Skip to main content

Role of Natural Products in Nature: Plant-Insect Interactions

  • Chapter
  • First Online:
Plant-derived Natural Products

Abstract

The chapter discusses the interactions of relatively low molecular weight and largely lipophilic secondary plant metabolites with insects and some other invertebrates. This includes compounds stored within plant tissues that are toxic to insects by a range of mechanisms. It covers metabolites that are both constitutively produced and those that are induced in response to defence signalling stimuli including insect attack. Also included are volatile compounds released from plants that act as signals (semiochemicals) detected by herbivorous insects and those that interact with insects at higher trophic levels. Finally, plant to plant communication is described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adjei-Afriyie F, Kim CS, Takemura M, Ishikawa M, Horiike M (2000), Isolation and identification of the probing stimulants in the rice plant for the white-back planthopper, Sogatella furcifera (Homoptera: Delohacidae). Biosci Biotechnol Biochem 64:443–446

    Article  PubMed  CAS  Google Scholar 

  • Agelopoulos NG, Keller MA (1994) Plant-natural enemy association in the tritrophic system, Cotesia rubecula–Pieris rapae–Brassiceae (Cruciferae) III: collection and identification of plant and frass volatiles. J Chem Ecol 20:1955–1967

    Article  CAS  Google Scholar 

  • Agrawal AA, Kurashige NS (2003) A role for isothiocyanates in plant resistance against the specialist herbivore Pieris rapae. J Chem Ecol 29:1403–1415

    Article  PubMed  CAS  Google Scholar 

  • Aharoni A, Giri AP, Deuerlein S, Griepink F, de Kogel W-J, Verstappen FWA, Verhoeven HA, Jongsma MA, Schwab W, Bouwmeester HJ (2003) Terpenoid metabolism in wild-type and transgenic Arabidopsis plants. Plant Cell 15:2866–2884

    Article  PubMed  CAS  Google Scholar 

  • Akhkha A, Kusel J, Kennedy M, Curtis RHC (2002) Effects of phytohormones on the surfaces of plant-parasitic nematodes. Parasitology 125:165–175

    Article  PubMed  CAS  Google Scholar 

  • Alborn HT, Turlings TCJ, Jones TH, Stenhagen G, Loughrin JH, Tumlinson JH (1997) An elicitor of plant volatiles from beet armyworm oral secretion. Science 276:945–949

    Article  CAS  Google Scholar 

  • Aliabadi A, Renwick JAA, Whitman DW (2002) Sequestration of glucosinolates by harlequin bug Murgantia histrionica. J Chem Ecol 28:1749–1762

    Article  PubMed  CAS  Google Scholar 

  • Aplin RT, d’Arcy Ward R, Rothschild M (1975) Examination of the large white and small white butterflies (Pieris spp.) for the presence of mustard oil and mustard oil glycosides. J Entomol 30:73–78

    Google Scholar 

  • Argandona VH, Luza LC, Niemeyer HM, Corcuera LJ (1980) Role of hydroxamic acids in the resistance of cereals to aphids. Phytochemistry 19:1665–1668

    Article  CAS  Google Scholar 

  • Arimura G, Ozawa R, Nishioka T, Boland W, Koch T, Kuhnemann F, Takabayashi J (2002) Herbivore-induced volatiles induce the emission of ethylene in neighboring lima bean plants. Plant J 29:87–98

    Article  PubMed  CAS  Google Scholar 

  • Baldwin IT, Schultz JC (1983) Rapid changes in tree chemistry induced by damage: evidence for communication between plants. Science 221:277–279

    Article  PubMed  CAS  Google Scholar 

  • Baldwin IT, Halitschke R, Paschold A, von Dahl CC, Preston CA (2006) Volatile signaling in plant-plant interactions: “Talking Trees” in the Genomics Era. Science 10:311812–815

    Google Scholar 

  • Bate NJ, Rothstein SJ (1998) C6-volatiles derived from the lipoxygenase pathway induce a subset of defense-related genes. Plant J 16:561–569

    Article  PubMed  CAS  Google Scholar 

  • Baumeler A, Hesse M, Werner C (2000) Benzoxazinoids–cyclic hydroxamic acids, lactams and their corresponding glucosides in the genus Aphelandra (Acanthaceae). Phytochemistry 53:213–222

    Article  PubMed  CAS  Google Scholar 

  • Beale MH, Birkett MA, Bruce TJA, Chamberlain K, Field LM, Huttly AK, Martin JL, Parker R, Phillips AL, Pickett JA, Prosser IM, Shewry PR, Smart LE, Wadham LJ, Woodcock CM, Zhang Y (2006) Aphid alarm pheromone produced by transgenic plants affects aphid and parasitoid behaviour. Proc Natl Acad Sci USA 6:10509–10513

    Article  Google Scholar 

  • Beckers GJM, Spoel, SH (2006) Fine-tuning plant defence signalling: salicylate versus jasmonate. Plant Biol 8: 1–10

    Article  PubMed  CAS  Google Scholar 

  • Bengtsson M, Jaastad G, Knudsen G, Kobro S, Bäckman A-C, Eva Pettersson, Witzgall P (2005) Plant volatiles mediate attraction to host and non-host plant in apple fruit moth, Argyresthia conjugella. Ent. Exp. Et App. 118:77–85

    Article  Google Scholar 

  • Bennet RN, Wallsgrove RM (1994) Secondary metabolites in plant defence mechanisms. New Phytol 127:617–633

    Article  Google Scholar 

  • Bernays E, Edgar JA, Rothchild M (1977) Pyrrolizidine alkaloids sequestered and stored by the aposematic grasshopper Zonocerus variegates. J Zool 182:85–87

    Article  Google Scholar 

  • Birkett MA, Campbell CAM, Chamberlain K, Guerrieri E, Hick AJ, Martin JL, Matthes M, Napier JA, Pettersson J, Pickett JA, Poppy GM, Pow EM, Pye PJ, Smart LE, Wadhams GH, Wadhams LJ, Woodcock CM (2000) New roles for cis-jasmone as an insect semiochemical and in plant defence. Proc Natl Acad Sci USA 97:9329–9334

    Article  PubMed  CAS  Google Scholar 

  • Birkett MA, Bruce TJA, Martin JL, Smart LE, Oakley J, Wadhams LJ (2004) Responses of female orange wheat blossom midge, Sitodiplosis mosellana, to wheat panicle volatiles. J Chem Ecol 30:1319–1328

    Article  PubMed  CAS  Google Scholar 

  • Bisio A, Corallo A, Gastaldo P, Romussi G, Ciarallo G, Fontana N, de Tommasi N, Profumo P (1999) Glandular hairs and secreted material in Salvia blepharophylla Brandegee ex Epling grown in Italy. Ann Bot 83:441–452

    Article  CAS  Google Scholar 

  • Blight MM, Pickett JA, Smith MC, Wadhams LJ (1984) An aggregation pheromone of Sitona lineatus. Naturwissenschaften 71:S 480

    Google Scholar 

  • Blight MM, Pickett JA, Wadhams LJ, Woodcock CM (1989) Antennal response of Ceutorhynchus assimilis and Psylliodes chrysocephala to volatiles from oil seed rape. Aspect Appl Biol 23:329–334

    Google Scholar 

  • Bones AM, Rossiter JT (1996) The myrosinase-glucosinolate system, its organization and biochemistry. Physiol Plant 97:194–208

    Article  CAS  Google Scholar 

  • Bostock RM (2005) Signal crosstalk and induced resistance: straddling the line between cost and benefit. Annu Rev Phytopathol 43:545–580

    Article  PubMed  CAS  Google Scholar 

  • Broadway RM, Duffey SS (1988) The effect of plant protein quality on insect digestive physiology and the toxicity of plant proteinase inhibitors. J Insect Physiol 34:1111–1117

    Article  CAS  Google Scholar 

  • Brower LP (1969) Ecological chemistry. Sci Am 220:22–29

    Article  PubMed  CAS  Google Scholar 

  • Brown KS Jr (1984) Adult-obtained pyrrolizidine alkaloids defend ithomiine butterflies against a spider predator. Nature 309:707–709

    Article  CAS  Google Scholar 

  • Bruce TJA, Wadhams LJ, Woodcock CM (2005) Insect host location: a volatile situation. Trends Plant Sci 10:269–274

    Article  PubMed  CAS  Google Scholar 

  • Bruce TJA, Matthes MC, Napier JA, Pickett JA (2007) Stressful “memories” of plants: Evidence and possible mechanisms. Plant Science 173:603–608

    Article  CAS  Google Scholar 

  • Chamberlain K, Guerrieri E, Pennacchio F, Pettersson J, Pickett JA, Poppy GM, Powell W, Wadhams LJ, Woodcock CM (2002) Can aphid-induced plant signals be transmitted aerially and through the rhizosphere? Biochem Syst Ecol 29:1063–1074

    Article  Google Scholar 

  • Chapman RF (2003) Contact chemoreception in feeding by phytophagous insects. Annu Rev Entomol 48:455–484

    Article  PubMed  CAS  Google Scholar 

  • Combrinck S, Du Plooy GW, McCrindle RI, Botha BM (2007) Morphology and Histochemistry of the Glandular Trichomes of Lippia scaberrima (Verbenaceae). Ann Bot 99:1111–1119

    Article  PubMed  CAS  Google Scholar 

  • Conn EE (1981) Cyanogenic glycosides. In: Conn EE (ed) The Biochemistry of Plants. A Comprehensive Treatise, Vol 7. Secondary Plant Products. Academic, New York, pp 479–499

    Google Scholar 

  • Conrath U, Beckers GJM, Flors V, Garcia-Agustin P, Jakab G, Mauch F, Newman MA, Pieterse CMJ, Poinssot P, Pozo MJ, Pugin A, Schaffrath J, Ton J, Wendehenne D, Zimmerli L, Mauch-Mani B (2006) Priming: getting ready for battle. Mol Plant-Microbe Interact 19:1062–1071

    Article  PubMed  CAS  Google Scholar 

  • Creelman RA, Mullet JE (1997) Biosynthesis and action of jasmonates in plants. Annu Rev Plant Physiol Plant Mol Biol 48:355–381

    Article  PubMed  CAS  Google Scholar 

  • Curtis RHC (2007) Do phytohormones influence nematode invasion and feeding site establishment? Nematology 9:155–160

    Article  CAS  Google Scholar 

  • Dawson GW, Griffiths DC, Pickett JA, Wadhams LJ, Woodcock CM (1987) Plant-derived synergists of alarm pheromone from turnip aphids, Lipaphis (Hyadaphis) erysimi (Homoptera, Aphididae). J Chem Ecol 13:1663–1671

    Article  CAS  Google Scholar 

  • De Boer G, Hanson FE (1987) Feeding responses to Solanaceous allelochemicals by larvae of the tobacco hornworm, Manduca sexta. Entomol Exp Appl 45:123–131

    Article  CAS  Google Scholar 

  • Delphia CM, Mescher MC, De Moraes CM (2007) Induction of plant volatiles by herbivores with different feeding habits and the effects of induced defenses on host-plant selection by thrips. J Chem Ecol 33: 997–1012

    Article  PubMed  CAS  Google Scholar 

  • De Luca V, St Pierre B (2000) The cell and developmental biology of alkaloid biosynthesis. Trends Plant Sci 5:168–173

    Article  PubMed  CAS  Google Scholar 

  • De Moraes CM, Lewis WJ, Paré PW, Alborn HT, Tumlinson JH (1998) Herbivore-infested plants selectively attract parasitoids. Nature 393:570–573

    Article  CAS  Google Scholar 

  • de Vos M, Kim JH, Jander G (2007) Biochemistry and molecular biology of Arabidopsis-aphid interactions. Bioessays 29:879–883

    Article  CAS  Google Scholar 

  • Devine KJ, Jones PW (2000) Purification and partial, characterisation of hatching factors for the potato cyst nematode Globodera rostochiensis from potato root leachate. Nematology 2:231–236

    Article  CAS  Google Scholar 

  • Devine KJ, Jones PW (2003) Investigations into the chemoattraction of the potato cyst nematodes Globodera rostochiensis and G. pallida towards fractionated potato root leachate. Nematology 5:65–75

    Article  Google Scholar 

  • Dicke M, Bruin J (2001) Chemical information transfer between plants: back to the future. Biochem Syst Ecol 29:981–994

    Article  CAS  Google Scholar 

  • Dicke M, Dijkman H (2001) Within-plant circulation of systemic elicitor of induced defence and release from roots of elicitor that affects neighbouring plants. Biochem Syst Ecol 29:1075–1087

    Article  CAS  Google Scholar 

  • Dicke M, Sabelis MW, Takabayashi J, Bruin J, Posthumus MA (1990) Plant strategies of manipulating predator-prey interactions through allelochemicals: prospects for application in pest control. J Chem Ecol 16:3091–3118

    Article  CAS  Google Scholar 

  • Dicke M, Takabyashi J, Posthumus MA, Schütte C, Krips OE (1998) Plant-phytoseiid interactions mediated by prey-induced plant volatiles: variation in production of cues and variation in responses of predatory mites. Exp Appl Acarol 22: 311–333

    Article  CAS  Google Scholar 

  • Dicke M, Van Poecke RMP, De Boer JG (2003) Inducible indirect defence of plants: from mechanisms to ecological functions. Basic Appl Ecol 4: 27–42

    Article  CAS  Google Scholar 

  • Ding H, Lamb RJ, Ames N (2000) Inducible production of phenolic acids in wheat and antibiotic resistance to Sitodiplosis mosellana. J Chem Ecol 26:969–985

    Article  CAS  Google Scholar 

  • Doughty KJ, Kiddle GA, Pye BJ, Wallsgrove RM, Pickett JA (1995) Selective induction of glucosinolates in oilseed rape leaves by methyl jasmonate. Phytochemistry 38:347–350

    Article  CAS  Google Scholar 

  • Downs CT, McDonald PM, Brown K, Ward D (2003) Effects of Acacia condensed tannins on urinary parameters, body mass, and diet choice of an Acacia specialist rodent, Thallomys nigricauda. J Chem Ecol 29:845–857

    Article  PubMed  CAS  Google Scholar 

  • Du YJ, Poppy GM, Powell W (1996) Relative importance of semiochemicals from first and second trophic levels in host foraging behavior of Aphidius ervi. J Chem Ecol 22:1591–1605

    Article  CAS  Google Scholar 

  • Du YJ, Poppy GM, Powell W, Pickett J A, Wadhams LJ, Woodcock CM (1998) Identification of semiochemicals released during aphid feeding that attract parasitoid Aphidius ervi. J Chem Ecol 24:1355–1368

    Article  CAS  Google Scholar 

  • Edgar JA, Boppré M, Kaufmann E (2007) Insect-synthesised retronecine ester alkaloids: precursors of the common Arctiine (Lepidoptera) pheromone hydroxydanaidal. J Chem Ecol 33:2266–2280

    Article  PubMed  CAS  Google Scholar 

  • Elzen GW, Williams HJ, Bell AA, Stipanovic RD, Vinson SB (1985) Quantification of volatile terpenes of glanded and glandless Gossypium hirsutum L. cultivars and lines by gas chromatography. J Agric Food Chem 33:1079–1082

    Article  CAS  Google Scholar 

  • Endo N, Abe M, Sekine T, Matsuda K (2004) Feeding stimulants of solanaceae-feeding lady beetle, Epilachna vigintioctomaculata (Coleoptera:Coccinellidae) from potato leaves. Appl Entomol Zool 39:411–416

    Article  CAS  Google Scholar 

  • Engelberth J, Alborn HT, Schmelz EA, Tumlinson JH (2004) Airborne signals prime plants against insect herbivore attack. Proc Natl Acad Sci USA 101:1781–1785

    Article  PubMed  CAS  Google Scholar 

  • Esen A (1992) Purification and partial characterization of maize (Zea mays L.) beta glucosidase Plant Physiol 98:174–182

    Article  PubMed  CAS  Google Scholar 

  • Faccoli M, Blaženec M, Schlyter F (2005) Feeding response to host and non-host compounds by males and females of the spruce bark beetle Ips typographus in a tunnelling microassay. J Chem Ecol 31:745–759

    Article  PubMed  CAS  Google Scholar 

  • Faccoli M, Schlyter F (2007) Conifer phenolic resistance markers are bark beetle antifeedant semiochemicals. Agric Forest Entomol 9:237–245

    Article  Google Scholar 

  • Fahey JW, Zalcmann AT, Talalay P (2001) The chemical diversity and distribution of glucosinolates and isothiocyanates among plants. Phytochemistry 56:5–51

    Article  PubMed  CAS  Google Scholar 

  • Farag MA. Pare PW (2002) C6-Green leaf volatiles trigger local and systemic VOC emissions in tomato. Phytochemistry 61:545–554

    Article  PubMed  CAS  Google Scholar 

  • Farmer EE (2001) “Surface-to-air signals”. Nature 411: 854–856

    Article  PubMed  CAS  Google Scholar 

  • Farmer EE, Almeras E, Krishnamurthy V (2003) Jasmonates and related oxylipins in plant responses to pathogenesis and herbivory. Curr Opin Plant Biol 6:372–378

    Article  PubMed  CAS  Google Scholar 

  • Feeny P (1976) Plant apparency and chemical defense. In: Wallace JW, Mansell RL (eds) Biochemical Interaction Between Plants and Insects. Recent Advances in Phytochemistry, Vol 10. Plenum Press New York 1–40

    Google Scholar 

  • Fernandez P, Hilker M (2007) Host plant location by Chrysomelidae. Basic and Applied Ecology 8:97–116

    Article  Google Scholar 

  • Fraser AM, Mechaber WL, Hildebrand JG (2003) Electroantennographic and behavioral responses of the sphinx moth Manduca sexta to host plant headspace volatiles. J Chem Ecol 29:1813–1833

    Article  PubMed  CAS  Google Scholar 

  • Frey M, Chomet P, Glawischnig E, Stettner C, Grün S, Winklmair A, Eisenreich W, Bacher A, Meeley RB, Briggs SP, Simcox K, Gierl A (1997). Analysis of a chemical defense mechanism in grasses. Science 277:696–699

    Article  PubMed  CAS  Google Scholar 

  • Friebe A, Rith U, Kuck P, Schnabl H, Schulz M (1997) Effects of 2,4-dihydroxy-1,4-benzoxazin-3-ones on the activity of the plasma membrane H+-ATPase Phytochemistry 44: 979–983

    Article  CAS  Google Scholar 

  • Frost CJ, Appel HM, Carlson JE, De Moraes CM, Mescher MC, Schultz JC (2007) Within-plant signalling via volatiles overcomes vascular constraints on systemic signalling and primes responses against herbivores. Ecology Letters 10:490–498

    Article  PubMed  Google Scholar 

  • Gershenzon J, Turlings TCG, Rasmann S, Köllner TG, Degenhardt J, Hiltpold I, Toepfer S, Kuhlmann U, Gershenzon J, Turlings T (2005) Recruitment of entomopathogenic nematodes by insect-damaged maize roots ct-damaged maize roots. Nature 434:732–737

    Article  PubMed  CAS  Google Scholar 

  • Gianoli E, Niemeyer HM (1998) Allocation on herbivory induced hydroxamic acids in the wild wheat Triticum uniaristatum. Chemecology 8:19–23

    Article  CAS  Google Scholar 

  • Gibson RW, Pickett JA (1983) Wild potato repels aphids by release of aphid alarm pheromone. Nature 302:608–609

    Article  CAS  Google Scholar 

  • Gierl A, Frey M (2001) Evolution of benzoxazinone biosynthesis and indole production in maize. Planta 213:493–498

    Article  PubMed  CAS  Google Scholar 

  • Ginzel MD, Hanks LM (2005) Role of host plant volatiles in mate location for three species of longhorned beetles. J Chem Ecol 31:213–217

    Article  PubMed  CAS  Google Scholar 

  • Glendinning JI, Nelson NM, Bernays EA (2000) How do inositol and glucose modulate feeding in Manduca sexta caterpillars? J Exp Biol 203:1299–315

    PubMed  CAS  Google Scholar 

  • Glinwood R, Pettersson J, Ahmed E, Ninkovic V, Birkett MA, Pickett JA (2003) Change in Acceptability of Barley Plants to Aphids After Exposure to Allelochemicals from Couch-Grass (Elytrigia repens). J Chem Ecol 29:261–274

    Article  PubMed  CAS  Google Scholar 

  • Grubb DG, Abel S (2006) Glucosinylate metabolism and its control. Trends in Plant Sci 11:89–100

    Article  CAS  Google Scholar 

  • Guerrero A, Feixas J, Pajares J, Wadhams LJ, Pickett JA, Woodcock CM (1997) Semiochemically induced inhibition of behaviour of Tomicus destruens (Woll) (Coleoptera: Scolytidae). Naturwissenschaften 84:155–157

    Article  CAS  Google Scholar 

  • Guerrieri E, Poppy GM, Powell W, Tremblay E, Pennacchio F (1999) Induction and systemic release of herbivore-induced plant volatiles mediating in-flight orientation of Aphidius ervi. J Chem Ecol 25:1247–1261

    Article  CAS  Google Scholar 

  • Guerrieri E, Poppy GM, Powell W, Rao R, Pennacchio F (2002) Plant-to-plant communication mediating in-flight orientation of Aphidius ervi. J Chem Ecol 28:1703–1715

    Article  PubMed  CAS  Google Scholar 

  • Halitschke R, Schittko U, Boland W, Baldwin IT (2001) Molecular interactions between the specialist herbivore Manduca sexta (Lepidoptera, Sphingidae) and its natural host Nicotiana attenuata. III. Fatty acid–amino acid conjugates in herbivore oral secretions are necessary and sufficient for herbivore-specific plant responses. Plant Physiol 125:711–717

    Article  PubMed  CAS  Google Scholar 

  • Halkier BA, Gershenzon J (2006) Biology and biochemistry of glucosinolates. Annu Rev Plant Biol 57:303–333

    Article  PubMed  CAS  Google Scholar 

  • Hallahan DL (2000) Monoterterpenoid biosynthesis in glandular trichomes of Labiate plants. Adv Bot Res 31:77–120

    Article  CAS  Google Scholar 

  • Hardie J, Isaacs R, Pickett JA, Wadhams LJ, Woodcock CM (1994) Methyl salicylate and (-)-(1r,5s)-myrtenal are plant-derived repellents for black bean aphid, Aphis-fabae scop (Homoptera, Aphididae). J Chem Ecol 20:2847–2855

    Article  CAS  Google Scholar 

  • Harmel N, Létocart E, Cherqui A, Giordanengo P, Mazzucchelli G, Guillonneau F,. De Pauw E, Haubruge E, Francis F Identification of aphid salivary proteins: a proteomic investigation of Myzus persicae. Insect mol Biol 17:165–174

    Google Scholar 

  • Hatanaka A (1993) The biogeneration of green odour by green leaves. Phytochemistry 34:1201–1218

    Article  CAS  Google Scholar 

  • Heil M (2008) Indirect defence via tritrophic interactions. New Phytologist 178:41–61

    Article  PubMed  CAS  Google Scholar 

  • Heil M, Ton J (2008) Long-distance signalling in plant defence. Trends in Plant Science 13:264–272

    Article  PubMed  CAS  Google Scholar 

  • Hori M (1996) Settling inhibition and insecticidal activity of garlic and onion oils against Myzus persicae (Sulzer) (Homoptera, Aphidae). Applied Entomology and Zoology (Japan) 31:605–612

    CAS  Google Scholar 

  • Hori M, Kamatsu H (1997) Repellancy of rosemary oil and its components against onion aphid NeotoxopteraH formosana (Takahashi) (Homoptera, Aphidae). Applied Entomology and Zoology (Japan) 32:303–310

    CAS  Google Scholar 

  • Itier V, Bertrand D (2001). Neuronal nicotinic receptors: from protein structure to function. FEBS letters 504:118–25

    Article  PubMed  CAS  Google Scholar 

  • Jassbi AR, Gase K, Hettenhausen C, Schmidt A, Baldwin IT (2008) Silencing Geranylgeranyl Diphosphate Synthase in Nicotiana attenuata Dramatically Impairs Resistance to Tobacco Hornworm. Plant Physiol 146: 974–986

    Article  PubMed  CAS  Google Scholar 

  • Jassbi AR, Zamanizadehnajari S, Kessler D, Baldwin IT (2006) A new acyclic diterpene glycoside from Nicotiana attenuata with a mild deterrent effect on feeding Manduca sexta larvae. Z Naturforsch 61b:1138–1142

    Google Scholar 

  • Jordan AT, Jones TH, Conner WE (2005) If you’ve got it, flaunt it: ingested alkaloids affect corematal display behavior in the salt marsh moth, Estigmene acrea. Journal of Insect Science (Tucson) 5:Art1

    Google Scholar 

  • Kalberer NM, Turlings TCJ, Rahier M (2001) Attraction of a leaf beetle (Oreina cacaliae) to damaged host plants. J Chem Ecol 27:647–6

    Article  PubMed  CAS  Google Scholar 

  • Karban R, Baldwin IT (1997) Induced Responses to Herbivory. University of Chicago Press, Chicago, IL

    Google Scholar 

  • Karban R, Maron J, Felton GW, Ervin G, Eichenseer H (2003) Herbivore damage to sagebrush induces resistance in wild tobacco: evidence for eavesdropping between plants. Oikos 100:325–332

    Article  Google Scholar 

  • Keinänen M, Oldham NJ, Baldwin IT (2001) Rapid HPLC Screening of Jasmonate-Induced Increases in Tobacco Alkaloids, Phenolics, and Diterpene Glycosides in Nicotiana attenuate. J Agric Food Chem 49:3553–3558

    Article  PubMed  CAS  Google Scholar 

  • Kendrick AP, Raffa KF (2006) Sources of insect and plant volatiles attractive to cottonwood leaf beetles feeding on hybrid poplar. J Chem Ecol 32:2585–2594

    Article  PubMed  CAS  Google Scholar 

  • Kessler A, Halitschke R, Diezel C, Baldwin IT (2006) Priming of plant defense responses in nature by airborne signaling between Artemisia tridentata and Nicotiana attenuata. Oecologia 148:280–292

    Article  PubMed  Google Scholar 

  • Khan HMM, Khan ZR, Mueke JM, Hassanali A, Kairu E, Pickett JA (2007) Behaviour and biology of Chilo partellus (Swinhoe) on Striga hermonthica (Del.) Benth. infested and uninfested maize plants. Crop Prot 26:998–1005

    Article  Google Scholar 

  • Kim JH, Jander G (2007) Myzus persicae (green peach aphid) feeding on Arabidopsis induces the formation of a deterrent indole glucosinolate. The Plant Journal 49:1008–1019

    Article  PubMed  CAS  Google Scholar 

  • Kim M, Koh HS, Fukami H (1985) Isolation of C-glucosylflavones as probing stimulants of planthoppers in the rice plant. J Chem Ecol 11:441–452

    Article  CAS  Google Scholar 

  • Kluge M, Schneider B, Sicker D (1997) Diastereoselective synthesis of the benzoxazinone acetal glucoside ent-GDIMBOA: The first enantiomer of a natural acetal glucoside Carbohydrate Research 298:147–152

    Article  CAS  Google Scholar 

  • Klun JA, Robinson JF (1969) Concentration of two 1,4-benzoxazinones in dent corn at various stages of development of the plant and its relation to resistance of the host plant to the European corn borer. J Econ Entomol 62:214

    CAS  Google Scholar 

  • Koroleva OA, Davies A, Deeken R, Thorpe MR, Tomos AD, Hedrich R (2000) Identification of a New Glucosinolate-Rich Cell Type in Arabidopsis Flower Stalk. Plant Physiol. 124:599–608

    Article  PubMed  CAS  Google Scholar 

  • Lambrix V, Reichelt M, Mitchell-Olds T, Kliebenstein DJ, Gershenzon J (2001) The Arabidopsis Epithiospecifier Protein Promotes the Hydrolysis of Glucosinolates to Nitriles and Influences Trichoplusia ni herbivory. Plant Cell 13:2793–2807

    Article  PubMed  CAS  Google Scholar 

  • Landholt PJ, Phillips TW (1997) Host plant influences on sex pheromone behaviour of phytophagous insects. Annual review of Entomology 42:371–391

    Article  Google Scholar 

  • Leon J, Rojo E, Sanchez-Serrano JJ (2001) Wound signalling in plants. J Exp Bot 52:1–9

    Article  PubMed  CAS  Google Scholar 

  • Li Q, Eigenbrode SD, Stringam GR, Thiagarajah MR (2000) Feeding and Growth of Plutella xylostella and Spodoptera eridania on Brassica juncea with Varying Glucosinolate Concen­trations and Myrosinase Activities. J Chem Ecol 26:2291–2305

    Article  Google Scholar 

  • Loughrin JH, Manukian A, Heath RR, Turlings TCJ, Tumlinson JH (1994) Diurnal cycle of emission of induced volatile terpenoids herbivore-injured cotton plants. Proc Natl Acad Sci USA 91:11836–11840

    Article  PubMed  CAS  Google Scholar 

  • Lunau K (1992) Evolutionary aspects of perfume collection in male euglossine bees (Hymenoptera) and of nest deception in bee-pollinated flowers. Chemeoecology 3:65–73

    Article  Google Scholar 

  • Macias FA, Galindo JLG, Galindo JCG (2007) Evolution and current status of ecological phytochemistry. Phytochemistry 68:2917–2936

    Article  PubMed  CAS  Google Scholar 

  • Mahroof RM, Phillips TW (2008) Responses of stored-product Anobiidae to pheromone lures and plant-derived volatiles. Journal of applied Entomology 132:161–167

    Article  Google Scholar 

  • Matsuda K (1978) Feeding stimulation of flavonoids for various leaf beetles (Chry­someliae:coleoptera) Appl Ent Zool 13:228–230

    CAS  Google Scholar 

  • Mattiacci L, Dicke M, Posthumus MA (1994) Induction of parasitoid attracting synomone in Brussels sprouts plants by feeding of Pieris brassicae larvae: role of mechanical damage and herbivore elicitor. J Chem Ecol 20:2229–2247

    Article  CAS  Google Scholar 

  • McKey D (1979) The distribution of secondary compounds within plants In: Rosenthal GA, Janzen DH, Orlando (eds) Herbivores: Their Interaction with Secondary Metabolites. Academic, Orlando, FL, pp. 56–134

    Google Scholar 

  • Miller DR (2006) Ethanol and (-)-alpha-pinene: attractant kairomones for some large wood-boring beetles in southeastern USA. J Chem Ecol 32:779–794

    Article  PubMed  CAS  Google Scholar 

  • Montgomery ME, Arn H (1972) Feeding response of Aphis pomi, Myzus persicae, and Amphorophora agathonica to phlorizin. J Insect Physiol 20:413–421

    Article  Google Scholar 

  • Moraes MCB, Birkett MA, Gordon-Weeks R, Smart LE, Martin JL, Pye BJ, Bromilow R, Pickett JA (2008) cis-Jasmone induces accumulation of defence compounds in wheat, Triticum aestivum. Phytochemistry 69:9–17

    Article  PubMed  CAS  Google Scholar 

  • Moran PJ, Cheng Y, Cassell JL, Thompson GL (2007) Gene expression profiling of Arabidopsis thaliana in compatible plant-aphid interactions. Arch Insect Biochem Physiol 51:182–203

    Article  CAS  Google Scholar 

  • Morewood WD, Simmonds KE, Wilson IM, Borden JH, Mcintosh RL (2002) α-Pinene and ethanol: key host volatiles for Xylotrechus longitarsis (Coleoptera: Cerambycidae). J Entomol Soc B C 99:117–122

    Google Scholar 

  • Morimoto S, Suemori K, Moriwaki J, Taura F, Tanaka H, Aso M, Tanaka M, Hiroshi Suemune H, Shimohigashi Y, Shoyama Y (2001) Morphine metabolism in the Opium poppy and its possible physiological function. J Biol Chem 2001 276:38179–38184

    Article  PubMed  CAS  Google Scholar 

  • Müller C, Agerbirk N, Olsen CE, Boevé J-L, Schaffner U, Brakefield PB (2001) Sequestration of host plant glucosinolates in the defensive hemolymph of the sawfly Athalia rosae. J Chem Ecol 27: 2505–2516

    Article  PubMed  Google Scholar 

  • Neal JJ, Tingey WM, Steffens JC (1990) Sucrose esters of carboxylic-acids in glandular trichomes of Solanum berthaultii deter settling and probing by green peach aphid. J Chem Ecol 16:487–497

    Article  CAS  Google Scholar 

  • Netherlands Organization For Scientific Research (2001) Environmentally-friendly pesticide to combat potato cyst nematodes. Science Daily

    Google Scholar 

  • Nickolson RL, Hammerschmidt R (1992) Phenolic compounds and their role in disease resistance. Annu Rev Phytopathol 30: 369–389

    Article  Google Scholar 

  • Niemeyer, H.M (1988) Hydroxamic acids (4-hydroxy-1,4-benzoxazin-3-ones) defence chemicals in the Gramineae. Phytochemistry 27:3349–3358

    Article  CAS  Google Scholar 

  • Niemeyer HM, Pesel E, Copaja SV, Bravo HR, Franke S, Franke W (1989) Changes in hydroxamic acid levels of wheat plants induced by aphid feeding. Phytochemistry 28:447–449

    Article  CAS  Google Scholar 

  • Nishida R (2002) Sequestration of defensive substances from plants by Lepidoptera, Annu Rev Entomol 47:57–92

    Article  PubMed  CAS  Google Scholar 

  • Nishida R, Schulz S, Kim CS, Fukami H, Kuwahara Y, Honda K, Hayashi N (1996) Male sex pheromone of a giant danaine butterfly, Idea leuconoe. J Chem Ecol 22: 949–72

    Article  CAS  Google Scholar 

  • Nottingham SF, Hardie J, Dawson GW, Hick AJ, Pickett JA, Wadhams LJ, Woodcock CM (1991) Behavioral and electrophysiological responses of aphids to host and nonhost plant volatiles. J Chem Ecol 17:1231–1242

    Article  CAS  Google Scholar 

  • O’Donnell PJ, Calvert C, Atzorn R, Wasternack C, Leyser HMO, Bowles DJ (1996) Ethylene as a signal mediating the wound response of tomato plants. Science 274:1914–1917

    Article  PubMed  Google Scholar 

  • Ohta N, Mori N, Kuwahara Y, Nishida R (2006) A hemiterpene glucoside as a probing deterrent of the bean aphid, Megoura crassicauda, from a non-host vetch, Vicia hirsute. Phytochemistry 67:584–588

    Article  PubMed  CAS  Google Scholar 

  • Omar S, Marcotte M, Fields P, Sanchez PE, Poveda L, Mata R, Jimenez A, Durst T, Zhang J, MacKinnon S, Leaman D, Arnason JT, Philogène BJR (2007) Antifeedant activities of terpenoids isolated from tropical Rutales. J Stored Prod Res 43:92–96

    Article  CAS  Google Scholar 

  • Onyilagha JC, Lazorko J, Gruber MY, Soroka JG, Erlandson MA (2004) Effect of flavonoids on feeding preference and development of the crucifer pest Mamestra configurata Walker. J Chem Ecol 30:109–124

    Article  PubMed  CAS  Google Scholar 

  • Osbourn A (1996) Saponins and plant defence-a soapy story. Trends Plant Sci 1:4–9

    Article  Google Scholar 

  • Paschold A, Halitschke R, Baldwin IT (2006) Using ‘mute’ plants to translate volatile signals. Plant J 45:275–291

    Article  PubMed  CAS  Google Scholar 

  • Peacock L, Herrick S, Brain P (1999) Spatio-temporal dynamics of willow beetle (Phratora vulgatissima) in short-rotation coppice willows grown as monocultures or a genetically diverse mixture. Agric Forest Entomol 1:287–296

    Article  Google Scholar 

  • Peacock L, Lewis M, Powers S (2001) Volatile compounds from Salix spp. Varieties differing in susceptibility to three willow beetle species J Chem Ecol 27:1943–1951

    Article  PubMed  CAS  Google Scholar 

  • Peña-Cortés H, Sánchez-Serrrano JJ, Mertens R, Willmitzer L (1989) Abscisic acid is involved in the wound-induced expression of the proteinase inhibitor II gene in potato and tomato. Proc Natl Acad Sci USA 86:9851–9855

    Article  PubMed  Google Scholar 

  • Perry RN (2005) An evaluation of types of attractants enabling plant-parasitic nematodes to locate plant roots. Russ J Nematol 13:83–88

    Google Scholar 

  • Pettersson J, Pickett JA, Pye BJ, Quiroz A, Smart LE, Wadhams LJ, Woodcock CM (1994) Winter host component reduces colonization by bird-cherry oat aphid, Rhopalosiphum padi (L) (Homoptera, Aphididae), and other aphids in cereal fields. J Chem Ecol 20:2565–2574

    Article  CAS  Google Scholar 

  • Pettersson J, Ninkovic V, Ahmed A (1999) Volatiles from different barley cultivars affect aphid acceptance of neighbouring plants. Acta Agric Scand B Soil Plant Sci 49:152–157

    CAS  Google Scholar 

  • Pickett A (1990) Gas chromatography-mass spectrometry in insect pheromone identification: three extreme case histories. In: McCaffrey ID, Wilson AR (eds) Chromatography and Isolation of Insect Hormones and Pheromones. Plenum, New York, pp 281–288

    Google Scholar 

  • Pickett JA, Glinwood RT (2007) Chemical ecology. In: van Emden H, Harrington R (eds) Aphids as Crop Pests. CAB International, Wallingford, pp 235–260

    Google Scholar 

  • Pickett JA, Wadhams LJ, Woodcock CM (1998) Insect supersense: mate and host location by insects as model systems for exploiting olfactory interactions. The Biochemist 20:8–13

    CAS  Google Scholar 

  • Pickett JA, Smiley DWM, Woodcock CM (1999) Secondary metabolites in plant-insect interactions: dynamic systems of induced and adaptive responses. Adv Bot Res 30:91–115

    Article  CAS  Google Scholar 

  • Pickett JA, Rasmussen HB, Woodcock CM, Matthes W, Napier JA (2003) Plant stress signalling: understanding and exploiting plant-plant interactions. Biochem Soc Trans 31:123–127

    Article  PubMed  CAS  Google Scholar 

  • Pope TW, Kissen R, Grant M, Pickett JA, Rossiter JA, Powell G (2008) Comparative innate responses of the aphid parasitoid Diaeretiella rapae to alken glucosinolate derived isothiocyanates, nitriles, and epithionitriles. J Chem Ecol 34:1302–1310

    Article  PubMed  CAS  Google Scholar 

  • Pureswaran DS, Gries R, Borden JH (2004) Quantitative variation in monoterpenes in four species of conifers. Biochem Syst Ecol 32:1109–1136

    Article  CAS  Google Scholar 

  • Raghu S, Clarke AR (2003) Sexual selection in a tropical fruit fly: role of a plant derived chemical in mate choice. Entomol Exp Appl 108: 53–58

    Article  CAS  Google Scholar 

  • Rasmann S, Köllner TG, Degenhardt J, Hiltpold I, Toepfer S, Kuhlmann U, Gershenzon J, Turlings TC (2005) Recruitment of entomopathogenic nematodes by insect-damaged maize roots. Nature 434:732–737

    Article  PubMed  CAS  Google Scholar 

  • Ratzka A, Vogel H, Kliebenstein DJ, Mitchell-Olds T, Kroymann J (2002) Disarming the mustard oil bomb. Proc Natl Acad Sci USA 99:11223–11228

    Article  PubMed  CAS  Google Scholar 

  • Rees CJC (1969) Chemoreceptor specificity associated with choice of feeding site by the beetle Chrysolina brunsvicensis on its foodplant, Hypericum hirsutum. Entomol Exp Appl 12:565–83

    Article  Google Scholar 

  • Rhoades DF, Cates RG (1976) Toward a general theory of plant antiherbivore chemistry. In: Wallace JW, Mansell RL (eds) Biochemical Interaction Between Plants and Insects, Recent Advances in Phytochemistry, Vol 10. Plenum, New York, pp 168–213

    Google Scholar 

  • Robinson AF (2002) Soil and plant interaction impact on plant-parasitic nematode host finding and recognition In: Lewis EE, Cambell LF, Sukhdeo MVK (eds) The Biochemical Ecology of Parasites. CAB International, Wallingford, pp 89–110

    Google Scholar 

  • Roeske CN, Seiber JN, Brower LP, Moffitt CM (1975). Milkweed cardenolides and their comparative processing by monarch butterflies (Danaus plexippus). Recent Adv Phytochem 10:93–16

    Google Scholar 

  • Rolf RN, Barrett J, Perry RN (2000) Analysis of chemosensory responses of second stage juveniles of Globodera rostochiensis using electrophysiological techniques. Nematology 2:523–533

    Article  Google Scholar 

  • Rothschild M (1972) Secondary plant substances and warning colouration in insects. Symp R Entomol Soc London 6:59–83

    Google Scholar 

  • Rühm R, Dietsche E, Harloff H-J, Lieb M, Franke S, Aumann J (2003) Characterisation and partial purification of a white mustard kairomone that attracts the beet cyst nematode, Heterodera schachtii. Nematology 5:17–22

    Article  Google Scholar 

  • Ruther J, Kleier S (2005) Plant–plant signaling: ethylene synergizes volatile emission in Zea mays induced by exposure to (Z)-3-hexen-1-ol. J Chem Ecol 31:2217–2222

    Article  PubMed  CAS  Google Scholar 

  • Sadek MM, Anderson P (2007) Modulation of reproductive behaviour of Spodoptera littoralis by host and non-host plant leaves. Basic Appl Ecol 8:444–452

    Article  Google Scholar 

  • Schie CCN, van Haring MA, Schuurink, RC (2007) Tomato linalool synthase is induced in trichomes by jasmonic acid. Plant Mol Biol 64:251–263

    Article  PubMed  CAS  Google Scholar 

  • Schindek R, Hilker M (1996) Influence of larvae of Gastrophysa viridula on the distribution of conspecific adults in the field. Ecol Entomol 21:370–376

    Article  Google Scholar 

  • Schoonhoven LM, van Loon JJA (2002) An inventory of taste in caterpillars: each species its own key. Acta Zool Acad Sci Hung 48:215–63

    Google Scholar 

  • Schuler MA (1996) The role of cytochrome P450 monooxygenase in plant defence interactions. Plant Physiol 112:1411–1419

    Article  PubMed  CAS  Google Scholar 

  • Schullehner K, Dick R, Vitzthum F, Schwab W, Brandt W, Frey M, Gierl A (2008) Benzoxazinoid biosynthesis in dicot plants. Phytochemistry 69:2668–2677

    Article  PubMed  CAS  Google Scholar 

  • Seigler DS (1991) Cyanide and cyanogenic glycosides. In: Rosenthal GA, Berenbaum MR (eds) Herbivores: Their Interaction with Secondary metabolites. Academic, Orlando, FL, pp 35–77

    Google Scholar 

  • Seigler DS (1998) Cyanogenic glycosides and cyanolipids. In: Siegler DS (ed) Plant Secondary Metabolism. Kluwer, Boston, MA/Dordrecht/London, pp 273–299

    Google Scholar 

  • Shiojiri K, Takabayashi J, Yano S, Takafuji A (2000) Herbivore-species-specific interactions between crucifer plants and parasitic wasps (Hymenoptera: Braconidae) that are mediated by infochemicals present in areas damaged by herbivores. Appl Entomol Zool 35:519–524

    Article  Google Scholar 

  • Shiojiri K, Takabayashi J, Yano S, Takafuji A (2001) Infochemically mediated tritrophic interaction webs on cabbage plants. Popul Ecol 43:23–29

    Article  Google Scholar 

  • Sicker D, Frey M, Schulz M, Gierl A (2000) Role of benzoxazinones in the survival strategy of plants. Int Rev Cytol 198:319–347

    Article  PubMed  CAS  Google Scholar 

  • Simpson CL, Simpson SJ, Abisgold JD (1990) The role of various amino acids in the protein compensatory response of Locusta migratoria. Symp Biol Hung 39:39–52

    Google Scholar 

  • Snook ME, Johnson AW, Severson RF, Teng Q, White RA Jr, Sisson VA, Jackson DM (1997) Hydroxygeranyllinalool glycosides from tobacco exhibit antibiosis activity in the tobacco budworm, Heliothis virescens (F.). J Agric Food Chem 45: 2299–2308

    Article  CAS  Google Scholar 

  • Spencer KC (1988) Chemical mediation of coevolution in the Passiflora–Heliconius interaction. In: Spencer KC (ed) Chemical Mediation of Coevolution. Academic, New York, pp 167–240

    Google Scholar 

  • Steppuhn A, Gase K, Krock B, Halitschke R, Ian T. Baldwin IT (2004) Nicotine’s defensive function in nature. PLoS Biol 2: E217

    Article  PubMed  CAS  Google Scholar 

  • Stamp N (2003) Out of the quagmire of plant defence hypotheses. Quart Rev Biol 78: 23–55

    Article  PubMed  Google Scholar 

  • Sue M, Yamazaki K, Yajima S, Nomura T, Matsukawa T, Iwamura H, Miyamoto T (2006) Molecular and structural characterization of hexameric β-D-glucosidases in wheat and rye. Plant Physiol 141:1237–1247

    Article  PubMed  CAS  Google Scholar 

  • Takabayashi J, Dicke M (1996) Plant-carnivore mutualism through herbivore-induced carnivore attractants. Trends Plant Sci 1:109–113

    Article  Google Scholar 

  • Takabayashi J, Dicke M, Posthumus MA (1994) Volatile herbivore-induced terpenoids in plant–mite interactions: variation caused by biotic and abiotic factors. J Chem Ecol 20:1329–1354

    Article  CAS  Google Scholar 

  • Takemura M, Nishida R, Mori N, Kuwahara Y (2002) Acylated flavonol glycosides as probing stimulants of a bean aphid, Megoura crassicauda, from Vicia angustifolia. Phytochemistry 61:135–140

    Article  PubMed  CAS  Google Scholar 

  • Textor S, Bartram S, Kroymann J, Falk KL, Hick A, Pickett JA, Jonathan Gershenzon J (2004) Biosynthesis of methionine-derived glucosinolates in Arabidopsis thaliana: recombinant expression and characterization of methylthioalkylmalate synthase, the condensing enzyme of the chain-elongation cycle. Planta 218:1026–1035

    Article  PubMed  CAS  Google Scholar 

  • Thaler J S (1999) Jasmonate-inducible plant defences cause increased parasitism of herbivores. Nature 399:686–688

    Article  CAS  Google Scholar 

  • Thackaray DJ, Wratten SD, Edwards PJ, Niemeyer HM (1990) Resistance to the aphids Sitobion avenae and Rhopalosiphum padi in Gramineae in relation to hydroxamic acid levels. Ann Appl Biol 116:573–582

    Article  Google Scholar 

  • Thompson GA, Goggin FL (2006) Transcriptomics and functional genomics of plant defence induction by phloem feeding insects. J Exp Bot 57:755–766

    Article  PubMed  CAS  Google Scholar 

  • Ton J, D’Alessandro M, Jourdie V, Jakab G, Karlen D, Held M, Mauch Mani B, Turlings TCJ (2007) Priming by airborne signals boosts direct and indirect resistance in maize. Plant J 49:16–26

    Article  PubMed  CAS  Google Scholar 

  • Tscharntke T, Thiessen S, Dolch R, Boland W (2001) Herbivory, induced resistance, and interplant signal transfer in Alnus glutinosa. Biochem Syst Ecol 29:1025–1047

    Article  CAS  Google Scholar 

  • Turlings TCJ, Wäckers FL (2004) Recruitment of predators and parasitoids by herbivore-damaged plants. Cambridge University Press Cambridge

    Google Scholar 

  • Turlings TC, Loughrin JH, McCall PJR, Lewis WJ, Tumlinson JH (1995) How caterpillar-damaged plants protect themselves by attracting parasitic wasps. Proc Natl Acad Sci USA 92:4169–4174

    Article  PubMed  CAS  Google Scholar 

  • van Drongelen W (1979) Contact chemoreception of host plant specific chemicals in larvae of various Yponomeuta species (Lepidoptera). J Comp Physiol 134:265–279

    Article  CAS  Google Scholar 

  • Velozo JA, Alvarez RI, Wächter GA, Timmermann BN Corcuera LJ (1999) Increase in gramine content in barley infested by the aphid Schizaphis graminum R. Phytochemistry 52:1059–1061

    Article  CAS  Google Scholar 

  • Visser JH (1988) Host-plant finding by insects – orientation, sensory input and search patterns. J Insect Physiol 34:259–268

    Article  Google Scholar 

  • Walling LL (2000) The myriad plant responses to herbivores. J Plant Growth Regul 19:195–216

    PubMed  CAS  Google Scholar 

  • Wasternack C (2007) Jasmonates: an update on biosynthesis, signal transduction and action in plant stress response, growth and development Ann Bot 100:681–697

    Article  PubMed  CAS  Google Scholar 

  • Wheat CW, Vogel H, Wittstock U, Braby MF, Underwood D, Mitchell-Olds T (2007) The genetic basis of a plant–insect coevolutionary key innovation. Proc Natl Acad Sci USA:104:20427–20431

    Article  PubMed  CAS  Google Scholar 

  • Wieczorek H, Koppl R (1978) Effect of sugars on the labellar water cell receptor of the fly. J Comp Physiol 126:131–36

    Article  CAS  Google Scholar 

  • Williams III L, Rodriguez-Saona C, Pare PW, Crafts-Brandner SJ (2005) The piercing–sucking herbviores Lygus hesperus and Nezara viridula induce volatile emissions in plants. Arch Insect Biochem Physiol 58:84–96

    Article  PubMed  CAS  Google Scholar 

  • Wink M (2000) Interference of alkaloids with neuroreceptors and ion channels. In: Atta-Ur-Rahman X (ed) Bioactive Natural Products. Elsevier, Amsterdam, pp 3–129

    Google Scholar 

  • Wink M (2003) Evolution of secondary metabolites from an ecological and molecular phylogenetic perspective. Phytochemistry 64:3–19

    Article  PubMed  CAS  Google Scholar 

  • Winz RA, Baldwin IT (2001) Molecular interactions between the specialist herbivore Manduca sexta (Lepidoptera, Sphingidae) and its natural host Nicotiana attenuata. IV. Insect-induced ethylene reduces jasmonate-induced nicotine accumulation by regulating putrescine N-methyltransferase transcripts. Plant Physiol 125:2189–2202

    Article  PubMed  CAS  Google Scholar 

  • Wittstock U, Gershenzon J (2002) Constitutive plant toxins and their role in defence against herbivores and pathogens. Curr Opin Plant Biol 5:1–8

    Article  Google Scholar 

  • Wittstock U, Lichtnow KH, Teuschere M (1997) Effects of cicutoxin and related polyacetylenes from Cituta virosa on neuronal action potentials: a comparative study on the convulsive action. Planta Med 63:120–124

    Article  PubMed  CAS  Google Scholar 

  • Witzgall P, Stelinski L, Gut L, Thomson L (2008) Codling moth management and chemical ecology. Annu Rev Entomol 53: 503–522

    Article  PubMed  CAS  Google Scholar 

  • Wu H, Haig T, Pratley J, Lemerle D, An M (2001) Allelochemicals in wheat (Triticum aestivum L.): production and exudation of 2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one. J Chem Ecol 27:1691–1700

    Article  PubMed  CAS  Google Scholar 

  • Wuyts N, Swennen R, De Waele D (2006) Effects of plant phenylpropanoid pathway products and selected terpenoids and alkaloids on the behaviour of the plant-parasitic nematodes Radopholus similis, Pratylenchus penetrans and Meloidogyne incognita. Nematology 8:89–101

    Article  CAS  Google Scholar 

  • Yan ZG, Wang CZ (2006) Wound-induced green leaf volatiles cause the release of acetylated derivatives and a terpenoid in maize. Phytochemistry 67: 34–42

    Article  PubMed  CAS  Google Scholar 

  • Zarate SI, Kempema LA, Walling LL (2007) Silverleaf whitefly induces salicylic acid responses and represses effectual jasmonic responses in Arabidopsis. Plant Physiol 143: 866–875

    Article  PubMed  CAS  Google Scholar 

  • Zenk MH, Juenger M (2007) Evolution and current status of the phytochemistry of nitrogenous compounds. Phytochemistry 68:2757–2772

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruth Gordon-Weeks .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Gordon-Weeks, R., Pickett, J.A. (2009). Role of Natural Products in Nature: Plant-Insect Interactions. In: Osbourn, A., Lanzotti, V. (eds) Plant-derived Natural Products. Springer, New York, NY. https://doi.org/10.1007/978-0-387-85498-4_15

Download citation

Publish with us

Policies and ethics