Skip to main content

Mitochondria and Cancer

  • Chapter
  • First Online:
Mitochondria and Cancer

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aebi, H. 1984. Catalase in vitro. Methods Enzymol. 105:121–126

    Article  CAS  PubMed  Google Scholar 

  • Baysal, B.E., Ferrell, R.E., Willett-Brozick, J.E., Lawrence, E.C., Myssiorek, D., Bosch, A., van der Mey, A., Taschner, P.E., Rubinstein, W.S., Myers, E.N., Richard, C.W. III, Cornelisse, C.J., Devilee, P., Devlin, B. 2000. Mutations in SDHD, a mitochondrial complex II gene, in hereditary paraganglioma. Science 287:848–851

    Article  CAS  PubMed  Google Scholar 

  • Beurdeley-Thomas, A., Miccoli, L., Oudard, S., Dutrillaux, B., and Poupon, M.F. 2000. The peripheral benzodiazepine receptors: A review. J. Neurooncol. 46:45–56

    Article  CAS  PubMed  Google Scholar 

  • Bianchi, N.O., Bianchi, M.S., Richard, S.M. 2001. Mitochondrial genome instability in human cancers. Mutat. Res. 488:9–23

    Article  CAS  PubMed  Google Scholar 

  • Boddapati, S.V., Tongcharoensirikul, P., Hanson, R.N., D’Souza, G.G., Torchilin, V.P., Weissig, V. 2005. Mitochondriotropic liposomes. J. Liposome Res. 15:49–58

    CAS  PubMed  Google Scholar 

  • Bonnet, S., Archer, S.L., Allalunis-Turner, J., Haromy, A., Beaulieu, C., Thompson, R., Lee, C.T., Lopaschuk, G.D., Puttagunta, L., Bonnet, S., Harry, G., Hashimoto, K., Porter, C.J., Andrade, M.A., Thebaud, B., Michelakis, E.D. 2007. A mitochondria-K+ channel axis is suppressed in cancer and its normalization promotes apoptosis and inhibits cancer growth. Cancer Cell. 11:37–51.

    Article  CAS  PubMed  Google Scholar 

  • Borutaite, V., Budriunaite, A., and Brown, G.C. 2000. Reversal of nitric oxide-, peroxynitrite- andS-nitrosothiol-induced inhibition of mitochondrial respiration or complex I activity by light and thiols. Biochim. Biophys. Acta 1459:405–412

    Article  CAS  PubMed  Google Scholar 

  • Boveris, A., and Chance, B. 1973. The mitochondrial generation of hydrogen peroxide. Biochem. J. 134:707–716

    CAS  PubMed  Google Scholar 

  • Brand, M.D., Affouritt, C., Esteves, T.C., Green, K., Lambert, A.J., Miwa, S., Pakay, J.L., and Parker, N. 2004. Free Radic. Biol. Med. 37:755–767

    Article  CAS  PubMed  Google Scholar 

  • Brimmell, M., Mendiola, R., Mangion, J., and Packham, G. 1998. BAX frameshift mutations in cell lines derived from human haemopoietic malignancies are associated with resistance to apoptosis and microsatellite instability. Oncogene 16:1803–1812

    Article  CAS  PubMed  Google Scholar 

  • Brookes, P.S., and Darley-Usmar, V.M. 2002. Hypothesis: The mitochondrial NO signalling pathway, and the transduction from nitrosative to oxidative cell signals: An alternative function for cytochromec oxidase. Free Radic. Biol. Med. 32:370–374

    Article  CAS  PubMed  Google Scholar 

  • Burwell, L.S., Nadtochiy, S.M., Tompkins, A.J., Young, S., and Brookes, P.S. 2006. Direct evidence for S-nitrosation of mitochondrial complex I. Biochem. J. 394:627–634

    Article  CAS  PubMed  Google Scholar 

  • Campbell, A.M., and Chan, S.H.P. 2007. The voltage dependent anion channel affects mitochondrial cholesterol distribution and function. Arch. Biochem. Biophys. 466:203–210.

    Article  CAS  PubMed  Google Scholar 

  • Canter, J.A., Kallianpur, A.R., Parl, F.F., Millikan, R.C. 2005. Mitochondrial DNA G10398A polymorphism and invasive breast cancer in African-American women. Cancer Res. 65:8028–8033

    CAS  PubMed  Google Scholar 

  • Capuano, F., Guerrieri, F., and Papa, S. 1997. Oxidative phosphorylation enzymes in normal and neoplastic cell growth. J. Bioenerg. Biomembr. 29:379–384

    Article  CAS  PubMed  Google Scholar 

  • Carafoli, E. 1980. Mitochondria and disease. Molec. Aspects Med. 3:295–429

    Article  CAS  Google Scholar 

  • Cejas, P., Casado, E., Belda-Iniesta, C., De Castro, J., Espinosa, E., Redondo, A., Sereno, M., Garcia-Cabezas, M.A., Vara, J.A.F., Domingues-Caceres, A., Rosario, P., and Gonzalez-Baron, M. 2004. Implications of oxidative stress and cell membrane lipid peroxidation in human cancer. Cancer Causes Control 15:707–719

    Article  PubMed  Google Scholar 

  • Chan, S.H., and Barbour, R.L. 1983. Adenine nucleotide transport in hepatoma mitochondria. Characterization of factors influencing the kinetics of ADP and ATP uptake. Biochim. Biophys. Acta 723:104–113

    Article  CAS  PubMed  Google Scholar 

  • Chatterjee, A., Mambo, E., Sidransky, D. 2006. Mitochondrial DNA mutations in human cancer. Oncogene 25:4663–4674.

    Article  CAS  PubMed  Google Scholar 

  • Chen, Y.R., Chen, C.L., Pfeiffer, D.R., and Zweier, J.L. 2007a. Mitochondrial complex II in the post-ischemic heart: Oxidative injury and the role of protein S-glutathionylation. J. Biol.Chem. 282:32640–32654

    Article  CAS  Google Scholar 

  • Chen, C.L., Zhang, L., Yeh, A., Chen, C.A., Green-Church, K.B., Zweier, J.L., and Chen, Y.R. 2007b. Site-specific S-glutathiolation of mitochondrial NADH ubiquinone reductase. Biochemistry 46:5754–5765

    Article  CAS  Google Scholar 

  • Christians, F.C., Newcomb, T.G., and Loeb, L.A. 1995. Potential sources of multiple mutations in human cancers. Prev. Med. 24:329–332

    Article  CAS  PubMed  Google Scholar 

  • Chu, F.F., Doroshow, J.H., and Esworthy, R.S. 1993. J. Biol. Chem. 4:2571–2576

    Google Scholar 

  • Chu, F.F., Esworthy, R.S., and Doroshow, J.H. 2004. Free Radic. Biol. Med. 36:1481–1495

    Article  CAS  PubMed  Google Scholar 

  • Cleeter, M.W.J., Cooper, J.M., Darley-Usmar, V.M., Moncada, S., and Schapira, A.H.V. 1994. Reversible inhibition of cytochrome c oxidase, the terminal enzyme of the mitochondrial respiratory chain, by nitric oxide. FEBS Lett. 345:50–54

    Article  CAS  PubMed  Google Scholar 

  • Clementi, E., Brown, G.C., Feelish, M., and Moncada, S. 1998. Persistent inhibition of cell respiration by nitric oxide: Crucial role of S-nitrosylation of mitochondrial complex I and protective action of glutathione. Proc. Nat. Acad. Sci. USA 95:7631–7636

    Article  CAS  PubMed  Google Scholar 

  • Covello, K.L., and Simon, M.C. 2004. HIFs, hypoxia, and vascular development. Curr. Topics Dev. Biol. 62:37–54

    Article  CAS  Google Scholar 

  • Coleman, M.C., Asbury, C.R., Daniels, D., Du, J., Aykin-Burns, N., Smith, B.J., Li, L., Spitz, D.R., Cullen, J.J. 2008. 2-Deoxy-d-glucose causes cytotoxicity, oxidative stress, and radiosensitization in pancreatic cancer. Free Radic. Biol. Med. 44:322–331

    Article  CAS  PubMed  Google Scholar 

  • Costantini, P., Jacotot, E., Decaudin, D., Kroemer, G. 2000. Mitochondrion as a novel target of anticancer chemotherapy. J. Natl. Cancer Inst. 92:1042–1053

    Article  CAS  PubMed  Google Scholar 

  • Dakubo, G.D., Parr, R.L., Costello, L.C., Franklin, R.B., Thayer, R.E. 2006. Altered metabolism and mitochondrial genome in prostate cancer. J. Clin. Pathol. 59:10–16

    Article  CAS  PubMed  Google Scholar 

  • De Marzo, A.M., Marchi, V.L., Epstein, J.I., Nelson, W.G. 1999. Proliferative inflammatory atrophy of the prostate: Implications for prostatic carcinogenesis. Am. J. Pathol. 155:1985–1992

    CAS  PubMed  Google Scholar 

  • Desouki, M.M., Kulawiec, M., Bansal, S., Das, G.M., Singh, K.K. 2005. Cross talk between mitochondria and superoxide generating NADPH oxidase in breast and ovarian tumors. Cancer Biol. Ther. 4:1367–1373

    Article  CAS  PubMed  Google Scholar 

  • Dougherty, T.J., Weishaupt, K.R., and Boyle, D.G. 1985. Photodynamic Sensitizers. J.B. Lipincott, Philadelphia, PA, USA

    Google Scholar 

  • Douwes Dekker, P.B., Hogendoorn, P.C.W., Kuipers-Dijkshoorn, N., Prins, F.A., van Duinen, S.G., Taschner, P.E.M., van der Mey, A.G.L., and Cornelisse, C.J. 2003. SDHD mutations in head and neck paragangliomas result in destabilization of complex II in the mitochondrial respiratory chain with loss of enzymatic activity and abnormal mitochondrial morphology. J. Path. 201:480–486

    Article  CAS  PubMed  Google Scholar 

  • D’Souza, G.G., Boddapati, S.V., Weissig, V. 2005. Mitochondrial leader sequence—Plasmid DNA conjugates delivered into mammalian cells by DQAsomes co-localize with mitochondria. Mitochondrion 5:352–358

    Article  PubMed  CAS  Google Scholar 

  • Emerit, I. 1994. Reactive oxygen species, chromosome mutation, and cancer: Possible role of clastogensic factors in carcinogenesis. Free Radic. Biol. Med. 16:99–109

    Article  CAS  PubMed  Google Scholar 

  • Faure Vigny, H., Heddi, A., Giraud, S., Chautard, D., and Stepien, G. 1996. Expression of oxidative phosphorylation genes in renal tumors and tumoral cell lines. Mol. Carcinog. 16:165–172

    Article  CAS  PubMed  Google Scholar 

  • Fliss, M.S., Usadel, H., Caballero, O.L., Wu, L., Buta, M.R., Eleff, S.M., Jen, J., Sidransky, D. 2000. Facile detection of mitochondrial DNA mutations in tumors and bodily fluids. Science 287:2017–2019

    Article  CAS  PubMed  Google Scholar 

  • Freedland, S.J., Mavropoulos, J., Wang, A., Darshan, M., Demark-Wahnefried, W., Aronson, W.J., Cohen, P., Hwang, D., Peterson, B., Fields, T., Pizzo, S.V., Isaacs, W.B. 2008. Carbohydrate restriction, prostate cancer growth, and the insulin-like growth factor axis. Prostate 68:11–19

    Article  CAS  PubMed  Google Scholar 

  • Galiegue, S., Jbilo, O., Combes, T., Bribes, E., Carayon, P., Le Fur, G., and Casellas, P. 1999. Cloning and characterization of PRAX-1. A new protein that specifically interacts with the peripheral benzodiazepine receptor. J. Biol. Chem. 274:2938–2952

    Article  CAS  PubMed  Google Scholar 

  • Gao, N., Ding, M., Zheng, J.Z., Zhang, Z., Leonard, S.S., Liu, K.J., Shi, X., Jiang, B.H. 2002. Vanadate-induced expression of hypoxia-inducible factor 1 alpha and vascular endothelial growth factor through phosphatidylinositol 3-kinase/Akt pathway and reactive oxygen species. J. Biol. Chem. 277:31963–31971

    Article  CAS  PubMed  Google Scholar 

  • Gibson, B.W. 2005. The human mitochondrial proteome: Oxidative stress, protein modifications and oxidative phosphorylation. Int. J. Biochem. Cell Biol. 37:927–934

    Article  CAS  PubMed  Google Scholar 

  • Gimenez-Roqueplo, A.P., Favier, J., Rustin, P., Mourad, J.J., Plouin, P.F., Corvol, P., Rotig, A., and Jeunemaitre, X. 2001. The R22X mutation of the SDHD gene in hereditary paraganglioma abolishes the enzymatic activiy of Complex II in the mitochondrial respiratory chain and activities the hypoxia pathway. Am. J. Hum. Genet. 69:1186–1197

    Article  CAS  PubMed  Google Scholar 

  • Giraud, S., Bonod-Bidaud, C., Wesolowski-Louvel, M., and Stepien, G. 1998. Expression of human ANT2 gene in highly proliferative cells: GRBOX, a new transcriptional element, is involved in the regulation of glycolytic ATP import into mitochondria. J. Mol. Biol. 281:409–418

    Article  CAS  PubMed  Google Scholar 

  • Gottlieb, E., and Tomlinson, I.P.M. 2005. Mitochondrial tumour suppressors: A genetic and biochemical update. Nat. Rev. Cancer 5:857–866

    Article  CAS  PubMed  Google Scholar 

  • Gray, M.W. 1992. The endosymbiont hypothesis revisited. Int. Rev. Cytol. 141:233–357

    Article  CAS  PubMed  Google Scholar 

  • Green, D.E., Loomis, W.F., and Auerbach, V.H. 1948. Studies on the cyclophorase system. I. The complete oxidation of pyruvic acid to carbon dioxide and water. J. Biol. Chem. 172:389–403

    CAS  PubMed  Google Scholar 

  • Grossman, L.I., and Shoubridge, E.A. 1996. Mitochondrial genetics and human disease. Bioessays 18:983–991

    Article  CAS  PubMed  Google Scholar 

  • Heerdt, B.G., Halsey, H.K., Lipkin, M., and Augenlicht, L.H. 1990. Expression of mitochondrial cytochromec oxidase in human colonic cell differentiation, transformation, and risk for colonic cancer. Cancer Res. 50:1596–1600

    CAS  PubMed  Google Scholar 

  • Herrmann, P.C., Gillespie, J.W., Charboneau, L., Bischel, V.E., Paweletz, C.P., Calvert, V.S., Kohn, E.C., Emmert-Buck, M.R., Liotta, L.A., and Petricoin, E.F. 2003. Mitochondrial proteome: Altered cytochromec oxidase subunit levels in prostate cancer. Proteomics 3:1801–1810

    Article  CAS  PubMed  Google Scholar 

  • Ishii, T., Yasuda, K., Akatsuka, A., Hino, O., Hartman, P.S., and Ishii, N. 2005. A mutation in the SDHC gene of Complex II increases oxidative stress, resulting in apoptosis and tumorigenesis. Cancer Res. 65:203–209

    CAS  PubMed  Google Scholar 

  • Ishikawa, K., Takenaga, K., Akimoto, M., Koshikawa, N., Yamaguchi, A., Imanishi, H., Nakada, K., Honma, Y., Hayashi, J. 2008. ROS-generating mitochondrial DNA mutations can regulate tumor cell metastasis. Science. 320:661–664

    Article  CAS  PubMed  Google Scholar 

  • Jackson, A.L., and Loeb, L.A. 2001. The contribution of endogenous sources of DNA damage to the mutliple mutations in cancer. Mutat. Res. 477:7–21

    CAS  PubMed  Google Scholar 

  • Jakupciak, J.P., Wang, W., Markowitz, M.E., Ally, D., Coble, M., Srivastava, S., Maitra, A., Barker, P.E., Sidransky, D., O'Connell, C.D. 2005. Mitochondrial DNA as a cancer biomarker. J Mol. Diagn. 7:258–267

    CAS  PubMed  Google Scholar 

  • Jazayeri, M., Andreyev, A., Will, Y., Ward, M., Anderson, C.M., Clevenger, W. 2003. Inducible expression of a dominant negative DNA polymerase-gamma depletes mitochondrial DNA and produces a rho0 phenotype. J. Biol. Chem. 278:9823–9830

    Article  CAS  PubMed  Google Scholar 

  • Jiang, W.W., Masayesva, B., Zahurak, M., Carvalho, A.L., Rosenbaum, E., Mambo, E., Zhou, S., Minhas, K., Benoit, N., Westra, W.H., Alberg, A., Sidransky, D., Koch, W., Califano, J. 2005. Increased mitochondrial DNA content in saliva associated with head and neck cancer. Clin Cancer Res 11:2486–2491

    Article  CAS  PubMed  Google Scholar 

  • Johns, D.R. 1995. Seminars in medicine of the Beth Israel Hospital, Boston. Mitochondrial DNA and disease. New Engl. J. Med. 333:638–644

    Article  CAS  PubMed  Google Scholar 

  • Johnson, L.V., Walsh, M.L., Bockus, B.J., Chen, L.B. 1981. Monitoring of relative mitochondrial membrane potential in living cells by fluorescence microscopy. J. Cell Biol. 88:526–535

    Article  CAS  PubMed  Google Scholar 

  • Klein, E.A., Lipman, S.M., Thompson, I.M., Goddman, P.J., Albanes, D., Taylor, P.R., and Coltman, C. 2003. World J. Urol. 21:21–27

    CAS  PubMed  Google Scholar 

  • Kono, Y., and Fridovich, I. 1982. Superoxide radical inhibits catalase. J. Biol. Chem. 257:5751–5754

    CAS  PubMed  Google Scholar 

  • Kowaltowski, A.L., and Vercesi, A.E. 1998. Mitochondrial damage induced by conditions of oxidative stress. Free Radic. Biol. Med. 26:463–471

    Article  Google Scholar 

  • Kroemer, G. 1997. The proto-oncogene Bcl-2 and its role in regulating apoptosis. Nat. Med. 3:614–620

    Article  CAS  PubMed  Google Scholar 

  • Kroemer, G., Galluzzi, L., and Brenner, C. 2007. Mitochondrial membrane permealization in cell death. Physiol. Rev. 87:99–163

    Article  CAS  PubMed  Google Scholar 

  • Kulawiec, M., Singh, K.K. 2008. In preparation

    Google Scholar 

  • Lee, H.C., Yin, P.H., Lin, J.C., Wu, C.C., Chen, C.Y., Wu, C.W., Chi, C.W., Tam, T.N., Wei, Y.H. 2005. Mitochondrial genome instability and mtDNA depletion in human cancers. Ann. NY Acad. Sci. 1042:109–122In preparation

    Article  CAS  PubMed  Google Scholar 

  • Lewis, W., Day, B.J., Kohler, J.J., Hosseini, S.H., Chan, S.S., Green, E.C., Haase, C.P., Keebaugh, E.S., Long, R., Ludaway, T., Russ, R., Steltzer, J., Tioleco, N., Santoianni, R., Copeland, W.C. 2007. Decreased mtDNA, oxidative stress, cardiomyopathy, and death from transgenic cardiac targeted human mutant polymerase gamma. Lab Invest. 87:326–335

    CAS  PubMed  Google Scholar 

  • Lin, X., Zhang, F., Bradbury, C.M., Kaushal, A., Li, L., Spitz, D.R., Aft, R.L., Gius, D. 2003. 2-Deoxy-d-glucose-induced cytotoxicity and radiosensitization in tumor cells is mediated via disruptions in thiol metabolism. Cancer Res. 63:3413–3417

    CAS  PubMed  Google Scholar 

  • Lievre, A., Chapusot, C., Bouvier, A.M., Zinzindohoue, F., Piard, F., Roignot, P., Arnould, L., Beaune, P., Faivre, J., Laurent-Puig, P. 2005. Clinical value of mitochondrial mutations in colorectal cancer. J. Clin. Oncol. 23:3517–3525

    Article  CAS  PubMed  Google Scholar 

  • Liu, C.S., Tsai, C.S., Kuo, C.L., Chen, H.W., Lii, C.K., Ma, Y.S., and Wei, Y.H. 2003. Oxidative stress-related alteration of the copy number of mitochondrial DNA in human leukocytes. Free Radic. Res. 37:307–1317

    Article  CAS  Google Scholar 

  • Luciakova, K., and Kuzela, S. 1992. Increased steady-state levels of several mitochondrial and nuclear gene transcripts in rat hepatoma with a low content of mitochondria. Eur. J. Biochem. 205:1187–1193

    Article  CAS  PubMed  Google Scholar 

  • Mambo, E., Chatterjee, A., Xing, M., Tallini, G., Haugen, B.R., Yeung, S.C., Sukumar, S., Sidransky, D. 2005. Tumor-specific changes in mtDNA content in human cancer. Int. J. Cancer 116:920–924

    Article  CAS  PubMed  Google Scholar 

  • Marnett, L.J. 1999. Lipid peroxidation-DNA damage by malondialdehyde. Mutat. Res. 424:83

    CAS  PubMed  Google Scholar 

  • Martinez-Cayuela, M. 1995. Oxygen free radicals and human disease. Biochimie 77:47–161

    Article  Google Scholar 

  • Matoba, S., Kang, J.G., Patino, W.D., Wragg, A., Boehm, M., Gavrilova, O., Hurley, P.J., Bunz, F., Hwang, P.M. 2006. p53 regulates mitochondrial respiration. Science 312:1650–1653

    Article  CAS  PubMed  Google Scholar 

  • McCord, J.M., and Fridovich, I. 1969. An enzymtic function for erythrocuprein (hemocuprein). J. Biol. Chem. 244:6049–6055

    CAS  PubMed  Google Scholar 

  • Mitchell, P. 1961. Coupling of phosphorylation to electron and hydrogen transfer by a chemiosmotic type of mechanism. Nature 191:144–148

    Article  CAS  PubMed  Google Scholar 

  • Modica-Napolitano, J.S., and Aprille, J.R. 1987. Basis for the selective cytotoxicity of rhodamine 123. Cancer Res. 47:4361–4365

    CAS  PubMed  Google Scholar 

  • Modica-Napolitano, J.S., Joyal, J.L., Ara, G., Oseroff, A.R., Aprille, J.R. 1990. Mitochondrial toxicity of cationic photosensitizers for photochemotherapy. Cancer Res. 50:7876–7881

    CAS  PubMed  Google Scholar 

  • Modica-Napolitano, J.S., Koya, K., Weisberg, E., Brunelli, B.T., Li, Y., Chen, L.B. 1996. Selective damage to carcinoma mitochondria by the rhodacyanine MKT-077. Cancer Res. 56:544–550

    CAS  PubMed  Google Scholar 

  • Modica-Napolitano, J.S., Kulawiec, M., and Singh, K.K. 2007. Mitochondria and human cancer. Curr. Molec. Med. 7:1–11

    Google Scholar 

  • Modica-Napolitano, J.S., and Touma, S.E. 2000. Functional differences in mitochondrial enzymes from normal epithelial and carcinoma cells. In Mitochondrial Dysfunction in Pathogenesis, A Keystone Symposium, 15–20 January, Santa Fe, NM, USA, Keystone Symposia, Silverthorne, CO, USA64.

    Google Scholar 

  • Modica-Napolitano, J.S., and Singh, K.K. 2002. Mitochondria as targets for detection and treatment of cancer. Exp. Rev. Mol. Med. 11 April,http://www.expertreviews.org/02004453h.htm

  • Modica-Napolitano, J., and Singh, K.K. 2004. Mitochondrial dysfunction in cancer. Mitochondrion 4:755–762

    Article  CAS  PubMed  Google Scholar 

  • Nair, J., Barbin, A., Velic, I., and Bartsch, H. 1999. Etheno DNA-base adducts from endogenous reactive species. Mutat. Res. 424:59

    CAS  PubMed  Google Scholar 

  • Nelson, D.L., and Cox, M.M. 2000. Lehninger Principles of Biochemistry. Worth Publishers

    Google Scholar 

  • Neumann, H.P., Pawlu, C., Peczkowaska, M., Bausch, B., McWinney, S.R., Muresan, M., Cuchta, M., Franke, G., Klisch, J., Bley, T.A., et al. 2004. Distinct clinical features of paraglioma syndromes associated with SDHB and SDHD gene mutations. J. Am. Med. Assoc. 292:943–951

    Article  CAS  Google Scholar 

  • Nishikawa, M., Oshitani, N., Matsumoto, T., Nishigami, T., Arakawa, T., Inoue, M. 2005. Accumulation of mitochondrial DNA mutation with colorectal carcinogenesis in ulcerative colitis. Br. J. Cancer 93:331–337

    Article  CAS  PubMed  Google Scholar 

  • Oberley, L.W. 2001. Antioxidant enzyme levels as a function of growth state in cell culture. Antioxidants Redox Signall. 3:461–472

    Article  CAS  Google Scholar 

  • Oberley, L.W., and Buettner, G.R. 1979. Role of superoxide dismutase in cancer: A review. Cancer Res. 39:1141–1149

    CAS  PubMed  Google Scholar 

  • O’Gorman, E., Beutner, G., Dolder, M., Koretsky, A.P., Brdiczka, D., and Wallimann, T. 1997. The role of creatine kinase in inhibition of mitochondrial permeability transition. FEBS Lett. 414:253–257

    Article  PubMed  Google Scholar 

  • Otto, C., Kaemmerer, U., Illert, B., Muehling, B., Pfetzer, N., Wittig, R., Voelker, H.U., Thiede, A., Coy, J.F. 2008. Growth of human gastric cancer cells in nude mice is delayed by a ketogenic diet supplemented with omega-3 fatty acids and medium-chain triglycerides. BMC Cancer 8:122

    Article  PubMed  CAS  Google Scholar 

  • Pedersen, P.L., and Morris, H.P. 1974. Uncoupler-stimulated adenosine triphosphatase activity. Deficiency in intact mitochondria from Morris hepatomas and ascites tumor cells. J. Biol. Chem. 249:3327–3334

    CAS  PubMed  Google Scholar 

  • Pedersen, P.L. 1978. Tumor mitochondria and the bioenergetics of cancer cells. Prog. Exp. Tumor Res. 22:190–274

    CAS  PubMed  Google Scholar 

  • Petit, P.X., and Kroemer, G. 1998. Mitochondrial regulation of apoptosis. In Singh, K.K., ed., Mitochondrial DNA Mutations in Aging, Disease and Cancer Springer-Verlag, Berlin, Germany147–165.

    Google Scholar 

  • Petros, J.A., Baumann, A.K., Ruiz-Pesini, E., Amin, M.B., Sun, C.Q., Hall, J., Lim, S., Issa, M.M., Flanders, W.D., Hosseini, S.H., Marshall, F.F., Wallace, D.C. 2005. mtDNA mutations increase tumorigenicity in prostate cancer. PNAS 102:719–724

    Article  CAS  PubMed  Google Scholar 

  • Platz, E.A., and De Marzo, A.M. 2004. Epidemiology of inflammation and prostate cancer. J. Urol. 171:S36–40

    Article  PubMed  Google Scholar 

  • Poderoso, J.J., Carreras, M.C., Lisdero, C., Riobo, N., Schopfer, F., and Boveris, A. 1996. Nitric oxide inhibits electron transfer and increases superoxide radical production in rat heart mitochondria and submitochondrial particles. Arch. Biochem. Biophys. 328:85–92

    Article  CAS  PubMed  Google Scholar 

  • Pollard, P.J., Briere, J.J., Alam, N.A., Barwell, J., Barclay, E., Wortham, N.C., Hunt, T., Mitchell, M., Olpin, S., Moat, S.J., Hargreaves, I.P., Heales, S.J., Chung, Y.L., Griffiths, J.R., Dalgleish, A., McGrath, J.A., Gleeson, M.J., Hodgson, S.V., Poulsom, R., Rustin, P., and Tomlinson, I.P.M. 2005. Accumulation of Krebs cycle intermediates and over-expression of HIF1α in tumours which result from germlineFH andSDH mutations. Hum. Mol. Genet.14:2231–2239

    Article  CAS  PubMed  Google Scholar 

  • Polyak, K., Li, Y., Zhu, H., Lengauer, C., Willson, J.K., Markowitz, S.D., Trush, M.A., Kinzler, K.W., Vogelstein, B. 1998. Somatic mutations of the mitochondrial genome in human colorectal tumours Nat. Genet. 20:291–293

    CAS  Google Scholar 

  • Powers, S.K. 1988. In Cerullo, L.J. ed., Application of Lasers in Neurosurgery Year Book Medical Publishers, Chicago, IL, USA137–155.

    Google Scholar 

  • Pugh, C.W., and Ratcliffe, P.J. 2003. Regulation of angiogenesis by hypoxia: Role of the HIF system. Nat. Med. 9:677–684

    Article  CAS  PubMed  Google Scholar 

  • Rampino, N., Yamamoto, H., Ionov, Y., Li, Y., Sawai, H., Reed, J.C., and Perucho, M. 1997. Somatic frameshift mutations in the BAX gene in colon cancers of the microsatellite mutator phenotype. Science 275:967–969

    Article  CAS  PubMed  Google Scholar 

  • Reed, J.C. 1994. Bcl-2 and the regulation of programmed cell death. J. Cell Biol. 124:1–6

    Article  CAS  PubMed  Google Scholar 

  • Reed, J.C. 1997. Double identity for proteins of the Bcl-2 family. Nature 387:773–776

    Article  CAS  PubMed  Google Scholar 

  • Schatz, G. 1996. The protein import system of mitochondria. J. Biol. Chem. 271:31763–31766

    CAS  PubMed  Google Scholar 

  • Schiemann, S., Schwirzke, M., Brunner, N., and Weidle, U.H. 1998. Molecular analysis of two mammary carcinoma cell lines at the transcriptional level as a model system for progression of breast cancer. Clin. Exp. Metast. 16:129–139

    Article  CAS  Google Scholar 

  • Selak, M.A., Armour, S.A., MacKenzie, E.D., Boulahbel, H., Watson, D.G., Mansfield, K.D., Pan, Y., Simon, M.C., Thompson, C.B., and Gottieb, E. 2005. Succinate links TCA cycle dysfunction to oncogenesis by inhibiting HIF-α prolyl hydroxylase. Cancer Cell7:77–85

    Article  CAS  PubMed  Google Scholar 

  • Sies, H. 1999. Free Radic. Biol. Med. 27:916–921

    Article  CAS  PubMed  Google Scholar 

  • Simons, A.L., Ahmad, I.M., Mattson, D.M., Dornfeld, K.J., Spitz, D.R. 2007. 2-Deoxy-d-glucose combined with cisplatin enhances cytotoxicity via metabolic oxidative stress in human head and neck cancer cells. Cancer Res. 67:3364–3370

    Article  CAS  PubMed  Google Scholar 

  • Singh, K.K. 1998. Mitochondrial DNA Mutations in Aging, Disease, and Cancer. Springer, New York, USA

    Google Scholar 

  • Singh, K.K. 2004. Mitochondria damage checkpoint in apoptosis and genome stability. FEMS Yeast Res. 5:127–132

    Article  CAS  PubMed  Google Scholar 

  • Singh, K.K., Ayyasamy, V., Owens, K., Koul, M.S., Vuciji, M. 2008. Mutations in mitochondrial DNA polymerase γ associated with breast cancer. Submitted

    Google Scholar 

  • Singh, K.K., Kulawiec, M., Still, I., Desouki, M.M., Geradts, J., Matsui, S. 2005. Inter-genomic cross talk between mitochondria and the nucleus plays an important role in tumorigenesis. Gene 354:140–146

    Article  CAS  PubMed  Google Scholar 

  • Singh, K.K., Russell, J., Sigala, B., Zhang, Y., Williams, J., Keshav, K.F. 1999. Mitochondrial DNA determines the cellular response to cancer therapeutic agents. Oncogene 18:6641–6646

    Article  CAS  PubMed  Google Scholar 

  • Slane, B.G., Aykin-Burns, N., Smith, B., Kalen, A.K., Goswami, P.C., Domann, F.E., and Spitz, D.R. 2006. Mutation of succinate dehydrogenase subunit C results in increased O2. · −, oxidative stress, and genomic instability. Cancer Res. 66:7615–7620

    Article  CAS  PubMed  Google Scholar 

  • Spelbrink, J.N., Toivonen, J.M., Hakkaart, G.A., Kurkela, J.M., Cooper, H.M., Lehtinen, S.K., Lecrenier, N., Back, J.W., Speijer, D., Foury, F., Jacobs, H.T. 2000. In vivo functional analysis of the human mitochondrial DNA polymerase POLG expressed in cultured human cells. J Biol Chem. 75:24818–24828.

    Article  Google Scholar 

  • Spitz, D.R., Azzam, E.I., Li, J.J., and Gius, D. 2004. Metabolic oxidation/reduction reactions and cellular responses to ionizing radiation: A unifiying concept in stress response biology. Cancer Metast. 23:311–322

    Article  CAS  Google Scholar 

  • Sul, H.S., Shrago, E., Goldfarb, S., and Rose, F. 1979. Comparison of the adenine nucleotide translocase in hepatomas and rat liver mitochondria. Biochim. Biophys. Acta 551:148–155

    Article  CAS  PubMed  Google Scholar 

  • Summerhayes, I.C., Lampidis, T.J., Bernal, S.D., Nadakavukaren, J.J., Nadakavukaren, K.K., Shepherd, E.L., and Chen, L.B. 1982. Unusual retention of rhodamine 123 by mitochondria in muscle and carcinoma cells. Proc. Natl. Acad. Sci. USA 79:5292–5296

    Article  CAS  PubMed  Google Scholar 

  • Summerhayes, I.C., Wong, D., and Chen, L.B. 1983. Effect of microtubules and intermediate filaments on mitochondrial distribution. J. Cell Sci. 61:87–105

    CAS  PubMed  Google Scholar 

  • Sun, A.S., and Cederbaum, A.I. 1980. Oxidoreductase activities in normal rat liver, tumor-bearing rat liver, and hepatoma HC-252. Cancer Res. 40:4677–4681

    CAS  PubMed  Google Scholar 

  • Sun, A.S., Sepkowitz, K., and Geller, S.A. 1981. A study of some mitochondrial and peroxisomal enzymes in human colonic adenocarcinoma. Lab. Invest. 44:13–17

    CAS  PubMed  Google Scholar 

  • Suzuki, T., Spitz, D.R., Gandhi, P., Lin, H.Y., and Crawford, D.R. 2002. Mammalian resistance to oxidative stress: A comparative analysis. Gene Expression 10:179–191

    CAS  PubMed  Google Scholar 

  • Taylor, E.R., Hurrell, F., Shannon, R.J., Lin, T.K., Hirst, J., and Murphy, M.P. 2003. Reversible glutathionylation of complex I increases mitochondrial superoxide formation. J. Biol. Chem. 278:19603–19610

    Article  CAS  PubMed  Google Scholar 

  • Tomlinson, I.P., Alam, N.A., Rowan, A.J., Barclay, E., Jaeger, E.E., Kelsell, D., Leigh, I., Gorman, P., Lamlum, H., Rahman, S., Roylance, R.R., Olpin, S., Bevan, S., Barker, K., Hearle, N., Houlston, R.S., Kiuru, M., Lehtonen, R., Karhu, A., Vilkki, S., Laiho, P., Eklund, C., Vierimaa, O., Aittomaki, K., Hia, M., Sistonen, P., Paetau, A., Salovaara, R., Herva, R., Launonen, V., Aaltonen, L.A.; 2002. Germline mutations in FH predispose to dominantly inherited uterine fibroids, skin leiomyomata and papillary renal cell cancer. Nat. Genetics 30:406–410Multiple Leiomyoma Consortium.

    Article  CAS  Google Scholar 

  • Turrens, J.F. 1997. Superoxide production by the mitochondrial respiratory chain. Biosci. Rep. 17:3–8

    Article  CAS  PubMed  Google Scholar 

  • Turrens, J.F. 2003. Mitochondrial formation of reactive oxygen species. J. Physiol. 522:335–344

    Article  CAS  Google Scholar 

  • Turrens, J.F., and Boveris, A. 1980. Generation of superoxide anion by the NADH dehydrogenase of bovine heart mitochondria. Biochem. J. 191:421–424

    CAS  PubMed  Google Scholar 

  • Tzagoloff, A. 1982. Mitochondria. Plenum Press, New York, NY, USA

    Google Scholar 

  • Venturini, I., Zeneroli, M.L., Corsi, L., Avallone, R., Farina, F., Alho, H., Baraldi, C., Ferrarese, C., Pecora, N., Frigo, M., Ardizzone, G., Arrigo, A., Pellici, R., and Baraldi, M. 1998. Up-regulation of peripheral benzodiazepine receptor system in hepatocellular carcinoma. Life Sci. 63:1269–1280

    Article  CAS  PubMed  Google Scholar 

  • Voet, D., Voet, J.G., and Pratt, C.W. 2002. Fundamentals of Biochemistry. John Wiley & Sons, Inc., New York

    Google Scholar 

  • Wang, Y., Liu, V.W., Xue, W.C., Tsang, P.C., Cheung, A.N., Ngan, H.Y. 2005. The increase of mitochondrial DNA content in endometrial adenocarcinoma cells: A quantitative study using laser-captured microdissected tissues. Gynecol. Oncol. 98:104–110

    Article  CAS  PubMed  Google Scholar 

  • Warburg, O. 1930. Metabolism of Tumors. Arnold Constable, London, UK

    Google Scholar 

  • Warburg, O. 1956. On the origin of cancer cells. Science 123:309–314

    Article  CAS  PubMed  Google Scholar 

  • Weinhouse, S. 1955. Oxidative metabolism of neoplastic tissue. Adv. Cancer Res. 3:269–325

    Article  CAS  PubMed  Google Scholar 

  • Weisberg, E.L., Koya, K., Modica-Napolitano, J., Li, Y., Chen, L.B. 1996. In vivo administration of MKT-077 causes partial yet reversible impairment of mitochondrial function. Cancer Res. 56:551–555

    CAS  PubMed  Google Scholar 

  • Weissig, V., and Torchilin, V.P. 2001. Drug and DNA delivery to mitochondria. Adv. Drug Deliv. Rev. 49:1–2

    Article  CAS  PubMed  Google Scholar 

  • Wilson, B.C., and Jeeves, W.P. 1987. In Ben-Hur, E., and Rosenthal, I. eds.), Photomedicine, Vol. 2 (CRC Press, Boca Raton, FL, USA127–177.

    Google Scholar 

  • Woldegiorgis, G., and Shrago, E. 1985. Adenine nucleotide translocase activity and sensitivity to inhibitors in hepatomas. Comparison of the ADP/ATP carrier in mitochondria and in a purified reconstituted liposome system. J. Biol. Chem. 260:7585–7590

    CAS  PubMed  Google Scholar 

  • Yen, T.C., King, K.L., Lee, H.C., Yeh, S.H., and Wei, Y.H. 1994. Age-dependent increase of mitochondrial DNA deletions together with lipid peroxides and superoxide dismutase in human liver mitochondria. Free Radic. Biol. Med. 16:207–214

    Article  CAS  PubMed  Google Scholar 

  • Yakes, F.M., and Van Houten, B. 1997. Mitochondrial DNA damage is more extensive and persists longer than nuclear DNA damage in human cells following oxidative stress. Proc. Natl. Acad. Sci. USA 94:514–519

    Article  CAS  PubMed  Google Scholar 

  • Zamzami, N. et al. 1996. Mitochondrial control of nuclear apoptosis. J. Exp. Med. 183:1533–1544

    Article  CAS  PubMed  Google Scholar 

  • Zhang, J., Jin, B., Li, L., Block, E.R., and Patel, J.M. 2005. Nitric oxide-induced persistent inhibition and nitrosylation of active site cysteine residues of mitochondrial cytochrome-c oxidase in lung endothelial cells. Am. J. Physiol. Cell. Physiol. 288:C840–C849

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Studies in our laboratory were supported by NIH grants R01 CA121904, R01 CA13655, and R01 CA116430. We thank Ms. Paula Jones for editing this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keshav K. Singh .

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science + Business Media, LLC

About this chapter

Cite this chapter

Owens, K.M., Modica-Napolitano, J.S., Singh, K.K. (2009). Mitochondria and Cancer. In: Mitochondria and Cancer. Springer, New York, NY. https://doi.org/10.1007/978-0-387-84835-8_1

Download citation

Publish with us

Policies and ethics