Skip to main content

Bioengineering

  • Chapter
  • First Online:
Book cover Plant-derived Natural Products

Abstract

Plants produce a myriad of secondary metabolites (SMs), which constantly contribute to plants’ interaction with the surroundings. Since ancient times and up to this day mankind has been using SMs as sources for medicines, spices, fragrances, pesticides, poisons, hallucinogens, stimulants, dyes, perfumery and countless more purposes. The shared value for both humans and plants makes SMs important targets for bioengineering. The formation of certain SM compounds may be restricted to single plant species, specific plant organs, cells or even particular cell compartments. Bioengineering can modulate the levels, time and site of production of natural products in plants. In this chapter we review the state of the art in the bioengineering of natural products at the whole plant level. In the first part of this review, we summarize the current and emerging bioengineering strategies and methods, including the use of the riboswitches, immunomodulation, synthetic microRNAs and Zinc-finger nucleases. The second and major part of this chapter provides examples from different fields of bioengineering in plants including: (a) the production of nutraceuticals, (b) modifying volatiles and pigments (in fruit and flowers), (c) production of medicinal agents and (d) aiding plants in the fight against biotic stresses. The experiments described here were conducted either in target plants, usually crop species, or as a form of a “proof of concept” in model plant species (e.g. Arabidopsis). Future challenges for SM bioengineering include reducing unwanted effects on plant fitness, transfer of knowledge from models to crops, the reduction of genomic position effects and the capacity to predict the outcome of bioengineering. These aspects are also discussed. The large and rapid advances made during the last decade in our understanding of the molecular genetic control of SM production and biological function provide an excellent foundation for successful bioengineering of these small molecules in plants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Baudry, A. et al. (2004) TT2, TT8, and TTG1 synergistically specify the expression of BANYULS and proanthocyanidin biosynthesis in Arabidopsis thaliana. Plant J. 39, 366–380

    PubMed  CAS  Google Scholar 

  2. Liu, C. et al. (2008) Direct interaction of AGL24 and SOC1 integrates flowering signals in Arabidopsis. Development 135, 1481–1491

    PubMed  CAS  Google Scholar 

  3. Brand, L. et al. (2006) A versatile and reliable two-component system for tissue-specific gene induction in Arabidopsis. Plant Physiol. 141, 1194–1204

    Google Scholar 

  4. Kappers, I.F. et al. (2005) Genetic engineering of terpenoid metabolism attracts bodyguards to Arabidopsis. Science 309, 2070–2072

    PubMed  CAS  Google Scholar 

  5. Aharoni, A. et al. (2003) Terpenoid metabolism in wild-type and transgenic Arabidopsis plants. Plant Cell 15, 2866–2884

    PubMed  CAS  Google Scholar 

  6. Wu, S. et al. (2006) Redirection of cytosolic or plastidic isoprenoid precursors elevates terpene production in plants. Nat. Biotech. 24, 1441–1447

    CAS  Google Scholar 

  7. Lorenc-Kukula, K. et al. (2005) Pleiotropic effect of phenolic compounds content increases in transgenic flax plant. J. Agri. Food Chem. 53, 272–281

    CAS  Google Scholar 

  8. Mathews, H. et al. (2003) Activation tagging in tomato identifies a transcriptional regulator of anthocyanin biosynthesis, modification, and transport. Plant Cell 15, 1689–1703

    PubMed  CAS  Google Scholar 

  9. Ludwig, S.R. et al. (1989) Lc, a member of the maize R gene family responsible for tissue-specific anthocyanin production, encodes a protein similar to transcriptional activators and contains the myc-homology region. Proc. Natl. Acad. Sci. U.S.A. 86, 7092–7096

    PubMed  CAS  Google Scholar 

  10. Ray, H. et al. (2003) Expression of anthocyanins and proanthocyanidins after transformation of alfalfa with maize Lc. Plant Physiol. 132, 1448–1463

    PubMed  CAS  Google Scholar 

  11. Li, H. et al. (2007) Maize Lc transcription factor enhances biosynthesis of anthocyanins, distinct proanthocyanidins and phenylpropanoids in apple (Malus domestica Borkh.). Planta 226, 1243–1254

    PubMed  CAS  Google Scholar 

  12. Hiratsu, K. et al. (2002) The SUPERMAN protein is an active repressor whose carboxy-terminal repression domain is required for the development of normal flowers. FEBS Lett. 514, 351–354

    PubMed  CAS  Google Scholar 

  13. Hiratsu, K. et al. (2004) Identification of the minimal repression domain of SUPERMAN shows that the DLELRL hexapeptide is both necessary and sufficient for repression of transcription in Arabidopsis. Biochem. Biophys. Res. Commun. 321, 172–178

    PubMed  CAS  Google Scholar 

  14. Ohta, M. et al. (2001) Repression domains of class II ERF transcriptional repressors share an essential motif for active repression. Plant Cell 13, 1959–1968

    PubMed  CAS  Google Scholar 

  15. Hiratsu, K. et al. (2003) Dominant repression of target genes by chimeric repressors that include the EAR motif, a repression domain, in Arabidopsis. Plant J. 34, 733–739

    PubMed  CAS  Google Scholar 

  16. Matsui, K. et al. (2004) Suppression of the biosynthesis of proanthocyanidin in Arabidopsis by a chimeric PAP1 repressor. Plant Biotech. J. 2, 487–493

    CAS  Google Scholar 

  17. Ogo, Y. et al. (2008) A novel NAC transcription factor, IDEF2, that recognizes the iron deficiency-responsive element 2 regulates the genes involved in iron homeostasis in plants. J. Biol. Chem. 283, 13407–13417

    PubMed  CAS  Google Scholar 

  18. Xu, Y. et al. (2006) Floral organ identity genes in the orchid Dendrobium crumenatum. Plant J. 46, 54–68

    PubMed  CAS  Google Scholar 

  19. Zhu, X. and Galili, G. (2004) Lysine metabolism is concurrently regulated by synthesis and catabolism in both reproductive and vegetative tissues. Plant Physiol. 135, 129–136

    PubMed  CAS  Google Scholar 

  20. Dinesh-Kumar, S.P. et al. (2003) Virus-induced gene silencing. Methods Mol. Biol. 236, 287–294

    PubMed  CAS  Google Scholar 

  21. Spitzer, B. et al. (2007) Reverse genetics of floral scent: application of tobacco rattle virus-based gene silencing in petunia. Plant Physiol. 145, 1241–1250

    PubMed  CAS  Google Scholar 

  22. Verdonk, J.C. et al. (2005) ODORANT1 regulates fragrance biosynthesis in petunia flowers. Plant Cell 17, 1612–1624

    PubMed  CAS  Google Scholar 

  23. Lindbo, J.A. (2007) TRBO: a high-efficiency tobacco mosaic virus RNA-based overexpression vector. Plant Physiol. 145, 1232–1240

    PubMed  CAS  Google Scholar 

  24. Shaked, H. et al. (2005) High-frequency gene targeting in Arabidopsis plants expressing the yeast RAD54 gene. Proc. Natl. Acad. Sci. U.S.A. 102, 12265–12269

    PubMed  CAS  Google Scholar 

  25. Grundy, F.J. and Henkin, T.M. (1998) The S box regulon: a new global transcription termination control system for methionine and cysteine biosynthesis genes in gram-positive bacteria. Mol. Microbiol. 30, 737–749

    PubMed  CAS  Google Scholar 

  26. Winkler, W. et al. (2002) Thiamine derivatives bind messenger RNAs directly to regulate bacterial gene expression. Nature 419, 952–956

    PubMed  CAS  Google Scholar 

  27. Epshtein, V. et al. (2003) The riboswitch-mediated control of sulfur metabolism in bacteria. Proc. Natl. Acad. Sci. U.S.A. 100, 5052–5056

    PubMed  CAS  Google Scholar 

  28. Barrick, J.E. et al. (2004) New RNA motifs suggest an expanded scope for riboswitches in bacterial genetic control. Proc. Natl. Acad. Sci. U.S.A. 101, 6421–6426

    PubMed  CAS  Google Scholar 

  29. Winkler, W.C. and Breaker, R.R. (2005) Regulation of bacterial gene expression by riboswitches. Annu. Rev. Microbiol. 59, 487–517

    PubMed  CAS  Google Scholar 

  30. Bocobza, S. et al. (2007) Riboswitch-dependent gene regulation and its evolution in the plant kingdom. Genes Dev. 21, 2874–2879

    PubMed  CAS  Google Scholar 

  31. Wachter, A. et al. (2007) Riboswitch control of gene expression in plants by splicing and alternative 3’ end processing of mRNAs. Plant Cell 19, 3437–3450

    PubMed  CAS  Google Scholar 

  32. Burke, D.H. and Gold, L. (1997) RNA aptamers to the adenosine moiety of S-adenosyl methionine: structural inferences from variations on a theme and the reproducibility of SELEX. Nucleic Acids Res. 25, 2020–2024

    PubMed  CAS  Google Scholar 

  33. Famulok, M. and Mayer, G. (1999) Aptamers as tools in molecular biology and immunology. Curr. Top. Microbiol. Immunol. 243, 123–136

    PubMed  CAS  Google Scholar 

  34. Bocobza, S. and Aharoni, A. (2008) Switching the light on plant riboswitches. Trends Plant Sci. 13, 526–533

    Google Scholar 

  35. Artsaenko, O. et al. (1995) Expression of a single-chain Fv antibody against abscisic acid creates a wilty phenotype in transgenic tobacco. Plant J. 8, 745–750

    PubMed  CAS  Google Scholar 

  36. Phillips, J. et al. (1997) Seed-specific immunomodulation of abscisic acid activity induces a developmental switch. EMBO J. 16, 4489–4496

    PubMed  CAS  Google Scholar 

  37. Wigger, J. et al. (2002) Prevention of stomatal closure by immunomodulation of endogenous abscisic acid and its reversion by abscisic acid treatment: physiological behaviour and morphological features of tobacco stomata. Planta 215, 413–423

    PubMed  CAS  Google Scholar 

  38. Suzuki, Y. et al. (2008) Immunomodulation of bioactive gibberellin confers gibberellin-deficient phenotypes in plants. Plant Biotechnol. J. 6, 355–367

    PubMed  CAS  Google Scholar 

  39. ten-Hoopen, P. et al. (2007) Immunomodulation of jasmonate to manipulate the wound response. J. Exp. Bot. 58, 2525–2535

    PubMed  CAS  Google Scholar 

  40. Eto, J. et al. (2003) Anti-herbicide single-chain antibody expression confers herbicide tolerance in transgenic plants. FEBS Lett. 550, 179–184

    PubMed  CAS  Google Scholar 

  41. Almquist, K.C. et al. (2004) Immunomodulation confers herbicide resistance in plants. Plant Biotechnol. J. 2, 189–197

    PubMed  CAS  Google Scholar 

  42. Weiss, Y. et al. (2006) Herbicide-resistance conferred by expression of a catalytic antibody in Arabidopsis thaliana. Nat. Biotechnol. 24, 713–717

    PubMed  CAS  Google Scholar 

  43. Miroshnichenko, S. et al. (2005) Immuno­modulation of function of small heat shock proteins prevents their assembly into heat stress granules and results in cell death at sublethal temperatures. Plant J. 41, 269–281

    PubMed  CAS  Google Scholar 

  44. Nolke, G. et al. (2005) Immunomodulation of polyamine biosynthesis in tobacco plants has a significant impact on polyamine levels and generates a dwarf phenotype. Plant Biotechnol. J. 3, 237–247

    PubMed  Google Scholar 

  45. Aukerman, M.J. and Sakai, H. (2003) Regulation of flowering time and floral organ identity by a microRNA and its APETALA2-like target genes. Plant Cell 15, 2730–2741

    PubMed  CAS  Google Scholar 

  46. Chen, X. (2004) A microRNA as a translational repressor of APETALA2 in Arabidopsis flower development. Science 303, 2022–2025

    PubMed  CAS  Google Scholar 

  47. Palatnik, J.F. et al. (2003) Control of leaf morphogenesis by microRNAs. Nature 425, 257–263

    PubMed  CAS  Google Scholar 

  48. Juarez, M.T. et al. (2004) MicroRNA-mediated repression of rolled leaf1 specifies maize leaf polarity. Nature 428, 84–88

    PubMed  CAS  Google Scholar 

  49. Ko, J.H. et al. (2006) Developmental and seasonal expression of PtaHB1, a Populus gene encoding a class III HD-Zip protein, is closely associated with secondary growth and inversely correlated with the level of microRNA (miR166). New Phytol. 169, 469–478

    PubMed  CAS  Google Scholar 

  50. Kidner, C. and Timmermans, M. (2006) In situ hybridization as a tool to study the role of microRNAs in plant development. Methods Mol. Biol. 342, 159–179

    PubMed  CAS  Google Scholar 

  51. Kutter, C. et al. (2007) MicroRNA-mediated regulation of stomatal development in Arabidopsis. Plant Cell 19, 2417–2429

    PubMed  CAS  Google Scholar 

  52. Lu, S. et al. (2005) Novel and mechanical stress-responsive microRNAs in Populus trichocarpa that are absent from Arabidopsis. Plant Cell 17, 2186–2203

    PubMed  CAS  Google Scholar 

  53. Navarro, L. et al. (2006) A plant miRNA contributes to antibacterial resistance by repressing auxin signaling. Science 312, 436–439

    PubMed  CAS  Google Scholar 

  54. Ru, P. et al. (2006) Plant fertility defects induced by the enhanced expression of microRNA167. Cell Res. 16, 457–465

    PubMed  CAS  Google Scholar 

  55. Reyes, J.L. and Chua, N.H. (2007) ABA induction of miR159 controls transcript levels of two MYB factors during Arabidopsis seed germination. Plant J. 49, 592–606

    PubMed  CAS  Google Scholar 

  56. Liu, P.P. et al. (2007) Repression of AUXIN RESPONSE FACTOR10 by microRNA160 is critical for seed germination and post-germination stages. Plant J. 52, 133–146

    PubMed  CAS  Google Scholar 

  57. Zhang, J.F. et al. (2008) The disturbance of small RNA pathways enhanced abscisic acid response and multiple stress responses in Arabidopsis. Plant Cell Environ. 31, 562–74

    PubMed  CAS  Google Scholar 

  58. Allen, E. et al. (2005) microRNA-directed phasing during trans-acting siRNA biogenesis in plants. Cell 121, 207–221

    PubMed  CAS  Google Scholar 

  59. Alvarez, J.P. et al. (2006) Endogenous and synthetic microRNAs stimulate simultaneous, efficient, and localized regulation of multiple targets in diverse species. Plant Cell 18, 1134–1151

    PubMed  CAS  Google Scholar 

  60. Warthmann, N. et al. (2008) Highly specific gene silencing by artificial miRNAs in rice. PLoS ONE 3, e1829

    PubMed  Google Scholar 

  61. Niu, Q.W. et al. (2006) Expression of artificial microRNAs in transgenic Arabidopsis thaliana confers virus resistance. Nat. Biotechnol. 24, 1420–1428

    PubMed  CAS  Google Scholar 

  62. Qu, J. et al. (2007) Artificial microRNA-mediated virus resistance in plants. J. Virol. 81, 6690–6699

    PubMed  CAS  Google Scholar 

  63. Choi, K. et al. (2007) Arabidopsis homologs of components of the SWR1 complex regulate flowering and plant development. Development 134, 1931–1941

    PubMed  CAS  Google Scholar 

  64. Terada, R. et al. (2007) Gene targeting by homologous recombination as a biotechnological tool for rice functional genomics. Plant Physiol. 144, 846–856

    PubMed  CAS  Google Scholar 

  65. Wright, D.A. et al. (2005) High-frequency homologous recombination in plants mediated by zinc-finger nucleases. Plant J. 44, 693–705

    PubMed  CAS  Google Scholar 

  66. D’Halluin, K. et al. (2008) Homologous recombination: a basis for targeted genome optimization in crop species such as maize. Plant Biotechnol. J. 6, 93–102

    PubMed  Google Scholar 

  67. Dhanasekaran, M. et al. (2005) Designer Zinc finger proteins: tools for creating artifitial DNA-binding functional proteins. Acc. Chem. Res. 39, 45–51

    Google Scholar 

  68. Mani, M. et al. (2005) Design, engineering, and characterization of zinc finger nucleases. Biochem. Biophys. Res. Commun. 335, 447–457

    PubMed  CAS  Google Scholar 

  69. Miller, J.C. et al. (2007) An improved zinc-finger nuclease architecture for highly specific genome editing. Nat. Biotechnol. 25, 778–785

    PubMed  CAS  Google Scholar 

  70. Mandell, J.G. and Barbas, C.F., 3rd (2006) Zinc finger tools: custom DNA-binding domains for transcription factors and nucleases. Nucleic Acids Res. 34, W516–523

    PubMed  CAS  Google Scholar 

  71. Ye, X. et al. (2000) Engineering the provitamin A (beta-carotene) biosynthetic pathway into (carotenoid-free) rice endosperm. Science 287, 303–305

    PubMed  CAS  Google Scholar 

  72. Paine, J.A. et al. (2005) Improving the nutritional value of Golden Rice through increased pro-vitamin A content. Nat. Biotechnol. 23, 482–487

    PubMed  CAS  Google Scholar 

  73. Hoa, T.T. et al. (2003) Golden Indica and Japonica rice lines amenable to deregulation. Plant Physiol. 133, 161–169

    PubMed  CAS  Google Scholar 

  74. Datta, K. et al. (2003) Bioengineered ‘golden’ indica rice cultivars with beta-carotene metabolism in the endosperm with hygromycin and mannose selection systems. Plant Biotechnol. J. 1, 81–90

    PubMed  CAS  Google Scholar 

  75. Baisakh, N. et al. (2006) Marker-free transgenic (MFT) near-isogenic introgression lines (NIILs) of ‘golden’ indica rice (cv. IR64) with accumulation of provitamin A in the endosperm tissue. Plant Biotechnol. J. 4, 467–475

    PubMed  CAS  Google Scholar 

  76. Ishikawa, T. and Shigeoka, S. (2008) Recent advances in ascorbate biosynthesis and the physiological significance of ascorbate peroxidase in photosynthesizing organisms. Biosci. Biotechnol. Biochem. 72, 1143–1154

    PubMed  CAS  Google Scholar 

  77. Conklin, P.L. et al. (2006) Arabidopsis thaliana VTC4 encodes L-galactose-1-P phosphatase, a plant ascorbic acid biosynthetic enzyme. J. Biol. Chem. 281, 15662–15670

    PubMed  CAS  Google Scholar 

  78. Wheeler, G.L. et al. (1998) The biosynthetic pathway of vitamin C in higher plants. Nature 393, 365–369

    PubMed  CAS  Google Scholar 

  79. Tokunaga, T. et al. (2005) Generation and properties of ascorbic acid-overproducing transgenic tobacco cells expressing sense RNA for l-galactono-1,4-lactone dehydrogenase. Planta 220, 854–863

    PubMed  CAS  Google Scholar 

  80. Laing, W.A. et al. (2007) The missing step of the L-galactose pathway of ascorbate biosynthesis in plants, an L-galactose guanyltransferase, increases leaf ascorbate content. Proc. Natl. Acad. Sci. U.S.A. 104, 9534–9539

    PubMed  CAS  Google Scholar 

  81. Giovannoni, J. (2007) Completing a pathway to plant vitamin C synthesis. Proc. Natl. Acad. Sci. U.S.A. 104, 9109–9110

    PubMed  CAS  Google Scholar 

  82. Agius, F. et al. (2003) Engineering increased vitamin C levels in plants by overexpression of a D-galacturonic acid reductase. Nat. Biotechnol. 21, 177–181

    PubMed  CAS  Google Scholar 

  83. Ushimaru, T. et al. (2006) Transgenic Arabidopsis plants expressing the rice dehydroascorbate reductase gene are resistant to salt stress. J. Plant Physiol. 163, 1179–1184

    PubMed  CAS  Google Scholar 

  84. Dellapenna, D. and Pogson, B. (2006) Vitamin synthesis in plants: tocopherols and carotenoids. Annu. Rev. Plant Biol. 57, 711–738

    PubMed  CAS  Google Scholar 

  85. Shintani, D. and DellaPenna, D. (1998) Elevating the vitamin E content of plants through metabolic engineering. Science 282, 2098–2100

    PubMed  CAS  Google Scholar 

  86. Van Eenennaam, A.L. et al. (2003) Engineering vitamin E content: from Arabidopsis mutant to soy oil. Plant Cell 15, 3007–3019

    PubMed  Google Scholar 

  87. Karunanandaa, B. et al. (2005) Metabolically engineered oilseed crops with enhanced seed tocopherol. Metab. Eng. 7, 384–400

    PubMed  CAS  Google Scholar 

  88. Holt, N.E. et al. (2005) Carotenoid cation formation and the regulation of photosynthetic light harvesting. Science 307, 433–436

    PubMed  CAS  Google Scholar 

  89. Havaux, M. and Niyogi, K.K. (1999) The violaxanthin cycle protects plants from photooxidative damage by more than one mechanism. Proc. Natl. Acad. Sci. U.S.A. 96, 8762–8767

    PubMed  CAS  Google Scholar 

  90. Davison, P.A. et al. (2002) Overexpression of b-carotene hydroxylase enhances stress tolerance in Arabidopsis. Nature 418, 203–206

    PubMed  CAS  Google Scholar 

  91. Schwartz, S.H. et al. (2003) Elucidation of the indirect pathway of abscisic acid biosynthesis by mutants, genes, and enzymes. Plant Physiol. 131, 1591–1601

    PubMed  CAS  Google Scholar 

  92. Eriksson, C.E. and Na, A. (1995) Antioxidant agents in raw materials and processed foods. Biochem. Soc. Symp. 61, 221–234

    PubMed  CAS  Google Scholar 

  93. Giovannucci, E. (2005) Tomato products, lycopene, and prostate cancer: a review of the epidemiological literature. J. Nutr. 135, 2030S-2031S

    PubMed  CAS  Google Scholar 

  94. Rao, A.V. and Rao, L.G. (2007) Carotenoids and human health. Pharmacol. Res. 55, 207–216

    PubMed  CAS  Google Scholar 

  95. Sies, H. and Stahl, W. (2003) Non-nutritive bioactive constituents of plants: lycopene, lutein and zeaxanthin. Int. J. Vitam. Nutr. Res. 73, 95–100

    PubMed  Google Scholar 

  96. Stahl, W. and Sies, H. (2003) Antioxidant activity of carotenoids. Mol. Aspects Med. 24, 345–351

    PubMed  CAS  Google Scholar 

  97. Wang, F. et al. (2007) Progress on molecular breeding and metabolic engineering of biosynthesis pathways of C(30), C(35), C(40), C(45), C(50) carotenoids. Biotechnol. Adv. 25, 211–222

    PubMed  Google Scholar 

  98. Kavanaugh, C.J. et al. (2007) The U.S. Food and Drug Administration’s evidence-based review for qualified health claims: tomatoes, lycopene, and cancer. J. Natl. Cancer Inst. 99, 1074–1085

    PubMed  CAS  Google Scholar 

  99. Voutilainen, S. et al. (2006) Carotenoids and cardiovascular health. Am. J. Clin. Nutr. 83, 1265–1271

    PubMed  CAS  Google Scholar 

  100. Rao, A.V. et al. (2006) Lycopene. Adv. Food Nutr. Res. 51, 99–164

    PubMed  CAS  Google Scholar 

  101. Long, M. et al. (2006) Metabolite profiling of carotenoid and phenolic pathways in mutant and transgenic lines of tomato: identification of a high antioxidant fruit line. Phytochemistry 67, 1750–1757

    PubMed  CAS  Google Scholar 

  102. Frusciante, L. et al. (2007) Antioxidant nutritional quality of tomato. Mol. Nutr. Food Res. 51, 609–617

    PubMed  CAS  Google Scholar 

  103. Liu, Y. et al. (2004) Manipulation of light signal transduction as a means of modifying fruit nutritional quality in tomato. Proc. Natl. Acad. Sci. U.S.A. 101, 9897–9902

    PubMed  CAS  Google Scholar 

  104. Levin, I. et al. (2003) The tomato dark green mutation is a novel allele of the tomato homolog of the DEETIOLATED1 gene. Theor. Appl. Genet. 106, 454–460

    PubMed  CAS  Google Scholar 

  105. Davuluri, G.R. et al. (2005) Fruit-specific RNAi-mediated suppression of DET1 enhances carotenoid and flavonoid content in tomatoes. Nat. Biotechnol. 23, 890–895

    PubMed  CAS  Google Scholar 

  106. Guerin, M. et al. (2003) Haematococcus astaxanthin: applications for human health and nutrition. Trends Biotechnol. 21, 210–216

    PubMed  CAS  Google Scholar 

  107. Hussein, G. et al. (2006) Astaxanthin, a carotenoid with potential in human health and nutrition. J. Nat. Prod. 69, 443–449

    PubMed  CAS  Google Scholar 

  108. Torrissen, O.J. et al. (1989) Pigmentation of salmonids carotenoid deposition and metabolism. Aquatic Sci. 2, 209–225

    Google Scholar 

  109. Yuan, J.P. and Chen, F. (2000) Purification of trans-astaxanthin from a high-yielding astaxanthin ester-producing strain of the microalga Haematococcuss pluvialis. Food Chem. 68, 443–448

    CAS  Google Scholar 

  110. Sarada, R. et al. (2006) An efficient method for extraction of astaxanthin from green alga Haematococcus pluvialis. J. Agri. Food Chem. 54, 7585–7588

    CAS  Google Scholar 

  111. Gerjets, T. et al. (2007) Metabolic engineering of ketocarotenoid biosynthesis in leaves and flowers of tobacco species. Biotechnol. J. 2, 1263–1269

    PubMed  CAS  Google Scholar 

  112. Mann, V. et al. (2000) Metabolic engineering of astaxanthin production in tobacco flowers. Nat. Biotechnol. 18, 888–892

    PubMed  CAS  Google Scholar 

  113. Stalberg, K. et al. (2003) Synthesis of ketocarotenoids in the seed of Arabidopsis thaliana. Plant J. 36, 771–779

    PubMed  CAS  Google Scholar 

  114. Ralley, L. et al. (2004) Metabolic engineering of ketocarotenoid formation in higher plants. Plant J. 39, 477–486

    PubMed  CAS  Google Scholar 

  115. Clair, R.S. and Anthony, M. (2005) Soy, isoflavones and atherosclerosis. Handb. Exp. Pharmacol. 170, 301–323

    PubMed  Google Scholar 

  116. Gonzalez-Gallego, J. et al. (2007) Anti-inflammatory properties of dietary flavonoids. Nutr. Hosp. 22, 287–293

    PubMed  CAS  Google Scholar 

  117. Patel, D. et al. (2007) Apigenin and cancer chemoprevention: progress, potential and promise (review). Int. J. Oncol. 30, 233–245

    PubMed  CAS  Google Scholar 

  118. Rice-Evans, C. (2001) Flavonoid antioxidants. Curr. Med. Chem. 8, 797–807

    PubMed  CAS  Google Scholar 

  119. Tipoe, G.L. et al. (2007) Green tea polyphenols as an anti-oxidant and anti-inflammatory agent for cardiovascular protection. Cardiovasc. Hematol. Disord. Drug Targets 7, 135–144

    PubMed  CAS  Google Scholar 

  120. Wang, H.K. (2000) The therapeutic potential of flavonoids. Expert Opin. Investig. Drugs 9, 2103–2119

    PubMed  CAS  Google Scholar 

  121. Korkina, L.G. (2007) Phenylpropanoids as naturally occurring antioxidants: from plant defense to human health. Cell Mol. Biol. 53, 15–25

    PubMed  CAS  Google Scholar 

  122. Seigler, D.S. (2002) Plant secondary metabolism. Kluwer, Boston

    Google Scholar 

  123. Muir, S.R. et al. (2001) Overexpression of petunia chalcone isomerase in tomato results in fruit containing increased levels of flavonols. Nat. Biotechnol. 19, 470–474

    PubMed  CAS  Google Scholar 

  124. Bovy, A. et al. (2002) High-flavonol tomatoes resulting from the heterologous expression of the maize transcription factor genes LC and C1. Plant Cell 14, 2509–2526

    PubMed  CAS  Google Scholar 

  125. Scalbert, A. et al. (2000) Proanthocyanidins and human health: systemic effects and local effects in the gut. Biofactors 13, 115–120

    PubMed  CAS  Google Scholar 

  126. Ishida, K. et al. (2006) Influence of tannins from Stryphnodendron adstringens on growth and virulence factors of Candida albicans. J. Antimicrob. Chemother. 58, 942–949

    PubMed  CAS  Google Scholar 

  127. Sadava, D. et al. (2007) The green tea polyphenol, epigallocatechin-3-gallate inhibits telomerase and induces apoptosis in drug-resistant lung cancer cells. Biochem. Biophys. Res. Commun. 360, 233–237

    PubMed  CAS  Google Scholar 

  128. Ramljak, D. et al. (2005) Pentameric procyanidin from Theobroma cacao selectively inhibits growth of human breast cancer cells. Mol. Cancer Ther. 4, 537–546

    PubMed  CAS  Google Scholar 

  129. Brunet, S. and Hoste, H. (2006) Monomers of condensed tannins affect the larval exsheathment of parasitic nematodes of ruminants. J. Agri. Food Chem. 54, 7481–7487

    CAS  Google Scholar 

  130. Iqbal, Z. et al. (2007) Direct and indirect anthelmintic effects of condensed tannins in sheep. Vet.Parasitol. 144, 125–131

    PubMed  CAS  Google Scholar 

  131. Debeaujon, I. et al. (2000) Influence of the testa on seed dormancy, germination, and longevity in Arabidopsis. Plant Physiol. 122, 403–414

    PubMed  CAS  Google Scholar 

  132. Abrahams, S. et al. (2002) Identification and biochemical characterization of mutants in the proanthocyanidin pathway in Arabidopsis. Plant Physiol. 130, 561–576

    PubMed  CAS  Google Scholar 

  133. Pourcel, L. et al. (2005) TRANSPARENT TESTA10 encodes a laccase-like enzyme involved in oxidative polymerization of flavonoids in Arabidopsis seed coat. Plant Cell 17, 2966–2980

    PubMed  CAS  Google Scholar 

  134. Bogs, J. et al. (2007) The grapevine transcription factor VvMYBPA1 regulates proanthocyanidin synthesis during fruit development. Plant Physiol. 143, 1347–1361

    PubMed  CAS  Google Scholar 

  135. Xie, D.Y. et al. (2006) Metabolic engineering of proanthocyanidins through co-expression of anthocyanidin reductase and the PAP1 MYB transcription factor. Plant J. 45, 895–907

    PubMed  CAS  Google Scholar 

  136. Borevitz, J.O. et al. (2000) Activation tagging identifies a conserved MYB regulator of phenylpropanoid biosynthesis. Plant Cell 12, 2383–2394

    PubMed  CAS  Google Scholar 

  137. Tian, L. et al. (2007) Biosynthesis and genetic engineering of proanthocyanidins and (iso)flavonoids. Phytochem. Rev. 7, 445–465

    Google Scholar 

  138. Dixon, R.A. and Sumner, L.W. (2003) Legume natural products: understanding and manipulating complex pathways for human and animal health. Plant Physiol. 131, 878–885

    PubMed  CAS  Google Scholar 

  139. Wuttke, W. et al. (2007) Isoflavones - safe food additives or dangerous drugs? Ageing Res. Rev. 6, 150–188

    PubMed  CAS  Google Scholar 

  140. Branca, F. and Lorenzetti, S. (2005) Health effects of phytoestrogens. Forum Nutr. 57, 100–111

    PubMed  Google Scholar 

  141. Giorcelli, A. et al. (2004) Expression of the stilbene synthase (StSy) gene from grapevine in transgenic white poplar results in high accumulation of the antioxidant resveratrol glucosides. Transgenic Res. 13, 203–214

    PubMed  CAS  Google Scholar 

  142. Aggarwal, B.B. et al. (2004) Role of resveratrol in prevention and therapy of cancer: preclinical and clinical studies. Anticancer Res. 24, 2783–2840

    PubMed  CAS  Google Scholar 

  143. Ulrich, S. et al. (2005) Molecular mechanisms of the chemopreventive effects of resveratrol and its analogs in carcinogenesis. Mol. Nutr. Food Res. 49, 452–461

    PubMed  CAS  Google Scholar 

  144. Shankar, S. et al. (2007) Chemoprevention by resveratrol: molecular mechanisms and therapeutic potential. Front. Biosci. 12, 4839–4854

    PubMed  CAS  Google Scholar 

  145. de Lange, D.W. et al. (2007) Polyphenolic grape extract inhibits platelet activation through PECAM-1: an explanation for the French paradox. Alcohol Clin. Exp. Res. 31, 1308–1314

    PubMed  Google Scholar 

  146. Halls, C. and Yu, O. (2008) Potential for metabolic engineering of resveratrol biosynthesis. Trends Biotechnol. 26, 77–81

    PubMed  CAS  Google Scholar 

  147. Hain, R. et al. (1993) Disease resistance results from foreign phytoalexin expression in a novel plant. Nature 361, 153–156

    PubMed  CAS  Google Scholar 

  148. Kobayashi, S. et al. (2000) Kiwifruits (Actinidia deliciosa) transformed with a Vitis stilbene synthase gene produce piceid (resveratrol-glucoside). Plant Cell Reports 19, 904–910

    CAS  Google Scholar 

  149. Ruhmann, S. et al. (2006) Piceid (resveratrol glucoside) synthesis in stilbene synthase transgenic apple fruit. J. Agri. Food Chem. 54, 4633–4640

    Google Scholar 

  150. Szankowski, I. et al. (2003) Transformation of apple (Malus domestica Borkh.) with the stilbene synthase gene from grapevine (Vitis vinifera L.) and a PGIP gene from kiwi (Actinidia deliciosa). Plant Cell Rep. 22, 141–149

    PubMed  CAS  Google Scholar 

  151. Zhu, Y.J. et al. (2004) Expression of the grapevine stilbene synthase gene VST1 in papaya provides increased resistance against diseases caused by Phytophthora palmivora. Planta 220, 241–250

    PubMed  CAS  Google Scholar 

  152. Richter, A. et al. (2006) Transgenic peas (Pisum sativum) expressing polygalacturonase inhibiting protein from raspberry (Rubus idaeus) and stilbene synthase from grape (Vitis vinifera). Plant Cell Rep. 25, 1166–1173

    PubMed  CAS  Google Scholar 

  153. Giovinazzo, G. et al. (2005) Antioxidant metabolite profiles in tomato fruit constitutively expressing the grapevine stilbene synthase gene. Plant Biotechnol. J. 3, 57–69

    PubMed  CAS  Google Scholar 

  154. Schwekendiek, A. et al. (2007) Constitutive expression of a grapevine stilbene synthase gene in transgenic hop (Humulus lupulus L.) yields resveratrol and its derivatives in substantial quantities. J. Agri. Food Chem. 55, 7002–7009

    CAS  Google Scholar 

  155. Hipskind, J.D. and Paiva, N.L. (2000) Constitutive accumulation of a resveratrol-glucoside in transgenic alfalfa increases resistance to Phoma medicaginis. Mol. Plant Microbe Interact. 13, 551–562

    PubMed  CAS  Google Scholar 

  156. Regev-Shoshani, G. et al. (2003) Glycosylation of resveratrol protects it from enzymic oxidation. Biochem. J. 374, 157–163

    PubMed  CAS  Google Scholar 

  157. Jeandet, P. et al. (2002) Phytoalexins from the Vitaceae: biosynthesis, phytoalexin gene expression in transgenic plants, antifungal activity, and metabolism. J. Agri. Food Chem. 50, 2731–2741

    CAS  Google Scholar 

  158. Dudareva, N. and Pichersky, E. (2008) Metabolic engineering of plant volatiles. Curr. Opin. Biotechnol. 19, 181–189

    PubMed  CAS  Google Scholar 

  159. Aharoni, A. et al. (2005) Volatile science? Metabolic engineering of terpenoids in plants. Trends Plant Sci. 10, 594–602

    PubMed  CAS  Google Scholar 

  160. Aubert, C. and Bourger, N. (2004) Investigation of volatiles in Charentais cantaloupe melons (Cucumis melo var. cantalupensis). Characterization of aroma constituents in some cultivars. J. Agri. Food Chem. 52, 4522–4528

    CAS  Google Scholar 

  161. Picone, J.M. et al. (2004) Rhythmic emission of floral volatiles from Rosa damascena semperflorens cv. ‘Quatre Saisons’. Planta 219, 468–478

    PubMed  CAS  Google Scholar 

  162. Cheng, A.X. et al. (2007) The rice (E)-β-caryophyllene synthase (OsTPS3) accounts for the major inducible volatile sesquiterpenes. Phytochemistry 68, 1632–1641

    PubMed  CAS  Google Scholar 

  163. Lucker, J. et al. (2001) Expression of Clarkia S-linalool synthase in transgenic petunia plants results in the accumulation of S-linalyl-β-D-glucopyranoside. Plant J. 27, 315–324

    PubMed  CAS  Google Scholar 

  164. Rouseff, R.L. and Leahy, M.M. (1995) Fruit flavors. Biogenesis, characterization, and authentication. American Chemical Society, Washington

    Google Scholar 

  165. Lunkenbein, S. et al. (2006) Cinnamate metabolism in ripening fruit. Characterization of a UDP-glucose:cinnamate glucosyltransferase from strawberry. Plant Physiol. 140, 1047–1058

    PubMed  CAS  Google Scholar 

  166. Aharoni, A. et al. (2004) Gain and loss of fruit flavor compounds produced by wild and cultivated strawberry species. Plant Cell 16, 3110–3131

    PubMed  CAS  Google Scholar 

  167. Speirs, J. et al. (1998) Genetic manipulation of alcohol dehydrogenase levels in ripening tomato fruit affects the balance of some flavor aldehydes and alcohols. Plant Physiol. 117, 1047–1058

    PubMed  CAS  Google Scholar 

  168. Lewinsohn, E. et al. (2001) Enhanced levels of the aroma and flavor compound S-linalool by metabolic engineering of the terpenoid pathway in tomato fruits. Plant Physiol. 127, 1256–1265

    PubMed  CAS  Google Scholar 

  169. Davidovich-Rikanati, R. et al. (2007) Enrichment of tomato flavor by diversion of the early plastidial terpenoid pathway. Nat. Biotechnol. 25, 899–901

    PubMed  CAS  Google Scholar 

  170. Gang, D.R. (2005) Evolution of flavors and scents. Annu. Rev. Plant Biol. 56, 301–325

    PubMed  CAS  Google Scholar 

  171. Lucker, J. et al. (2004) Increased and altered fragrance of tobacco plants after metabolic engineering using three monoterpene synthases from lemon. Plant Physiol. 134, 510–519

    PubMed  Google Scholar 

  172. Zuker, A. et al. (2002) Modification of flower color and fragrance by antisense suppression of the. flavanone 3-hydroxylase gene. Mol. Breeding 9, 33–41

    CAS  Google Scholar 

  173. Baumann, K. et al. (2007) Control of cell and petal morphogenesis by R2R3 MYB transcription factors. Development 134, 1691–1701

    PubMed  CAS  Google Scholar 

  174. Noda, K. et al. (1994) Flower colour intensity depends on specialized cell shape controlled by a MYB-related transcription factor. Nature 369, 661–664

    PubMed  CAS  Google Scholar 

  175. Fukada-Tanaka, S. et al. (2000) Colour-enhancing protein in blue petals. Nature 407, 581

    PubMed  CAS  Google Scholar 

  176. Iida, S. et al. (2004) Genes encoding proteins regulating the pH of vacuoles. In: Patent US, United States

    Google Scholar 

  177. Meyer, P. et al. (1987) A new petunia flower colour generated by transformation of a mutant with a maize gene. Nature 330, 677–678

    PubMed  CAS  Google Scholar 

  178. Tanaka, Y. et al. (1998) Metabolic engineering to modify flower color. Plant Cell Physiol. 39, 1119–1126

    CAS  Google Scholar 

  179. Forkmann, G. and Martens, S. (2001) Metabolic engineering and applications of flavonoids. Curr. Opin. Biotechnol. 12, 155–160

    PubMed  CAS  Google Scholar 

  180. Mori, S. et al. (2004) Heterologous expression of the flavonoid 3’,5’-hydroxylase gene of Vinca major alters flower color in transgenic Petunia hybrida. Plant Cell Rep. 22, 415–421

    PubMed  CAS  Google Scholar 

  181. Fukusaki, E. et al. (2004) Flower color modulations of Torenia hybrida by downregulation of chalcone synthase genes with RNA interference. J. Biotechnol 111, 229–240

    PubMed  CAS  Google Scholar 

  182. Ono, E. et al. (2006) Yellow flowers generated by expression of the aurone biosynthetic pathway. Proc. Natl. Acad. Sci. U.S.A. 103, 11075–11080

    PubMed  CAS  Google Scholar 

  183. Nakatsuka, T. et al. (2007) Production of red-flowered plants by genetic engineering of multiple flavonoid biosynthetic genes. Plant Cell Rep. 26, 1951–1959

    PubMed  CAS  Google Scholar 

  184. Selinger, D.A. and Chandler, V.L. (1999) A mutation in the pale aleurone color1 gene identifies a novel regulator of the maize anthocyanin pathway. Plant Cell 11, 5–14

    PubMed  CAS  Google Scholar 

  185. Hoballah, M.E. et al. (2007) Single gene-mediated shift in pollinator attraction in petunia. Plant Cell 19, 779–790

    PubMed  CAS  Google Scholar 

  186. Quattrocchio, F. et al. (1999) Molecular analysis of the ANTHOCYANIN2 gene of petunia and its role in the evolution of flower color. Plant Cell 11, 1433–1444

    PubMed  CAS  Google Scholar 

  187. Ban, Y. et al. (2007) Isolation and functional analysis of a MYB transcription factor gene that is a key regulator for the development of red coloration in apple skin. Plant Cell Physiol. 48, 958–970

    PubMed  CAS  Google Scholar 

  188. Espley, R.V. et al. (2007) Red colouration in apple fruit is due to the activity of the MYB transcription factor, MdMYB10. Plant J. 49, 414–427

    PubMed  CAS  Google Scholar 

  189. Takos, A.M. et al. (2006) Light-induced expression of a MYB gene regulates anthocyanin biosynthesis in red apples. Plant Physiol. 142, 1216–1232

    PubMed  CAS  Google Scholar 

  190. Suzuki, S. et al. (2007) Flower color alteration in Lotus japonicus by modification of the carotenoid biosynthetic pathway. Plant Cell Rep. 26, 951–959

    PubMed  CAS  Google Scholar 

  191. Ohmiya, A. et al. (2006) Carotenoid cleavage dioxygenase (CmCCD4a) contributes to white color formation in chrysanthemum petals. Plant Physiol. 142, 1193–1201

    PubMed  CAS  Google Scholar 

  192. Vrebalov, J. et al. (2002) A MADS-box gene necessary for fruit ripening at the tomato ripening-inhibitor (rin) locus. Science 296, 343–346

    PubMed  CAS  Google Scholar 

  193. Lu, S. et al. (2006) The cauliflower Or gene encodes a DnaJ cysteine-rich domain-containing protein that mediates high levels of beta-carotene accumulation. Plant Cell 18, 3594–3605

    PubMed  CAS  Google Scholar 

  194. Balint, G.A. (2001) Artemisinin and its derivatives: an important new class of antimalarial agents. Pharmacol. Ther. 90, 261–265

    PubMed  CAS  Google Scholar 

  195. Liu, C. et al. (2006) Artemisinin: current state and perspectives for biotechnological production of an antimalarial drug. Appl. Microbiol. Biotechnol. 72, 11–20

    PubMed  CAS  Google Scholar 

  196. Matsushita, Y. et al. (1996) Cloning and analysis of a cDNA encoding farnesyl diphosphate synthase from Artemisia annua. Gene 172, 207–209

    PubMed  CAS  Google Scholar 

  197. Wallaart, T.E. et al. (2001) Amorpha-4,11-diene synthase: cloning and functional expression of a key enzyme in the biosynthetic pathway of the novel antimalarial drug artemisinin. Planta 212, 460–465

    PubMed  CAS  Google Scholar 

  198. Sa, G. et al. (2001) Effects of ipt gene expression on the physiological and chemical characteristics of Artemisia annua L. Plant Sci. 160, 691–698

    PubMed  Google Scholar 

  199. Kingston, D.G. and Newman, D.J. (2007) Taxoids: cancer-fighting compounds from nature. Curr. Opin. Drug Discov. Devel. 10, 130–144

    PubMed  CAS  Google Scholar 

  200. Ketchum, R.E. et al. (2003) Taxus metabolomics: methyl jasmonate preferentially induces production of taxoids oxygenated at C-13 in Taxus x media cell cultures. Phytochemistry 62, 901–909

    PubMed  CAS  Google Scholar 

  201. Navia-Osorio, A. et al. (2002) Production of paclitaxel and baccatin III in a 20-L airlift bioreactor by a cell suspension of Taxus wallichiana. Planta Med. 68, 336–340

    PubMed  CAS  Google Scholar 

  202. Doi, T. et al. (2006) A formal total synthesis of taxol aided by an automated synthesizer. Chem. Asian J. 1, 370–383

    PubMed  CAS  Google Scholar 

  203. Guo, B.H. et al. (2005) Taxol synthesis. African J. Biotechnol. 5, 15–20

    CAS  Google Scholar 

  204. Dejong, J.M. et al. (2006) Genetic engineering of taxol biosynthetic genes in Saccharomyces cerevisiae. Biotechnol. Bioeng. 93, 212–224

    PubMed  CAS  Google Scholar 

  205. Aoyama, T. and Chua, N.H. (1997) A glucocorticoid-mediated transcriptional induction system in transgenic plants. Plant J. 11, 605–612

    PubMed  CAS  Google Scholar 

  206. Besumbes, O. et al. (2004) Metabolic engineering of isoprenoid biosynthesis in Arabidopsis for the production of taxadiene, the first committed precursor of taxol. Biotechnol. Bioeng. 88, 168–175

    PubMed  CAS  Google Scholar 

  207. Botella-Pavia, P. et al. (2004) Regulation of carotenoid biosynthesis in plants: evidence for a key role of hydroxymethylbutenyl diphosphate reductase in controlling the supply of plastidial isoprenoid precursors. Plant J. 40, 188–199

    PubMed  CAS  Google Scholar 

  208. Kovacs, K. et al. (2007) Redirection of carotenoid metabolism for the efficient production of taxadiene [taxa-4(5),11(12)-diene] in transgenic tomato fruit. Transgenic Res. 16, 121–126

    PubMed  CAS  Google Scholar 

  209. Rontein, D. et al. (2008) CYP725A4 from yew catalyzes complex structural rearrangement of taxa-4(5),11(12)-diene into the cyclic ether 5(12)-oxa-3(11)-cyclotaxane. J. Biol. Chem. 283, 6067–6075

    PubMed  CAS  Google Scholar 

  210. Suzuki, K. et al. (1999) An Atropa belladonna hyoscyamine 6beta-hydroxylase gene is differentially expressed in the root pericycle and anthers. Plant Mol. Biol. 40, 141–152

    PubMed  CAS  Google Scholar 

  211. Palazon, J. et al. (2003) Alkaloid production in Duboisia hybrid hairy roots and plants overexpressing the h6h gene. Plant Sci. 165, 1289–1295

    CAS  Google Scholar 

  212. Matsuda, J. et al. (1991) Molecular cloning of hyoscyamine 6 beta-hydroxylase, a 2-oxoglutarate-dependent dioxygenase, from cultured roots of Hyoscyamus niger. J. Biol. Chem. 266, 9460–9464

    PubMed  CAS  Google Scholar 

  213. Yun, D.J. et al. (1992) Metabolic engineering of medicinal plants: transgenic Atropa belladonna with an improved alkaloid composition. Proc. Natl. Acad. Sci. U.S.A. 89, 11799–11803

    PubMed  CAS  Google Scholar 

  214. Hashimoto, T. et al. (1993) Production of tropane alkaloids in genetically engineered root cultures. Phytochemistry 32, 713–718

    CAS  Google Scholar 

  215. Jouhikainen, K. et al. (1999) Enhancement of scopolamine production in Hyoscyamus muticus L. hairy root cultures by genetic engineering. Planta 208, 545–551

    CAS  Google Scholar 

  216. Hakkinen, S.T. et al. (2005) Enhanced secretion of tropane alkaloids in Nicotiana tabacum hairy roots expressing heterologous hyoscyamine-6beta-hydroxylase. J. Exp. Bot. 56, 2611–2618

    PubMed  Google Scholar 

  217. Zhang, L. et al. (2004) Engineering tropane biosynthetic pathway in Hyoscyamus niger hairy root cultures. Proc. Natl. Acad. Sci. U.S.A. 101, 6786–6791

    PubMed  CAS  Google Scholar 

  218. Nakajima, K. et al. (1999) Structures and expression patterns of two tropinone reductase genes from Hyoscyamus niger. Biosci. Biotechnol. Biochem. 63, 1756–1764

    PubMed  CAS  Google Scholar 

  219. Drager, B. (2006) Tropinone reductases, enzymes at the branch point of tropane alkaloid metabolism. Phytochemistry 67, 327–337

    PubMed  Google Scholar 

  220. Richter, U. et al. (2005) Overexpression of tropinone reductases alters alkaloid composition in Atropa belladonna root cultures. J. Exp. Bot. 56, 645–652

    PubMed  CAS  Google Scholar 

  221. Brownstein, M.J. (1993) A brief history of opiates, opioid peptides, and opioid receptors. Proc. Natl. Acad. Sci. U.S.A. 90, 5391–5393

    PubMed  CAS  Google Scholar 

  222. Ye, K. et al. (1998) Opium alkaloid noscapine is an antitumor agent that arrests metaphase and induces apoptosis in dividing cells. Proc. Natl. Acad. Sci. U.S.A. 95, 1601–1606

    PubMed  CAS  Google Scholar 

  223. Bird, D.A. et al. (2003) A tale of three cell types: alkaloid biosynthesis is localized to sieve elements in opium poppy. Plant Cell 15, 2626–2635

    PubMed  CAS  Google Scholar 

  224. Facchini, P.J. and De Luca, V. (1995) Phloem-specific expression of tyrosine/dopa decarboxylase genes and the biosynthesis of isoquinoline alkaloids in opium poppy. Plant Cell 7, 1811–1821

    PubMed  CAS  Google Scholar 

  225. Samanani, N. et al. (2006) The role of phloem sieve elements and laticifers in the biosynthesis and accumulation of alkaloids in opium poppy. Plant J. 47, 547–563

    PubMed  CAS  Google Scholar 

  226. Frick, S. et al. (2007) Metabolic engineering with a morphine biosynthetic P450 in opium poppy surpasses breeding. Metab. Eng. 9, 169–176

    PubMed  CAS  Google Scholar 

  227. Larkin, P.J. et al. (2007) Increasing morphinan alkaloid production by over-expressing codeinone reductase in transgenic Papaver somniferum. Plant Biotechnol. J. 5, 26–37

    PubMed  CAS  Google Scholar 

  228. Frick, S. et al. (2004) Transformation of opium poppy (Papaver somniferum L.) with antisense berberine bridge enzyme gene (anti-bbe) via somatic embryogenesis results in an altered ratio of alkaloids in latex but not in roots. Transgenic Res. 13, 607–613

    PubMed  CAS  Google Scholar 

  229. Fujii, N. et al. (2007) Knockdown of berberine bridge enzyme by RNAi accumulates (S)-reticuline and activates a silent pathway in cultured California poppy cells. Transgenic Res. 16, 363–375

    PubMed  CAS  Google Scholar 

  230. Barleben, L. et al. (2007) Molecular architecture of strictosidine glucosidase: the gateway to the biosynthesis of the monoterpenoid indole alkaloid family. Plant Cell 19, 2886–2897

    PubMed  CAS  Google Scholar 

  231. McCoy, E. et al. (2006) Substrate specificity of strictosidine synthase. Bioorg. Med. Chem. Lett. 16, 2475–2478

    PubMed  CAS  Google Scholar 

  232. Liu, D.H. et al. (2007) Terpenoid Indole Alkaloids biosynthesis and metabolic engineering in Catharanthus roseus. J.Integrat. Plant Biol. 49, 961–974

    CAS  Google Scholar 

  233. Canel, C. et al. (1998) Effects of over-expression of strictosidine synthase and tryptophan decarboxylase on alkaloid production by cell cultures of Catharanthus roseus. Planta 205, 414–419

    PubMed  CAS  Google Scholar 

  234. van der Fits, L. and Memelink, J. (2000) ORCA3, a jasmonate-responsive transcriptional regulator of plant primary and secondary metabolism. Science 289, 295–297

    PubMed  Google Scholar 

  235. van der Fits, L. and Memelink, J. (2001) The jasmonate-inducible AP2/ERF-domain transcription factor ORCA3 activates gene expression via interaction with a jasmonate-responsive promoter element. Plant J. 25, 43–53

    PubMed  Google Scholar 

  236. Memelink, J. et al. (2001) ORCAnization of jasmonate-responsive gene expression in alkaloid metabolism. Trends Plant Sci. 6, 212–219

    PubMed  CAS  Google Scholar 

  237. De Moraes, C.M. et al. (2001) Caterpillar-induced nocturnal plant volatiles repel conspecific females. Nature 410, 577–580

    PubMed  Google Scholar 

  238. Kessler, A. and Baldwin, I.T. (2001) Defensive function of herbivore-induced plant volatile emissions in nature. Science 291, 2141–2144

    PubMed  CAS  Google Scholar 

  239. Delphia, C.M. et al. (2007) Induction of plant volatiles by herbivores with different feeding habits and the effects of induced defenses on host-plant selection by thrips. J. Chem. Ecol. 33, 997–1012

    PubMed  CAS  Google Scholar 

  240. Bouwmeester, H.J. et al. (1999) Spider mite-induced (3S)-(E)-nerolidol synthase activity in cucumber and lima bean. The first dedicated step in acyclic C11-homoterpene biosynthesis. Plant Physiol. 121, 173–180

    PubMed  CAS  Google Scholar 

  241. Turlings, T.C. and Fritzsche, M.E. (1999) Attraction of parasitic wasps by caterpillar-damaged plants. Novartis Found. Symp. 223, 21–32; discussion 32–38

    PubMed  CAS  Google Scholar 

  242. Van Poecke, R.M. et al. (2001) Herbivore-induced volatile production by Arabidopsis thaliana leads to attraction of the parasitoid Cotesia rubecula: chemical, behavioral, and gene-expression analysis. J. Chem. Ecol. 27, 1911–1928

    PubMed  Google Scholar 

  243. Akila, A. and Tewari, R. (1984) Chemistry of patchouli oil: a review. Curr. Res. Med. Arom. Plants 6, 38–54

    Google Scholar 

  244. Zhu, B.C. et al. (2003) Toxicity and repellency of patchouli oil and patchouli alcohol against Formosan subterranean termites Coptotermes formosanus Shiraki (Isoptera: Rhinotermitidae). J. Agri. Food Chem. 51, 4585–4588

    CAS  Google Scholar 

  245. Aharoni, A. et al. (2006) Metabolic engineering of terpenoid biosynthesis in plants. Phytochem. Rev. 5, 49–58

    CAS  Google Scholar 

  246. Degenhardt, J. and Gershenzon, J. (2000) Demonstration and characterization of (E)-nerolidol synthase from maize: a herbivore-inducible terpene synthase participating in (3E)-4,8-dimethyl-1,3,7-nonatriene biosynthesis. Planta 210, 815–822

    PubMed  CAS  Google Scholar 

  247. Schnee, C. et al. (2006) The products of a single maize sesquiterpene synthase form a volatile defense signal that attracts natural enemies of maize herbivores. Proc. Natl. Acad. Sci. U.S.A. 103, 1129–1134

    PubMed  CAS  Google Scholar 

  248. Schulze, K. et al. (2005) Inhibiting effects of resveratrol and its glucoside piceid against Venturia inaequalis, the causal agent of apple scab. J. Agri. Food Chem. 53, 356–362

    CAS  Google Scholar 

  249. Torres, P. et al. (2003) Antioxidant and insect growth regulatory activities of stilbenes and extracts from Yucca periculosa. Phytochemistry 64, 463–473

    PubMed  CAS  Google Scholar 

  250. Leckband, G. and Lorz, H. (1998) Transformation and expressoin of a stilbene synthase gene of Vitis vinifera L. in barley and wheat for increased fungal resistance. Theor. Appl. Genet. 96, 1004–1012

    Google Scholar 

  251. Thomzik, J.E. et al. (1997) Synthesis of a grapevine phytoalexin in transgenic tomatoes (Lycopersicon esculentum Mill.) conditions resistance against Phytophthora infestans. Physiol. Mol. Plant Pathol. 51, 265–278

    CAS  Google Scholar 

  252. Serazetdinova, L. et al. (2005) Expression of transgenic stilbene synthases in wheat causes the accumulation of unknown stilbene derivatives with antifungal activity. J. Plant Physiol. 162, 985–1002

    PubMed  CAS  Google Scholar 

  253. Stark-Lorenzen, P. et al. (1997) Transfer of a grapevine stilbene synthase gene to rice (Oryza sativa L.) Plant Cell Rep. 16, 668–673

    CAS  Google Scholar 

  254. Vetter, J. (2000) Plant cyanogenic glycosides. Toxicon 38, 11–36

    PubMed  CAS  Google Scholar 

  255. Bak, S. et al. (2000) Transgenic tobacco and Arabidopsis plants expressing the two multifunctional sorghum cytochrome P450 enzymes, CYP79A1 and CYP71E1, are cyanogenic and accumulate metabolites derived from intermediates in dhurrin biosynthesis. Plant Physiol. 123, 1437–1448

    PubMed  CAS  Google Scholar 

  256. Tattersall, D.B. et al. (2001) Resistance to an herbivore through engineered cyanogenic glucoside synthesis. Science 293, 1826–1828

    PubMed  CAS  Google Scholar 

  257. Franks, T.K. et al. (2006) Consequences of transferring three sorghum genes for secondary metabolite (cyanogenic glucoside) biosynthesis to grapevine hairy roots. Transgenic Res. 15, 181–195

    PubMed  CAS  Google Scholar 

  258. Nielsen, K.A. et al. (2006) Reconstitution of cyanogenesis in barley (Hordeum vulgare L.) and its implications for resistance against the barley powdery mildew fungus. Planta 223, 1010–1023

    PubMed  CAS  Google Scholar 

  259. Mithen, R. (2001) Glucosinolates - biochemistry, genetics and biological activity. Plant Growth Regulat. 34, 91–103

    CAS  Google Scholar 

  260. Levy, M. et al. (2005) Arabidopsis IQD1, a novel calmodulin-binding nuclear protein, stimulates glucosinolate accumulation and plant defense. Plant J. 43, 79–96

    PubMed  CAS  Google Scholar 

  261. Weigel, D. et al. (2000) Activation tagging in Arabidopsis. Plant Physiol. 122, 1003–1013

    PubMed  CAS  Google Scholar 

  262. Barth, C. and Jander, G. (2006) Arabidopsis myrosinases TGG1 and TGG2 have redundant function in glucosinolate breakdown and insect defense. Plant J. 46, 549–562

    PubMed  CAS  Google Scholar 

  263. Hirai, M.Y. et al. (2007) Omics-based identification of Arabidopsis MYB transcription factors regulating aliphatic glucosinolate biosynthesis. Proc. Natl. Acad. Sci. U.S.A. 104, 6478–6483

    PubMed  CAS  Google Scholar 

  264. Gigolashvili, T. et al. (2007) The transcription factor HIG1/MYB51 regulates indolic glucosinolate biosynthesis in Arabidopsis thaliana. Plant J. 50, 886–901

    PubMed  CAS  Google Scholar 

  265. Gigolashvili, T. et al. (2008) HAG2/MYB76 and HAG3/MYB29 exert a specific and coordinated control on the regulation of aliphatic glucosinolate biosynthesis in Arabidopsis thaliana. New Phytol. 177, 627–642

    PubMed  CAS  Google Scholar 

  266. Gigolashvili, T. et al. (2007) The R2R3-MYB transcription factor HAG1/MYB28 is a regulator of methionine-derived glucosinolate biosynthesis in Arabidopsis thaliana. Plant J. 51, 247–261

    PubMed  CAS  Google Scholar 

  267. Sonderby, I.E. et al. (2007) A systems biology approach identifies a R2R3 MYB gene subfamily with distinct and overlapping functions in regulation of aliphatic glucosinolates. PLoS ONE 2, e1322

    PubMed  Google Scholar 

  268. Malitsky, S. et al. (2008) The “Inner” and “Outer” circles of the transcriptome and metabolome affected by the two clades of Arabidopsis glucosinolate biosynthesis regulators. Plant Physiol., 148, 2021–2049

    Google Scholar 

  269. Beekwilder, J. et al. (2008) The impact of the absence of aliphatic glucosinolates on insect herbivory in Arabidopsis. PLoS ONE 3, e2068

    PubMed  Google Scholar 

  270. Smolen, G. and Bender, J. (2002) Arabidopsis cytochrome P450 cyp83B1 mutations activate the tryptophan biosynthetic pathway. Genetics 160, 323–332

    PubMed  CAS  Google Scholar 

  271. Ashihara, H. et al. (1996) Biosynthesis of caffeine in leaves of coffee. Plant Physiol. 111, 747–753

    PubMed  CAS  Google Scholar 

  272. Russell, D.W. et al. (1991) Caffeine, a naturally occurring acaricide. J. Allergy Clin. Immunol. 87, 107–110

    PubMed  CAS  Google Scholar 

  273. Nathanson, J.A. (1984) Caffeine and related methylxanthines: possible naturally occurring pesticides. Science 226, 184–187

    PubMed  CAS  Google Scholar 

  274. Hollingsworth, R.G. et al. (2002) Caffeine as a repellent for slugs and snails. Nature 417, 915–916

    PubMed  CAS  Google Scholar 

  275. Guerreiro Filho, O. and Mazzafera, P. (2003) Caffeine and resistance of coffee to the berry borer Hypothenemus hampei (Coleoptera, Scolytidae). J. Agri. Food Chem.51, 6987–6991

    CAS  Google Scholar 

  276. Araque, P. et al. (2007) Insecticidal activity of caffeine aqueous solutions and caffeine oleate emulsions against Drosophila melanogaster and Hypothenemus hampei. J. Agri. Food Chem. 55, 6918–6922

    CAS  Google Scholar 

  277. Uefuji, H. et al. (2005) Caffeine production in tobacco plants by simultaneous expression of three coffee N-methyltrasferases and its potential as a pest repellant. Plant Mol. Biol. 59, 221–227

    PubMed  CAS  Google Scholar 

  278. Oliver, S. et al. (1998) Systematic functional analysis of the yeast genome. Trends Biotechnol. 16, 373–378

    PubMed  CAS  Google Scholar 

  279. Fiehn, O. et al. (2002) Metabolomics - the link between genotypes and phenotypes. Plant Mol. Biol. 48, 155–171

    PubMed  CAS  Google Scholar 

  280. Aharoni, A. et al. (2002) Non-targeted metabolome analysis by use of Fourier transform ion cyclotron mass spectrometry. Omics 6, 217–234

    PubMed  CAS  Google Scholar 

  281. Kell, D. B. (2004) Metabolomics and systems biology: making sense of the soup. Curr. Opin. Microbiol. 7, 296–307

    PubMed  CAS  Google Scholar 

  282. Sweetlove, L.J. et al. (2008) Getting to grips with the plant metabolic network. Biochem. J. 409, 27–41

    PubMed  CAS  Google Scholar 

  283. Saito, K. et al. (2008) Decoding genes with coexpression networks and metabolomics - ‘majority report by precogs’ Trends Plant Sci. 13, 36–43

    PubMed  CAS  Google Scholar 

  284. Nobeli, I. et al. (2003) A structure-based anatomy of the E.coli metabolome. J Mol Biol. 334, 697–719

    PubMed  CAS  Google Scholar 

  285. Fiehn et al. (2000) Metabolite profiling for plant functional genomics. Nat. Biotechnol. 18, 1157–1161

    PubMed  CAS  Google Scholar 

  286. Roessner, U. et al. (2001) High-resolution metabolic phenotyping of genetically and environmentally diverse potato tuber systems. Identification of phenocopies. Plant Physiol. 127, 749–764

    PubMed  CAS  Google Scholar 

  287. Bao, X. et al. (2000) Understanding in vivo carbon precursor supply for fatty acid synthesis in leaf tissue. Plant J. 22, 39–50

    PubMed  CAS  Google Scholar 

  288. von Roepenack-Lahaye, E. et al. (2004) Profiling of Arabidopsis secondary metabolites by capillary liquid chromatography coupled to electrospray ionization quadrupole time-of-flight mass spectrometry. Plant Physiol. 134, 548–559

    Google Scholar 

  289. Moco, S. et al. (2007) Tissue specialization at the metabolite level is perceived during the development of tomato fruit. J. Exp. Bot. 58, 4131–4146

    PubMed  CAS  Google Scholar 

  290. Mintz-Oron, S. et al. (2008) Gene expression and metabolism in tomato fruit surface tissues. Plant Physiol.147, 823–851

    PubMed  CAS  Google Scholar 

  291. Suzuki, H. et al. (2008) Metabolic profiling of flavonoids in Lotus japonicus using liquid chromatography Fourier transform ion cyclotron resonance mass spectrometry. Phytochemistry 69, 99–111

    PubMed  CAS  Google Scholar 

  292. Choi, H. K. et al. (2004) Metabolic finger-printing of wild type and transgenic tobacco plants by 1H NMR and multivariate analysis technique. Phytochemistry 65, 857–864

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

A.A. is an incumbent of the Adolfo and Evelyn Blum Career Development Chair. The research in A.A. laboratory is supported by the William Z. and Eda Bess Novick Young Scientist Fund, the Y. Leon Benoziyo Institute for Molecular Medicine, the EU project ‘META-PHOR’, contract number FOODCT-2006–036220, the AAFC/BARD research project C-9105–06 and the Minerva foundation. We would like to thank Alexander Vainstein and John Paul Alvarez for the contribution of images.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asaph Aharoni .

Editor information

Editors and Affiliations

GLOSSARY

Bioengineering:

an interdisciplinary field dealing with the application of analytical and experimental engineering methods, design and techniques to tissues, cells and molecules of living system. Rooted in mathematics, physical, chemical and the life sciences, the bioengineering is used to solve problems in medicine, daily life and biology by understanding the function of the live organism and the application of engineering technologies to design new tools and techniques.

Immunomodulation:

a technique that allows explicit sequestration of a metabolite, protein or RNA by the ectopic expression of genes encoding antibodies or antibody fragments.

Metabolic engineering:

targeted improvement of cellular properties or metabolite production via manipulation of specific metabolic or signal transduction pathways.

Nutraceuticals:

extracts of foods claimed to have a medicinal effect on human health.

Riboswitch:

a natural RNA sensor capable of controlling gene expression by using its ability to bind specific small molecule ligands such as vitamins, nucleotides, amino acids and various enzyme co-factors.

Virus-induced gene silencing (VIGS):

a technology that exploits an RNA-mediated antiviral defense mechanism. This technique is used in plants for the analysis of gene function and has been adapted for high-throughput functional genomics.

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Itkin, M., Aharoni, A. (2009). Bioengineering. In: Osbourn, A., Lanzotti, V. (eds) Plant-derived Natural Products. Springer, New York, NY. https://doi.org/10.1007/978-0-387-85498-4_20

Download citation

Publish with us

Policies and ethics