.

    Article  Google Scholar 

  36. Hofmann B, Kronmuller H. Stress-induced magnetic anisotropy in nanocrystalline FeCuNbSiB alloy. Journal of Magnetism and Magnetic Materials. 1996 Jan;152(1–2):91–8.

    Article  Google Scholar 

  37. Ferrara E, De Luigi C, Beatrice C, Appino C, Fiorillo F. Energy loss vs. magnetizing frequency in field-annealed nanocrystalline alloys. Journal of Magnetism and Magnetic Materials. 2000 Jun;215:466–8.

    Article  Google Scholar 

  38. Suzuki K, Cadogan JM. Random magnetocrystalline anisotropy in two-phase nanocrystalline systems. Physical Review B. 1998 Aug 1;58(5):2730–9.

    Article  Google Scholar 

  39. Hernando A, Marin P, Vazquez M, Barandiaran JM, Herzer G. Thermal dependence of coercivity in soft magnetic nanocrystals. Physical Review B. 1998 Jul 1;58(1):366–70.

    Article  Google Scholar 

  40. Herzer G. Grain-structure and magnetism of nanocrystalline ferromagnets. IEEE Transactions on Magnetics. 1989 Sep;25(5):3327–9.

    Article  Google Scholar 

  41. Yoshizawa Y, Ogawa Y. Magnetic properties of high B-s nanocrystalline FeCoCuNbSiB alloys. IEEE Transactions on Magnetics. 2005 Oct;41(10):3271–3.

    Article  Google Scholar 

  42. Yoshizawa Y, Fujii S, Ping DH, Ohnuma M, Hono K. Magnetic properties of nanocrystalline Fe-Co-Cu-M-Si-B alloys (M: Nb, Zr). Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing. 2004 Jul 15;375–77:207–12.

    Article  Google Scholar 

  43. Ohnuma M, Ping DH, Abe T, Onodera H, Hono K, Yoshizawa Y. Optimization of the microstructure and properties of Co-substituted Fe-Si-B-Nb-Cu nanocrystalline soft magnetic alloys. Journal of Applied Physics. 2003 Jun 1;93(11):9186–94.

    Article  Google Scholar 

  44. Inoue A, Shen BL. Soft magnetic properties of nanocrystalline Fe-Co-B-Si-Nb-Cu alloys in ribbon and bulk forms. Journal of Materials Research. 2003 Dec;18(12):2799–806.

    Article  Google Scholar 

  45. Chau N, Luong NH, Chien NX, Thanh PQ, Vu LV. Influence of P substitution for B on the structure and properties of nanocrystalline Fe73.5Si15.5Nb3Cu1B7-xPx alloys. Physica B-Condensed Matter. 2003 Apr;327(2–4):241–3.

    Article  Google Scholar 

  46. Mattern N, Muller M, Stiller C, Danzig A. Short-range structure of amorphous and nanocrystalline Fe-Si-B-Cu-Nb alloys. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing. 1994 May 1;179:473–8.

    Article  Google Scholar 

  47. Muller M, Grahl H, Mattern N, Kuhn U, Schnell B. The influence of Co on the structure and magnetic properties of nanocrystalline FeSiB-CuNb and FeZrBCu-based alloys. Journal of Magnetism and Magnetic Materials. 1996 Jul;160:284–6.

    Article  Google Scholar 

  48. Gercsi Z, Mazaleyrat F, Varga LK. High-temperature soft magnetic properties of Co-doped nanocrystalline alloys. Journal of Magnetism and Magnetic Materials. 2006 Jul;302(2):454–8.

    Article  Google Scholar 

  49. Barandiaran JM, Barquin LF, Sal JCG, Gorria P, Hernando A. Resistivity changes of some amorphous-alloys undergoing nanocrystallization. Solid State Communications. 1993 Oct;88(1):75–80.

    Article  Google Scholar 

  50. Chau N, Chien N, Hoa NQ, Niem PQ, Luong NH, Tho ND, et al. Investigation of nanocomposite materials with ultrasoft and high performance hard magnetic properties. Journal of Magnetism and Magnetic Materials. 2004 Nov;282:174–9.

    Article  Google Scholar 

  51. Gomez-Polo C, Perez-Landazabal JI, Recarte V. Temperature dependence of magnetic properties in Fe-Co and Fe-Cr base nanocrystalline alloys. IEEE Transactions on Magnetics. 2003 Sep;39(5):3019–24.

    Article  Google Scholar 

  52. Blazquez JS, Borrego JM, Conde CF, Conde A, Greneche JM. On the effects of partial substitution of Co for Fe in FINEMET and Nb-containing HITPERM alloys. Journal of Physics-Condensed Matter. 2003 Jun 18;15(23):3957–68.

    Article  Google Scholar 

  53. Mazaleyrat F, Gercsi Z, Ferenc J, Kulik T, Varga LK. Magnetic properties at elevated temperatures of Co substituted Finemet alloys. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing. 2004 Jul 15;375–77:1110–5.

    Article  Google Scholar 

  54. Butvinova B, Butvin P, Schafer R. Influence of heterogeneity on magnetic response of nanocrystalline ribbons. Sensors and Actuators a-Physical. 2003 Sep;106(1–3):52–5.

    Article  Google Scholar 

  55. Todd I, Tate BJ, Davies HA, Gibbs MRJ, Kendall D, Major RV. Magnetic properties of ultrasoft-nanocomposite FeAlSiBNbCu alloys. Journal of Magnetism and Magnetic Materials. 2000 Jun;215:272–5.

    Article  Google Scholar 

  56. Flohrer S, Schafer R, McCord J, Roth S, Schultz L, Herzer G. Magnetization loss and domain refinement in nanocrystalline tape wound cores. Acta Materialia. 2006 Jul;54(12):3253–9.

    Article  Google Scholar 

  57. Available from: http://www.metglas.com

  58. Yoshizawa Y, Yamauchi K. Magnetic properties of ultrafine crystalline (Fe-Cu1-Nb3)-Si-B quasi-ternary alloys and improvement of their magnetic properties by magnetic field annealing. Journal of the Magnetics Society of Japan. 1989;13:231–6.

    Article  Google Scholar 

  59. Hasiak M, Ciurzynska WH, Yamshiro Y, Fukunaga H, Yamamoto KI. Microstructure and magnetic properties of Fe86-xCoxZr6B8 alloys. IEEE Transactions on Magnetics. 2001 Jul;37(4):2271–4.

    Article  Google Scholar 

  60. Shen BL, Kimura H, Inoue A. Structure and magnetic properties of Fe42.5Co42.5Nb7B8 nanocrystalline alloy. Materials Transactions. 2002 Mar;43(3):589–92.

    Article  Google Scholar 

  61. Suzuki D, Yokosawa K, Miyashita T, Kandori A, Tsukada K, Tsukamoto A, et al. Simplified magnetically shielded cylinder using flexible magnetic sheets for high-Tc superconducting quantum interference device cardiogram systems. Japanese Journal of Applied Physics Part 2-Letters. 2001 1 Oct;40(10A):L1026–8.

    Article  Google Scholar 

  62. Willard MA, Harris VG. Nanocrystalline inductor materials for power electronics applications. Passive Component Industry. July/August 2005;6–12.

    Google Scholar 

  63. Ohodnicki PR, Park SY, Laughlin DE, McHenry ME, Keylin V, Willard MA. Crystallization and thermomagnetic treatment of a Co-rich Co-Fe-Ni-Zr-B-Cu based nanocomposite alloy. Journal of Applied Physics. 2008;(in press).

    Google Scholar 

  64. Suzuki K, Makino A, Inoue A, Masumoto T. Soft magnetic-properties of nanocrystalline Bcc Fe-Zr-B and Fe-M-B-Cu (M = Transition-Metal) alloys with high saturation magnetization (invited). Journal of Applied Physics. 1991 Nov 15;70(10):6232–7.

    Article  Google Scholar 

  65. Johnson F, Garmestani H, Chu SY, McHenry ME, Laughlin DE. Induced anisotropy in FeCo-based nanocrystalline ferromagnetic alloys (HITPERM) by very high field annealing. IEEE Transactions on Magnetics. 2004 Jul;40(4):2697–9.

    Article  Google Scholar 

  66. Herzer G. Magnetization process in nanocrystalline ferromagnets. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing. 1991 Mar 15;133:1–5.

    Article  MathSciNet  Google Scholar 

  67. Skorvanek I, OHandley RC. Fine-particle magnetism in nanocrystalline Fe-Cu-Nb-Si-B at elevated-temperatures. Journal of Magnetism and Magnetic Materials. 1995 Feb;140:467–8.

    Article  Google Scholar 

  68. Hasegawa R. Applications of amorphous magnetic alloys. Materials Science & Engineering A. 2004;375–377:90–7.

    Article  Google Scholar 

  69. Watanabe K, Kashiwagi M, Kawashima S, Ono Y, Yamashita Y, Yamazaki C, et al. Development of a dc 1 MV power supply technology for NB injectors. Nuclear Fusion. 2006 Jun;46(6):S332–9.

    Article  Google Scholar 

  70. Naitoh Y, Bitoh T, Hatanai T, Makino A, Inoue A, Masumoto T. Development of common mode choke coil made of new nanocrystalline sort magnetic alloy ''NANOPERM(R)''. Science Reports of the Research Institutes Tohoku University Series A-Physics Chemistry and Metallurgy. 1997 Mar;43(2):161–5.

    Google Scholar 

  71. Naitoh Y, Bitoh T, Hatanai T, Makino A, Inoue A. Application of nanocrystalline soft magnetic Fe-M-B (M=Zr, Nb) alloys to choke coils. Journal of Applied Physics. 1998 Jun 1;83(11):6332–4.

    Article  Google Scholar 

  72. Naitoh Y, Bitoh T, Hatanai T, Makino A, Inoue A, Masumoto T. Applications of nanocrystalline soft magnetic Fe-M-B (M = Zr, Nb) alloys. Nanostructured Materials. 1997 Dec;8(8):987–95.

    Article  Google Scholar 

  73. Kim GH, Noh TH, Choi GB, Kim KY. Magnetic properties of FeCuNbSiB nanocrystalline alloy powder cores using ball-milled powder. Journal of Applied Physics. 2003 May;93(10):7211–3.

    Article  Google Scholar 

  74. Ong KG, Grinmes DM, Grimes CA. Higher-order harmonics of a magnetically soft sensor: Application to remote query temperature measurement. Applied Physics Letters. 2002;80(20):3856–8.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew A. Willard .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Willard, M.A., Daniil, M. (2009). Nanostructured Soft Magnetic Materials. In: Liu, J., Fullerton, E., Gutfleisch, O., Sellmyer, D. (eds) Nanoscale Magnetic Materials and Applications. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-85600-1_13

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-85600-1_13

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-85598-1

  • Online ISBN: 978-0-387-85600-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics