Skip to main content

Mitochondrial Nanotechnology for Cancer Therapy

  • Chapter
  • First Online:
  • 1282 Accesses

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Andre N, Braguer D, Brasseur G, Goncalves A, Lemesle-Meunier D, et al. 2000. Paclitaxel induces release of cytochrome c from mitochondria isolated from human neuroblastoma cells. Cancer Res 60: 5349–53

    CAS  PubMed  Google Scholar 

  • Andre N, Carre M, Brasseur G, Pourroy B, Kovacic H, et al. 2002. Paclitaxel targets mitochondria upstream of caspase activation in intact human neuroblastoma cells. FEBS Lett 532: 256–60

    Article  CAS  PubMed  Google Scholar 

  • Azzazy HM, Mansour MM, Kazmierczak SC. 2006. Nanodiagnostics: a new frontier for clinical laboratory medicine. Clin Chem 52: 1238–46

    Article  CAS  PubMed  Google Scholar 

  • Bangham AD, Standish MM, Watkins JC. 1965a. Diffusion of univalent ions across the lamellae of swollen phospholipids. J Mol Biol 13: 238–52

    Article  CAS  Google Scholar 

  • Bangham AD, Standish MM, Weissmann G. 1965b. The action of steroids and streptolysin S on the permeability of phospholipid structures to cations. J Mol Biol 13: 253–9

    Article  CAS  Google Scholar 

  • Boddapati SV, Tongcharoensirikul P, Hanson RN, D'Souza GG, Torchilin VP, Weissig V. 2005. Mitochondriotropic liposomes. J Liposome Res 15: 49–58

    CAS  PubMed  Google Scholar 

  • Carre M, Carles G, Andre N, Douillard S, Ciccolini J, et al. 2002. Involvement of microtubules and mitochondria in the antagonism of arsenic trioxide on paclitaxel-induced apoptosis. Biochem Pharmacol 63: 1831–42

    Article  CAS  PubMed  Google Scholar 

  • Cheng SM, Pabba S, Torchilin VP, Fowle W, Kimpfler A, Schubert R, Weissig V. 2005. Towards mitochondria-specific delivery of apoptosis-inducing agents: DQAsomal incorporated paclitaxel. J Drug Deliv Sci Technol 15: 81–6

    CAS  Google Scholar 

  • Cheng SM, Boddapati SV, D'Souza GM, Weissig V. 2007. DQAsomes as Mitochondria-Targeted Nano-Carriers for Anticancer Drugs. In Amiji, pp. M Nanotechnology for Cancer Therapeutics, ed. CRC/Taylor & Francis Group LLCFL, USA/PA, USA: 787–802.

    Google Scholar 

  • Costantini P, Jacotot E, Decaudin D, Kroemer G. 2000a. Mitochondrion as a novel target of anticancer chemotherapy. J Natl Cancer Inst 92: 1042–53

    Article  CAS  Google Scholar 

  • Costantini P, Jacotot E, Decaudin D, Kroemer G. 2000b. Mitochondrion as a novel target of anticancer chemotherapy. J Natl Cancer Inst 92: 1042–53

    Article  CAS  Google Scholar 

  • Dauty E, Verkman AS. 2005. Actin cytoskeleton as the principal determinant of size-dependent DNA mobility in cytoplasm: a new barrier for non-viral gene delivery. J Biol Chem 280: 7823–8

    Article  CAS  PubMed  Google Scholar 

  • Dias N, Bailly C. 2005. Drugs targeting mitochondrial functions to control tumor cell growth. Biochem Pharmacol 70: 1–12

    Article  CAS  PubMed  Google Scholar 

  • D'Souza GG, Rammohan R, Cheng SM, Torchilin VP, Weissig V. 2003. DQAsome-mediated delivery of plasmid DNA toward mitochondria in living cells. J Control Release 92: 189–97

    Article  PubMed  Google Scholar 

  • D'Souza GG, Boddapati SV, Weissig V. 2005. Mitochondrial leader sequence-plasmid DNA conjugates delivered into mammalian cells by DQAsomes co-localize with mitochondria. Mitochondrion 5: 352–8

    Article  PubMed  Google Scholar 

  • D'Souza GG, Boddapati SV, Weissig V. 2007. Gene therapy of the other genome: the challenges of treating mitochondrial DNA defects. Pharm Res 24: 228–38

    Article  PubMed  Google Scholar 

  • Everts M. 2007. Thermal scalpel to target cancer. Expert Rev Med Devices 4: 131–6

    Article  PubMed  Google Scholar 

  • Fantin VR, Berardi MJ, Scorrano L, Korsmeyer SJ, Leder P. 2002. A novel mitochondriotoxic small molecule that selectively inhibits tumor cell growth. Cancer Cell 2: 29–42

    Article  CAS  PubMed  Google Scholar 

  • Ferlini C, Raspaglio G, Mozzetti S, Distefano M, Filippetti F, et al. 2003. Bcl-2 Down-Regulation Is a Novel Mechanism of Paclitaxel Resistance. Mol Pharmacol 64: 51–8

    Article  CAS  PubMed  Google Scholar 

  • Fujino M, Li XK, Kitazawa Y, Guo L, Kawasaki M, et al. 2002. Distinct pathways of apoptosis triggered by FTY720, etoposide, and anti-Fas antibody in human T-lymphoma cell line (Jurkat cells). J Pharmacol Exp Ther 300: 939–45

    Article  CAS  PubMed  Google Scholar 

  • Fulda S, Susin SA, Kroemer G, Debatin KM. 1998. Molecular ordering of apoptosis induced by anticancer drugs in neuroblastoma cells. Cancer Res 58: 4453–60

    CAS  PubMed  Google Scholar 

  • Gambacorta A, Gliozi A, Rosa M. De1995. Archaeal lipids and their biotechnological applications. World J Microbiol Biotechnol 11: 115–31

    Article  CAS  Google Scholar 

  • Hockenbery DM. 2002. A mitochondrial Achilles' heel in cancer? Cancer Cell 2: 1–2

    Article  CAS  PubMed  Google Scholar 

  • Horobin RW. 2001. Uptake, distribution and accumulation of dyes and fluorescent probes within living cells: a structure-activity modelling approach. Adv Colour Sci Technol 4: 101–7

    CAS  Google Scholar 

  • Horobin RW, Trapp S, Weissig V. 2007. Mitochondriotropics: a review of their mode of action, and their application fro drug and DNA delivery to mammalian mitochondria. J Control Release 121125–136:

    Article  CAS  PubMed  Google Scholar 

  • Itoh M, Noutomi T, Toyota H, Mizuguchi J. 2003. Etoposide-mediated sensitization of squamous cell carcinoma cells to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced loss in mitochondrial membrane potential. Oral Oncol 39: 269–76

    Article  CAS  PubMed  Google Scholar 

  • Ju-Nam Y, Bricklebank N, Allen DW, Gardiner PH, Light ME, Hursthouse MB. 2006. Phosphonioalkylthiosulfate zwitterions – new masked thiol ligands for the formation of cationic functionalised gold nanoparticles. Org Biomol Chem 4: 4345–51

    Article  PubMed  Google Scholar 

  • Kidd JF, Pilkington MF, Schell MJ, Fogarty KE, Skepper JN, et al. 2002. Paclitaxel affects cytosolic calcium signals by opening the mitochondrial permeability transition pore. J Biol Chem 277: 6504–10

    Article  CAS  PubMed  Google Scholar 

  • Lasch J, Meye A, Taubert H, Koelsch R, Mansa-ard J, Weissig V. 1999. Dequalinium vesicles form stable complexes with plasmid DNA which are protected from DNase attack. Biol Chem 380: 647–52

    Article  CAS  PubMed  Google Scholar 

  • Lukacs GL, Haggie P, Seksek O, Lechardeur D, Freedman N, Verkman AS. 2000. Size-dependent DNA mobility in cytoplasm and nucleus. J Biol Chem 275: 1625–9

    Article  CAS  PubMed  Google Scholar 

  • Maeda H, Wu J, Sawa T, Matsumura Y, Hori K. 2000. Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. J Control Release 65: 271–84

    Article  CAS  PubMed  Google Scholar 

  • Marchetti P, Zamzami N, Joseph B, Schraen-Maschke S, Mereau-Richard C, et al. 1999. The novel retinoid 6-[3-(1-adamantyl)-4-hydroxyphenyl]-2-naphtalene carboxylic acid can trigger apoptosis through a mitochondrial pathway independent of the nucleus. Cancer Res 59: 6257–66

    CAS  PubMed  Google Scholar 

  • Matsumura Y. 2007. Preclinical and clinical studies of anticancer drug-incorporated polymeric micelles. J Drug Target 15: 507–17

    Article  CAS  PubMed  Google Scholar 

  • Matsumura Y, Oda T, Maeda H. 1987. [General mechanism of intratumor accumulation of macromolecules: advantage of macromolecular therapeutics]. Gan To Kagaku Ryoho 14: 821–9

    CAS  PubMed  Google Scholar 

  • Medda R, Jakobs S, Hell SW, Bewersdorf J. 2006. 4Pi microscopy of quantum dot-labeled cellular structures. J Struct Biol 156: 517–23

    Article  CAS  PubMed  Google Scholar 

  • Niedermann G, Weissig V, Sternberg B, Lasch J. 1991. Carboxyacyl derivatives of cardiolipin as four-tailed hydrophobic anchors for the covalent coupling of hydrophilic proteins to liposomes. Biochim Biophys Acta 1070: 401–8

    Article  CAS  PubMed  Google Scholar 

  • Rowe TC, Weissig V, Lawrence JW. 2001. Mitochondrial DNA metabolism targeting drugs. Adv Drug Deliv Rev 49: 175–87

    Article  CAS  PubMed  Google Scholar 

  • Seksek O, Biwersi J, Verkman AS. 1997. Translational diffusion of macromolecule-sized solutes in cytoplasm and nucleus. J Cell Biol 138: 131–42

    Article  CAS  PubMed  Google Scholar 

  • Torchilin VP, Weissig V, Martin FJ, Heath TD, New RRC. 2003. Surface Modification of Liposomes. In Torchilin, VP Weissig, V, Liposomes – A Practical Approach, ed. Oxford University pressOxford: pp. 193–230.

    Google Scholar 

  • Trapp S, Horobin RW. 2005. A predictive model for the selective accumulation of chemicals in tumor cells. Eur Biophys J 34: 959–66

    Article  CAS  PubMed  Google Scholar 

  • Vaughan EE, Dean DA. 2006. Intracellular trafficking of plasmids during transfection is mediated by microtubules. Mol Ther 13: 422–8

    Article  CAS  PubMed  Google Scholar 

  • Weissig V, Gregoriadis G. 1993. Coupling of Aminogroup-Bearing Ligands to Liposomes. In Gregoriadis, pp. G Liposome Technology, ed. CRCBoca Raton, Ann Arbor, London, Tokyo: 231–48.

    Google Scholar 

  • Weissig V, Lasch J, Klibanov AL, Torchilin VP. 1986. A new hydrophobic anchor for the attachment of proteins to liposomal membranes. FEBS Lett 202: 86–90

    Article  CAS  PubMed  Google Scholar 

  • Weissig V, Lasch J, Gregoriadis G. 1989. Covalent coupling of sugars to liposomes. Biochim Biophys Acta 1003: 54–7

    CAS  PubMed  Google Scholar 

  • Weissig V, Lasch J, Erdos G, Meyer HW, Rowe TC, Hughes J. 1998. DQAsomes: a novel potential drug and gene delivery system made from Dequalinium. Pharm Res 15: 334–7

    Article  CAS  PubMed  Google Scholar 

  • Weissig V, Lizano C, Torchilin VP. 2000. Selective DNA release from DQAsome/DNA complexes at mitochondria-like membranes. Drug Deliv 7: 1–5

    Article  CAS  PubMed  Google Scholar 

  • Weissig V, D'Souza GG, Torchilin VP. 2001. DQAsome/DNA complexes release DNA upon contact with isolated mouse liver mitochondria. J Control Release 75: 401–8

    Article  CAS  PubMed  Google Scholar 

  • Weissig V, Cheng S-M, D'Souza G. 2004. Mitochondrial Pharmaceutics. Mitochondrion 3: 229–44

    Article  CAS  PubMed  Google Scholar 

  • Weissig V, Boddapati SV, D'Souza GGM, Horobin RH. 2007a. Functionalization of Pharmaceutical Nanocarriers for Mitochondria-targeted Drug and DNA Delivery. InMultifunctional Pharmaceutical Nanocarriers, ed. VP Torchilin: Springer: Berlin

    Google Scholar 

  • Weissig V, Boddapati SV, Jabre L, D'Souza GGM. 2007b. Mitochondria-specific nanotechnology. Nanomedicine 2: 275–85

    Article  CAS  Google Scholar 

  • Zorov DB, Kobrinsky E, Juhaszova M, Sollott SJ. 2004. Examining intracellular organelle function using fluorescent probes: from animalcules to quantum dots. Circ Res 95: 239–52

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Volkmar Weissig .

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science + Business Media, LLC

About this chapter

Cite this chapter

Weissig, V., D’Souza, G.G.M., Cheng, SM., Boddapati, S. (2009). Mitochondrial Nanotechnology for Cancer Therapy. In: Mitochondria and Cancer. Springer, New York, NY. https://doi.org/10.1007/978-0-387-84835-8_14

Download citation

Publish with us

Policies and ethics