Skip to main content

Approaches to the Analysis of Plant-Derived Natural Products

  • Chapter
  • First Online:

Abstract

The term “plant-derived natural product” is extremely broad and the scope of this chapter is determined by the nature of lower-abundance secondary metabolites rather than storage proteins, starch, cell walls, and lipids. In some instances, however, similar techniques can used to measure both groups of compounds. The bioactivity of secondary metabolites underlines their importance in human nutrition, health, pharmacy and plant defence mechanisms, and is the basis for their commercial value. Consequently, these two features are the driving force behind the continuing development of techniques for their analysis. The most important recent advance has been the advent of metabolomics. The metabolome, by analogy to the genome, proteome and transcriptome, is the entire small-molecule complement of the plant. The study of the metabolome, metabolomics, cannot be achieved by any single method and is largely a consequence of recent improvements to technology permitting high throughput analyses and data-handling. Interest in understanding details of natural product biosynthetic pathways as well as a desire to measure the bioactive end-product means, however, that it is necessary to cover methods of sufficient sensitivity to detect low-abundance intermediates as well as those methods that can investigate metabolite structure. Hence this chapter represents an introduction and overview of the fundamentals that underlie the wide range of methods used in the quantification of plant-derived natural products and a brief introduction to metabolomics. It is hoped that a strong understanding of the fundamentals will allow the reader to judge from the plethora of manufacturers’ brochures, primary literature, and on-line resources, which technologies and approaches best fit their situation. The process of analysis will be followed through its stages, from extraction of material to detection of analytes. Methods have been chosen not only with the chemistry of the analyte in mind, but also with a firm idea of the biological question that is to be answered. There will be an unashamed bias towards chromatography and mass spectroscopy since plants are complex systems containing many interesting chemicals, often in low amounts. Chromatography can simplify the process of addressing a complex mixture, and mass spectroscopy yields rich information from low-abundance analytes. For a brief list of methods for the main secondary metabolites, consult Table 1.

Keywords

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Amu = atomic mass unit. In this article amu is used for measured masses from instruments, in contrast to the known masses of molecules and ions, which are quoted in the more generally recognised Daltons. Instruments measure m/z, so 500 amu could, for example, correspond to 1,000 Da with charge (z) equal to 2. In this context, the correct unit is the Thomson (Th), but this is rarely used in biological articles, and is therefore avoided here.

References

  • Alali FQ, Tahboub YR, Ibrahim ES, Qandil AM, Tawaha K, Burgess JP, Sy A, Nakanishi Y, Kroll DJ, and Oberlies NH (2008) Pyrrolizidine alkaloids from Echium glomeratum (Boraginaceae). Phytochemistry 69:2341–2346

    Article  PubMed  CAS  Google Scholar 

  • Allwood JW, Ellis DI, and Goodacre R (2008) Metabolomic technologies and their application to the study of plants and plant-host- interactions. Physiol. Plant. 132:117–135

    PubMed  CAS  Google Scholar 

  • Antonio C, Larson T, Gilday A, Graham I, Bergström E, and Thomas-Oates J (2007) Quantification of sugars and sugar phosphates in Arabidopsis thaliana tissues using porous graphitic carbon liquid chromatography-electrospray ionization mass spectrometry. J. Chromatogr. A 1172:170–178

    Article  PubMed  CAS  Google Scholar 

  • Antonio C, Pinheiro C, Chaves MM, Ricardo CP, Ortuño MF, and Thomas-Oates J (2008) Analysis of carbohydrates in Lupinus albus stems on imposition of water deficit, using porous graphitic carbon liquid chromatography-electrospray ionization mass spectrometry. J. Chromatogr. A 1187:111–118

    Article  PubMed  CAS  Google Scholar 

  • ap Rees T (1980) Integration of pathways of synthesis and degradation of hexose phosphates. In: Preiss J (ed) The biochemistry of plants: a comprehensive treatise, Vol 3. Academic, New York

    Google Scholar 

  • Barkawi LS, Tam Y-Y, Tillman JA, Pederson B, Calio J, Al-Amier H, Emerick M, Normanly J, and Cohen JD (2008) A high-throughput method for the quantitative analysis of indole-3-acetic acid and other auxins from plant tissue. Anal. Biochem. 372:177–188

    Article  PubMed  CAS  Google Scholar 

  • Bigler L, Schnider CF, Hu W, and Hesse M (1996) Electrospray-ionization mass spectrometry.3. Acid-catalysed isomerisation of N,N’-bis[(E)-3-(4-hydroxyphenyl)prop-2-enoyl]spermidines by the zip reaction. Helv. Chim. Acta 79:2152–2163

    Article  CAS  Google Scholar 

  • Borisjuk LS, Walenta H, Rolletschek W, et al (2002) Spatial analysis of plant development: sucrose imaging within Vicia faba cotyledons reveals specific developmental patterns. Plant J. 29:521–530

    Article  PubMed  CAS  Google Scholar 

  • Burrell MM, Earnshaw CJ, and Clench MR (2007) Imaging matrix assisted laser desorption ionization mass spectrometry: a technique to map plant metabolites within tissues at high spatial resolution. J. Exp. Bot. 58:757–763

    Article  PubMed  CAS  Google Scholar 

  • Cartea ME, Rodriguez VM, de Haro A, et al (2008) Variation of glucosinolates and nutritional value in nabicol (Brassica napus pabularia group). Euphytica 159:111–122

    Article  CAS  Google Scholar 

  • Cha S, Zhang H, Ilarslan HI, Wurtele ES, Brachova L, Nikolau BJ, and Yeung ES (2008) Direct profiling and imaging of plant metabolites in intact tissues by using colloidal graphite-assisted laser desorption ionization mass spectrometry. Plant J. 55:348–360

    Article  PubMed  CAS  Google Scholar 

  • Chien S-C, Chen C-C, Chiu H-L, Chang C-I, Tseng M-H, and Kuo Y-H (2008) 18-nor-Podocarpanes and podocarpanes from the bark of Taiwania cryptomerioides. Phytochemistry 69:2336–2340

    Article  PubMed  CAS  Google Scholar 

  • Davidovich-Rikanati R, Lewinsohn E, Bar E, Iijima Y, Pichersky E, and Sitrit Y (2008) Overexpression of the lemon basil -zingiberene synthase gene increases both mono- and sesquiterpene contents in tomato fruit. Plant J. 56:228–238

    Article  PubMed  CAS  Google Scholar 

  • De Hoffmann E and Stroobant V (2002) Mass spectrometry principles and applications. Wiley, Chichester

    Google Scholar 

  • De Person M, Chaimbault P, and Elfakir C (2008) Analysis of native amino acids by liquid chromatography/electrospray ionization mass spectrometry: comparative study between two sources and interfaces. J. Mass Spectrom. 43:204–215

    Article  PubMed  CAS  Google Scholar 

  • Deichmann U (2007) “Molecular” versus “Colloidal”: controversies in biology and biochemistry, 1900–1940. Bull. Hist. Chem. 32:105–118

    CAS  Google Scholar 

  • Doehlemann G, Wahl R, Horst RJ, Voll LM, Usadel B, Poree F, Stitt M, Pons-Kühnemann J, Sonnewald U, Kahmann R, and Kämper J (2008) Reprogramming a maize plant: transcriptional and metabolic changes induced by the fungal biotroph Ustilago maydis. Plant J. 56:181–195

    Article  PubMed  CAS  Google Scholar 

  • Dunn WB, Overy S, and Quick WP (2005) Evaluation of automated electrospray-TOF mass spectrometry for metabolic fingerprinting of the plant metabolome. Metabolomics 1:137–148

    Article  CAS  Google Scholar 

  • Edwards WR, Hall JA, Rowlan AR, Schneider-Barfield T, Sun TJ, Patil MA, Pierce ML, Fulcher RG Bell AA, and Essenberg M (2008) Light filtering by epidermal flavonoids during the resistant response of cotton Xanthomonas protects leaf tissue from light-dependent phytoalexin toxicity. Phytochemistry 69:2320–2328

    Article  PubMed  CAS  Google Scholar 

  • Fiehn O (2002) Metabolomics – the link between genotypes and phenotypes. Plant Mol. Biol. 48:155–171

    Article  PubMed  CAS  Google Scholar 

  • Fiehn O et al (2007) The metabolomics standards initiative. Metabolomics 3:175–178

    Article  CAS  Google Scholar 

  • Giannoccaro E, Wang Y-J, and Chen P (2008) Comparison of two HPLC systems and an enzymatic method for quantification of soybean sugars. Food Chem. 106:324–330

    Article  CAS  Google Scholar 

  • Gibon Y, Vigeolas H, Tiessen A, Geigenberger P, and Stitt M (2002) Sensitive and high throughput metabolite assays for inorganic pyrophosphate, ADPGlc, nucleotide phosphates, and glycolytic intermediates based on a novel enzymic cycling system. Plant J. 30:221–235

    Article  PubMed  CAS  Google Scholar 

  • Glauser G, Grata E, Dubugnon L, Rudaz S, Farmer EE, and Wolfender J-L (2008) Spatial and temporal dynamics of jasmonate synthesis and accumulation in Arabidopsis in response to wounding. J. Biol. Chem. 283:16400–16407

    Article  PubMed  CAS  Google Scholar 

  • Goodacre R (2005) Making sense of the metabolome using evolutionary computation: seeing the wood with the trees. J. Exp. Bot. 56:245–254

    Article  PubMed  CAS  Google Scholar 

  • Goossens A, Häkkinen ST, Laakso I, Seppänen-Laakso T, Biondi S, De Sutter V, Lammertyn F, Nuutila AM, Söderlund H, Zabeau M, Inzé D, and Oksman-Caldentey K-M (2003) A functional genomics approach toward the understanding of secondary metabolism in plant cells. Proc. Natl. Acad. Sci. USA 100:8595–8600

    Article  PubMed  CAS  Google Scholar 

  • Gross ML and Caprioli RM (eds) (2005) In: Nibbering NMM (vol. ed) The encyclopedia of mass spectrometry, Vol 4. Fundamentals of and applications to organic (and organometallic) compounds. Elsevier, Amsterdam

    Google Scholar 

  • Guy C, Kopka J, and Moritz T (2008) Plant metabolomics coming of age. Physiol. Plant. 132:113–116

    Article  PubMed  CAS  Google Scholar 

  • Halket JM, Waterman D, Przyborowska AM, Patel RKP, Fraser PD, and Bramley PM (2005) Chemical derivatization and mass spectral libraries in metabolic profiling by GC/MS and LC/MS/MS. J. Exp. Bot. 56:219–243

    Article  PubMed  CAS  Google Scholar 

  • Hall R, Beale M, Fiehn O, et al (2002) Plant metabolomics: the missing link in functional genomic strategies. Plant Cell 14:1437–1440

    Article  PubMed  CAS  Google Scholar 

  • Issaq HJ (1999) Capillary electrophoresis of natural products - II. Electrophoresis 20:3190–3202

    Article  PubMed  CAS  Google Scholar 

  • Jellito T, Sonnewald U, Willmitzer L, Hajirezaei MR, and Stitt M (1992) Inorganic pyrophosphate content and metabolites in leaves and tubers of potato and tobacco plants expressing E. coli pyrophosphatase in their cytosol. Planta 188:238–244

    Article  Google Scholar 

  • Jenkins H, Hardy N, Beckmann M, Draper J, Smith AR, Taylor J, Fiehn O, Goodacre R, Bino R, Hall R, Kopka J, Lane GA, Lange BM, Liu JR, Mendes P, Nikolau BJ, Oliver SJ, Paton NW, Roessner-Tunali U, Saito K, Smedsgaard J, Sumner LW, Wang T, Walsh S, Wurtele ES, and Kell DB (2004) A proposed framework for the description of plant metabolomics experiments and their results. Nat. Biotechnol. 22:1601–1606

    Article  PubMed  CAS  Google Scholar 

  • Jiang H, Somogyi A, Timmermann BN, and Gang DR (2006) Instrument dependence of electrospray ionization and tandem mass spectrometric fragmentation of the gingerols. Rapid Commun. Mass Spectrom. 20:3089–3100

    Article  PubMed  CAS  Google Scholar 

  • Jones WP and Klinghorn AD (2005) Extraction of plant secondary metabolites. In: Sarker SD, Latif Z, and Gray AI (eds) Natural products isolation, methods in biotechnology, Vol 20. Humana Press: Totowa, NJ

    Google Scholar 

  • Kai K, Mizutani M, Kawamura N, Yamamoto R, Tamai M, Yamaguchi H, Sakata K, and Shimizu B-I (2008) Scopoletin is biosynthesized via ortho-hydroxylation of feruloyl CoA by a 2-oxoglutarate-dependent dioxygenase in Arabidopsis thaliana. Plant J. 55:989–999

    Article  PubMed  CAS  Google Scholar 

  • Kishimoto K, Matsui K, Ozawa R, and Takabayashi J (2008) Direct fungicidal activities of C6-aldehydes are important constituents for defense responses in Arabidopsis against Botrytis cinerea. Phytochemistry 69:2127–2132

    Article  PubMed  CAS  Google Scholar 

  • Klejdus B, Vacek J, Lojková L, Benešová L, and Kubáň V (2008) Ultrahigh-pressure liquid chromatography of isoflavones and phenolic acids on different stationary phases. J. Chromatogr. A 1195:52–59

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi N and DellaPenna D (2008) Tocopherol metabolism, oxidation and recycling under high light stress in Arabidopsis. Plant J. 55:607–618

    Article  PubMed  CAS  Google Scholar 

  • Krishnan P, Kruger NJ, and Ratcliffe RG (2005) Metabolite fingerprinting and profiling in plants using NMR. J. Exp. Bot. 56:255–265

    Article  PubMed  CAS  Google Scholar 

  • Kwon H-J, Jeong J-S, Lee Y-M, and Hong S-P (2008) A reversed-phase high-performance liquid chromatography method with pulsed amperometric detection for the determination of glycosides. J. Chromatogr. A 1185:251–257

    Article  PubMed  CAS  Google Scholar 

  • Larkov O, Zaks A, Bar E, Lewinsohn E, Dudai N, Mayer AM, and Ravid U (2008) Enantioselective monoterpene alcohol acetylation in Origanum, Mentha and Salvia species. Phytochemistry 69:2565–2571

    Article  PubMed  CAS  Google Scholar 

  • Lätti AK, Rihinen KR, and Kainulainen PS (2008) Analysis of anthocyanin variation in wild populations of bilberry (Vaccinium myrtillus L.) in Finland. J. Agric. Food Chem. 56:190–196

    Article  PubMed  Google Scholar 

  • Laurens JB, Bekker LC, Steenkamp V, and Stewart MJ (2001) Gas chromatographic-mass spectrometric confirmation of atractyloside in a patient poisoned with Callilepsis laureola. J. Chro­matogr. B, 765:127–133

    Article  CAS  Google Scholar 

  • Lee S-S, Lin H-C, and Chen C-K (2008) Acylated ­flavonol monorhamnosides, α-glucosidase inhibitors, from Machilus philippinensis. Phytochemistry 69:2347–2353

    Article  PubMed  CAS  Google Scholar 

  • Lesney MS (2004) An apple a day. Today’s Chemist at Work, Feb 2004, pp. 32–36

    Google Scholar 

  • Li B, Abliz Z, Tang M, Fu G, and Yu S (2006) Rapid structural characterization of triterpenoid saponins in crude extract from Symplocos chinensis using liquid chromatography combined with electrospray ioniszation tandem mass spectrometry. J. Chromatogr. A, 1101:53–62

    Article  PubMed  CAS  Google Scholar 

  • Lin CY, Wu HF, Tieerdema RS, and Viant MR (2007) Evaluation of metabolite extraction strategies from tissue samples using NMR metabolomics. Metabolomics 3:55–67

    Article  CAS  Google Scholar 

  • Linhardt RJ (1994) Capillary electrophoresis of oligosaccharides. Methods Enzymol. 230:265–280

    Article  PubMed  CAS  Google Scholar 

  • Lísa M and Holčapek M (2008) Triacylglycerols profiling in plant oils important in food industry, dietetics and cosmetics using high-performance liquid chromatography–atmospheric pressure chemical ionization mass spectrometry. J. Chromatogr. A 1198-1199:115–130

    Article  PubMed  Google Scholar 

  • Lísa M, Lynen F, Holčapek M, and Sandra P (2007) Quantitation of triacylglycerols from plant oils using charged aerosol detection with gradient compensation. J. Chromatogr. A 1176:135–142

    Article  PubMed  Google Scholar 

  • Liu S, Tian N, Liu Z, Huang J, Li J, and Ferreira JFS (2008) Affordable and sensitive determination of artemisinin in Artemisia annua L. by gas chromatography with electron-capture detection. J. Chromatogr. A 1190:302–306

    Article  PubMed  CAS  Google Scholar 

  • Luo J, Nishiyama Y, Fuell C, Taguchi G, Elliott K, Hill L, Tanaka Y, Kitayama M, Yamazaki M, Bailey P, Parr A, Michael AJ, Saito K, and Martin C (2007) Convergent evolution in the BAHD family of acyl transferases: identification and characterization of anthocyanin acyl transferases from Arabidopsis thaliana. Plant J. 50:678–695

    Article  PubMed  CAS  Google Scholar 

  • Ma C, Wang H, Lu X, Xu G, and Liu B (2008) Metabolic fingerprinting investigation of Artemisia annua L. in different stages of development by gas chromatography and gas chromatography–mass spectrometry. J. Chromatogr. A 1186:412–419

    Article  PubMed  CAS  Google Scholar 

  • Matsubara N and Terabe S (1996) Micellar electrokinetic chromatography. Methods Enzymol. 270:319–341

    Article  PubMed  CAS  Google Scholar 

  • McDonnell LA and Heeren RMA (2007) Imaging mass spectrometry. Mass Spectrom. Rev. 26: 606–643

    Article  PubMed  CAS  Google Scholar 

  • Mellon FA, Bennett RN, Holst B, and Williamson G (2002) Intact glucosinolate analysis in plant extracts by programmed cone voltage electrospray LC/MS: performance and comparison with LC/MS/MS methods. Anal. Biochem. 306:83–91

    Article  PubMed  CAS  Google Scholar 

  • Novák O, Hauserová E, Amakorová P, Doležal K, and Strnad M (2008) Cytokinin profiling in plant tissues using ultra-performance liquid chromatography-electrospray tandem mass spectrometry. Phytochemistry 69:2214–2224

    Article  PubMed  Google Scholar 

  • Otieno DO and Shah NP (2007) A comparison of changes in the transformation of isoflavones in soymilk using varying concentrations of exogenous and probiotic-derived endogenous β-glucosidases. J. Appl. Microbiol. 103:601–612

    Article  PubMed  CAS  Google Scholar 

  • Ouattara B, Angenot L, Guissou P, Fondu P, Dubois J, Frédérich M, Jansen O, van Heugen J-C, Wauters J-N, and Tits M (2004) LC/MS/NMR analysis of isomeric divanilloylquinic acids from the root bark of Fagara zanthoxyloides Lam. Phytochemistry 65:1145–1151

    Article  PubMed  CAS  Google Scholar 

  • Pan J, Zhang S, Yan L, Tai J, Xiao Q, Zou K, Zhou Y, and Wu J (2008) Separation of flavanone enantiomers and flavanone glucoside diastereomers from Balanophora involucrata Hook by capillary electrophoresis and reversed-phase high-performance liquid chromatography on a C18 column. J. Chromatogr. A 1185:117–129

    Article  PubMed  CAS  Google Scholar 

  • Papadopoulou K, Melton RE, Leggett M, Daniels MJ, and Osbourn AE (1999) Compromised disease resistance in saponin-deficient plants. PNAS 96:12923–12928

    Article  PubMed  CAS  Google Scholar 

  • Pauli GF, Jaki BU, and Lankin DC (2005) Quantitative 1H NMR: development and potential of a method for natural products analysis. J Nat. Prod. 68:133–149

    Article  PubMed  CAS  Google Scholar 

  • Reichelt M, Brown PD, Schneider B, Oldham NJ, Stauber E, Tokuhisa J, Kliebenstein DJ, Mitchell-Olds T, and Gershenzon J (2002) Benzoic acid glucosinolate esters and other glucosinolates from Arabidopsis thaliana. Phytochemistry 59:663–671

    Article  PubMed  CAS  Google Scholar 

  • Rellán-álvarez R, Hernández LE, Abadía J, and álvarez-Fernández A (2006) Direct and simultaneous determination of reduced and oxidized glutathione and homoglutathione by liquid chromatography–electrospray/mass spectrometry in plant tissue extracts. Anal. Biochem. 356:254–264

    Article  PubMed  Google Scholar 

  • Řezanka T, Nedbalová L, and Sigler K (2008) Identification of very-long-chain polyunsaturated fatty acids from Amphidinium carterae by atmospheric pressure chemical ionization liquid chromatography-mass spectroscopy. Phytochemistry 69:2391–2399

    Article  PubMed  Google Scholar 

  • Rupasinghe HPV, Jackson C-JC, Poysa V, Di Berardo C, Bewley JD, and Jenkinson J (2003) Soyasapogenol A and B distribution in soybean (Glycine max L. Merr.) in relation to seed physiology, genetic variability, and growing location. J. Agric. Food Chem. 51:5888–5894

    Article  PubMed  CAS  Google Scholar 

  • Sadek PC (2002) The HPLC solvent guide, 2nd ed. Wiley, New York

    Google Scholar 

  • Sana TR, Waddell K, and Fischer SM (2008) A sample extraction and chromatographic strategy for increasing LC/MS detection coverage of the erythrocyte metabolome. J. Chromatogr. B. 871:314–321

    Article  CAS  Google Scholar 

  • Scott RPW www.chromatography-online.org

  • Schulze B, Lauchli R, Sonwa MM, Schmidt A, and Boland W (2006) Profiling of structurally labile oxylipins in plants by in situ derivatization with pentafluorobenzyl hydroxylamine. Anal. Biochem. 348:269–283

    Article  PubMed  CAS  Google Scholar 

  • Shimoda K, Sato N, Kobayashi T, Hamada H, and Hamada H (2008) Glycosylation of daidzein by the Eucalyptus cell cultures. Phytochemistry 69:2303–2306

    Article  PubMed  CAS  Google Scholar 

  • Skorupinska-Tudek K, Poznanski J, Wojcik J, Bienkowski T, Szostkiewicz I, Zelman-Femiak M, Bajda A, Chojnacki T, Olszowska O, Grunler J, Meyer O, Rohmer M, Danikiewicz W, and Swiezewska E (2008) Contribution of the mevalonate and methylerythritol phosphate pathways to the biosynthesis of dolichols in plants. J. Biol. Chem. 283:21024–21035

    Article  PubMed  CAS  Google Scholar 

  • Snyder LR, Kirkland JJ, and Glajch JL (1997) Practical HPLC method development, 2nd ed. Wiley, New York

    Google Scholar 

  • Sumner LW, Amberg A, Barrett D, et al (2007) Proposed minimum reporting standards for chemical analysis. Metabolomics 3:211–221

    Article  CAS  Google Scholar 

  • van der Klift EJC, Vivó-Truyols G, Claassen FW, van Holthoon FL, and van Beek TA (2008) Comprehensive two-dimensional liquid chromatography with ultraviolet, evaporative light scattering and mass spectrometric detection of triacylglycerols in corn oil. J. Chromatogr. A 1178:43–55

    Article  PubMed  CAS  Google Scholar 

  • Vogler B and Setzer WN (2006) Characterisation of natural products. In: Cseke LJ, Kirakosyan A, Kaufman PB, Warber S, Duke JA, and Brielmann HL (eds) Natural products from plants. CRC Press, Boca Raton, FL, pp. 319–389

    Chapter  Google Scholar 

  • Vollhardt KPC (1987) Organic chemistry. WH Freeman, New York

    Google Scholar 

  • Wade KL, Garrard IJ, and Fahey JW (2007) Improved hydrophilic interaction chromatography method for the identification and quantification of glucosinolates. J. Chromatogr. A 1154:469–472

    Article  PubMed  CAS  Google Scholar 

  • Wang XK, He YZ, and Qian LL (2007) Determination of polyphenol components in herbal medicine by micellar electrokinetic capillary chromatography with Tween 20. Talanta 74:1–6

    Article  PubMed  CAS  Google Scholar 

  • Ward JL, Harris C, Lewis J, Beale MH (2003) Assessment of 1H NMR spectroscopy and multi­variate analysis as a technique for metabolite fingerprinting of Arabidopsis. Phytochemistry 62:949–957

    Article  PubMed  CAS  Google Scholar 

  • Ward JL, Baker JM, and Beale MH (2007) Recent applications of NMR spectroscopy in plant metabolomics. FEBS J. 274:1126–1131

    Article  PubMed  CAS  Google Scholar 

  • Weckwerth W (2007) Metabolomics: methods and protocols. Humana press, Totowa, NJ

    Google Scholar 

  • Weckwerth W (2008) Integration of metabolomics and proteomics in molecular plant physiology - coping with the complexity by data-dimensionality reduction. Physiol. Plant. 132:176–189

    Article  PubMed  CAS  Google Scholar 

  • Weckwerth W, Wenzel K, and Fiehn O (2004) Process for the integrated extraction, identification and quantification of metabolites, proteins and RNA to reveal their co-regulation in biochemical networks. Proteomics 4:78–83

    Article  PubMed  CAS  Google Scholar 

  • Wouters FS, Verveer PJ, and Bastiaens PIH (2001) Imaging biochemistry inside cells. Trends Cell Biol. 11:203–211

    Article  PubMed  CAS  Google Scholar 

  • Yonekura-Sakakibara K, Tohge T, Matsuda F, Nakabayashi R, Takayama H, Niida R, Watanabe-Takahashi A, Inoue E, and Saito K (2008) Comprehensive flavonol profiling and transcriptome coexpression analysis leading to decoding gene-metabolite correlations in Arabidopsis. Plant Cell 20:2160–2176

    Article  PubMed  CAS  Google Scholar 

  • Zhang Q, Wang G, Du Y, Zhu L, and Jiye A (2007) GC/MS analysis of the rat urine for metabonomic research. J. Chromatogr. B 854:20–25

    Article  CAS  Google Scholar 

  • Zhang H, Xie X, Kim M-S, Kornyeyev DA, Holaday S, and Paré PW (2008) Soil bacteria augment Arabidopsis photosynthesis by decreasing glucose sensing and abscisic acid levels in planta. Plant J. 56:264–273

    Article  PubMed  CAS  Google Scholar 

  • Zhou Y, Han Q-B, Song J-Z, Qiao C-F, and Xu H-X (2008) Characterization of polyprenylated xanthones in Garcinia xipshuanbannaensis using liquid chromatography coupled with electrospray ionization quadrupole time-of-flight tandem mass spectrometry. J. Chromatogr. A 1206:131–139

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Trevor L. Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Hill, L., Wang, T.L. (2009). Approaches to the Analysis of Plant-Derived Natural Products. In: Osbourn, A., Lanzotti, V. (eds) Plant-derived Natural Products. Springer, New York, NY. https://doi.org/10.1007/978-0-387-85498-4_4

Download citation

Publish with us

Policies and ethics