Skip to main content

Effect of Cancer on Platelets

  • Chapter
  • First Online:
Coagulation in Cancer

Part of the book series: Cancer Treatment and Research ((CTAR,volume 148))

Platelets play an essential role in hemostasis, the arrest of bleeding. In response to vascular injury, platelets become adherent and undergo activation and aggregation. The formation of platelet plug occurs simultaneously with activation of coagulation leading to fibrin formation. Platelet function also contributes to pathologic thrombus formation leading to vascular occlusion often in the context of underlying vascular disease, which is a leading cause of morbidity and mortality. Other less well appreciated functions of platelets include a vascular maintenance function, regulation of angiogenesis, as well as putative roles in inflammation and immunity. Platelets are now linked to diverse physiologic and pathologic processes including wound healing and tissue regeneration, response to microbial infection, inflammatory diseases, atherogenesis, tumorigenesis and metastasis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Trousseau A. Plegmasie alba dolens. Clinique Medical de Hotel-Dieu de Paris, London. New Syndenham Society 1865;3:94.

    Google Scholar 

  2. Billroth T. Lectures on surgical pathology and therapeutics: a handbook for students and practitioners. New Syndenham Society:1877–8.

    Google Scholar 

  3. Lee AY, Levine MN. Venous thromboembolism and cancer: risks and outcomes. Circulation 2003;107(23 Suppl 1):I17–21.

    PubMed  Google Scholar 

  4. Rickles F. Mechanisms of cancer-induced thrombosis in cancer. Pathophysiol Haemost Thromb 2006;35(1–2):103–10.

    Article  PubMed  Google Scholar 

  5. Ambrus JL, Ambrus CM, Mink IB, Pickren JW. Causes of death in cancer patients. J Med 1975;6(1):61–4.

    PubMed  CAS  Google Scholar 

  6. Nierodzik ML, Karpatkin S. Thrombin induces tumor growth, metastasis, and angiogenesis: evidence for a thrombin-regulated dormant tumor phenotype. Cancer Cell 2006;10(5):355–62.

    Article  PubMed  CAS  Google Scholar 

  7. Prandoni P, Lensing AW, Piccioli A, et al. Recurrent venous thromboembolism and bleeding complications during anticoagulant treatment in patients with cancer and venous thrombosis. Blood 2002;100(10):3484–8.

    Article  PubMed  CAS  Google Scholar 

  8. Sorensen HT, Mellemkjaer L, Olsen JH, Baron JA. Prognosis of cancers associated with venous thromboembolism. N Engl J Med 2000;343(25):1846–50.

    Article  PubMed  CAS  Google Scholar 

  9. Levitan N, Dowlati A, Remick SC, et al. Rates of initial and recurrent thromboembolic disease among patients with malignancy versus those without malignancy. Risk analysis using Medicare claims data. Medicine (Baltimore) 1999;78(5):285–91.

    Article  CAS  Google Scholar 

  10. Shulman S, Lindmarker P. Incidence of cancer after prophylaxis with warfarin against recurrent venous thromboembolism. Duration of anti-coagulation trial. NEJM 2000;3432:1953.

    Article  Google Scholar 

  11. Levin J, Conley CL. Thrombocytosis associated with malignant disease. Arch Intern Med 1964;114:497–500.

    Article  PubMed  CAS  Google Scholar 

  12. Sun NC, McAfee WM, Hum GJ, Weiner JM. Hemostatic abnormalities in malignancy, a prospective study of one hundred eight patients. Part I. Coagulation studies. Am J Clin Pathol 1979;71(1):10–6.

    PubMed  CAS  Google Scholar 

  13. Sack JGH, Levin, J, Bell WR. Trepusseau's syndrome and other manifestations of chronic disseminated coagulopathy in patients with neoplasms: clinical, pathophysiologic and therapeutic features. Medicine 1977;56:1–37.

    PubMed  Google Scholar 

  14. Slichter SJ, Harker LA. Hemostasis in malignancy. Ann N Y Acad Sci 1974;230:252–61.

    Article  PubMed  CAS  Google Scholar 

  15. Lyman GH, Bettigole RE, Robson E, Ambrus JL, Urban H. Fibrinogen kinetics in patients with neoplastic disease. Cancer 1978;41(3):1113–22.

    Article  PubMed  CAS  Google Scholar 

  16. Rickles F, Edwards R. Activation of blood coagulation in cancer: Trousseau's syndrome revisited. Blood 1983;62:14–31.

    PubMed  CAS  Google Scholar 

  17. Gale AJ, Gordon, SG. Update on tumor cell procoagulant factors. Acta Haematol 2001;106:25–32.

    Article  PubMed  CAS  Google Scholar 

  18. Hanahan D, Weinberg RA. The hallmarks of cancer. Cell 2000;100(1):57–70.

    Article  PubMed  CAS  Google Scholar 

  19. Sporn MB. The war on cancer. Lancet 1996;347(9012):1377–81.

    Article  PubMed  CAS  Google Scholar 

  20. Gasic G, Gasic T, Stewart C. Antimetastatic effects associated with platelet reduction. Proc Natl Acad Sci USA 1968;61:46–52.

    Article  PubMed  CAS  Google Scholar 

  21. Pearlstein E, Ambrogio C, Karpatkin S. Effect of anti-platelet antibody on the development of pulmonary metastases following injection of CT26 colon adenocarcinoma, Lewis lung carcinoma and B16 amelanotic melanoma tumor cells in mice. Cancer Res 1984;44:3884–7.

    PubMed  CAS  Google Scholar 

  22. Wood S. Experimental studies of the intravascular dissemination of ascetic V2 carcinoma cells in the rabbit with special reference to fibrinogen and fibrinolytic agents. Bull Schweiz Med Wiss 1964;20:92.

    Google Scholar 

  23. Jones J, Wallace A, Fraser E. Sequence of events in experimental and electron microscopic observations. J Natl Cancer Inst 1971;46:493–504.

    PubMed  CAS  Google Scholar 

  24. Sindelar W, Tralka T, Ketcham A. Electron microscope observations on formation of pulmonary metastases. J Surg Res 1975;18:137–61.

    Article  PubMed  CAS  Google Scholar 

  25. Gasic GJ, Gasic TB, Galanti N, Johnson T, Murphy S. Platelet-tumor-cell interactions in mice. The role of platelets in the spread of malignant disease. Int J Cancer 1973;11(3):704–18.

    Article  PubMed  CAS  Google Scholar 

  26. Pearlstein E, Salk PL, Yogeeswaran G, Karpatkin S. Correlation between spontaneous metastatic potential, platelet-aggregating activity of cell surface extracts, and cell surface sialylation in 10 metastatic-variant derivatives of a rat renal sarcoma cell line. Proc Natl Acad Sci USA 1980;77(7):4336–9.

    Article  PubMed  CAS  Google Scholar 

  27. Camerer E, Qazi A, Duong D, Cornelissen I, Rommel A, Coughlin S. Platelets, protease-activated receptors, and fibrinogen in hematogenous metastasis. Blood 2004;104:397–401.

    Article  PubMed  CAS  Google Scholar 

  28. Crissman JD, Hatfield JS, Menter DG, Sloane B, Honn KV. Morphological study of the interaction of intravascular tumor cells with endothelial cells and subendothelial matrix. Cancer Res 1988;48(14):4065–72.

    PubMed  CAS  Google Scholar 

  29. Morimoto K, Satoh-Yamaguchi K, Hamaguchi A, Inoue Y, et al. Interaction of cancer cells with platelets mediated by Necl-5/poliovirus receptor enhances cancer cell metastasis to the lungs. Oncogene 2008;27(3):264–73.

    Article  PubMed  CAS  Google Scholar 

  30. Kojima H, Kanada H, Shimizu S, Kasama E, et al. CD226 mediates platelet and megakaryocytic cell adhesion to vascular endothelial cells. J Biol Chem 2003; 278(38):36748–53.

    Article  PubMed  CAS  Google Scholar 

  31. Fidler I. Metastases: quantitative analysis of distribution and fate of tumor emboli labeled with 125I-5-iodo-2'-deoxyuridine. J Natl Cancer Inst 1970;45:773–82.

    PubMed  CAS  Google Scholar 

  32. Nieswandt B, Hafner M, Echtenacher B, Mannel D. Lysis of tumor cells by natural killer cells in mice is impeded by platelets. Cancer Res 1999;59:1295–300.

    PubMed  CAS  Google Scholar 

  33. Palumbo JS, Talmage KE, Massari JV, et al. Platelets and fibrin(ogen) increase metastatic potential by impeding natural killer cell-mediated elimination of tumor cells. Blood 2005;105(1):178–85.

    Article  PubMed  CAS  Google Scholar 

  34. Mehta P. Potential role of platelets in the pathogenesis of tumor metastasis. Blood 1984;63(1):55–63.

    PubMed  CAS  Google Scholar 

  35. Karpatkin S, Ambrogio C, Pearlstein E. Lack of effect of in vivo prostacyclin on the development of pulmonary metastases in mice following intravenous injection of CT26 colon carcinoma, Lewis lung carcinoma, or B16 amelanotic melanoma cells. Cancer Res 1984;44(9):3880–3.

    PubMed  CAS  Google Scholar 

  36. Karpatkin S, Pearlstein E, Ambrogio C, Coller BS. Role of adhesive proteins in platelet tumor interaction in vitro and metastasis formation in vivo. J Clin Invest 1988;81:1012–9.

    Article  PubMed  CAS  Google Scholar 

  37. Trikha M, Zhou Z, Timar J, et al. Multiple roles for platelet GPIIb/IIIa and alphavbeta3 integrins in tumor growth, angiogenesis, and metastasis. Cancer Res 2002;62(10):2824–33.

    PubMed  CAS  Google Scholar 

  38. Terraube V, Pendu R, Baruch D, Gebbink MFBG. Increased metastatic potential of tumor cells in von Willebrand factor-deficient mice. J Thromb Haemost 2006; 4(3):519–26.

    Article  PubMed  CAS  Google Scholar 

  39. Bakewell SJ, Nestor P, Prasad S, et al. Platelet and osteoclast beta3 integrins are critical for bone metastasis. Proc Natl Acad Sci USA 2003;100(24):14205–10.

    Article  PubMed  CAS  Google Scholar 

  40. Biggerstaff J, Seth N, Amirkhosravi A, et al. Soluble fibrin augments platelet/tumor cell adherence in vitro and in vivo, and enhances experimental metastasis. Clin Exper Metastas 1999;17:723–30.

    Article  CAS  Google Scholar 

  41. Felding-Habermann B, Habermann R, Saldivar E, Ruggeri ZM. Role of beta3 integrins in melanoma cell adhesion to activated platelets under flow. J Biol Chem 1996;271:5892–900.

    Article  PubMed  CAS  Google Scholar 

  42. McCarty O, Mousa S, Bray P, Konstantopoulos K. Immobilized platelets support human colon carcinoma cell tethering, rolling, and firm adhesion under dynamic flow conditions. Blood 2000;96:1789–97.

    PubMed  CAS  Google Scholar 

  43. Kim Y, Borsig L, Varki N, Varki A. P-selectin deficiency attenuates tumor growth and metastasis. Proc Natl Acad Sci USA 1998;95:9325–30.

    Article  PubMed  CAS  Google Scholar 

  44. Borsig L, Wong R, Feramisco J, Nadeau DR, Varki NM, Varki A. Heparin and cancer revisited: mechanistic connections involving platelets, P-selectin, carcinoma mucins, and tumor metastasis. Proc Natl Acad Sci USA 2001;98(6):3352–7.

    Article  PubMed  CAS  Google Scholar 

  45. Terranova V, Williams J, Liotta L. Modulation of metastatic activity of melanoma cells by laminin and fibronectin. Science 1984;226:982–4.

    Article  PubMed  CAS  Google Scholar 

  46. Cheresh D, Smith W, Cooper H, et al. A novel vitronectin receptor integrin (avbx) is responsible for distinct adhesive properties of carcinoma cells. Cell 1989;57:59–69.

    Article  PubMed  CAS  Google Scholar 

  47. Kramer R, Marks N. Identification of integrin collagen receptors on human melanoma cells. J Biol Chem 1989;264:4684–8.

    PubMed  CAS  Google Scholar 

  48. Roberts D, Sherwood J, Ginsburg V. Platelet thrombospondin mediates attachment and spreading of human melanoma cells. J Cell Biol 1987;104:131–9.

    Article  PubMed  CAS  Google Scholar 

  49. Klepfish A, Greco MA, Karpatkin S. Thrombin stimulates melanoma tumor-cell binding to endothelial cells and subendothelial matrix. Int J Cancer 1993;53(6):978–82.

    Article  PubMed  CAS  Google Scholar 

  50. Carney D, Stiernberg J, Fenton J. Initiation of proliferative events by human α-thrombin requires both receptor binding and enzymatic activity. J Cell Biochem 1984;26:181–95.

    Article  PubMed  CAS  Google Scholar 

  51. Chen L, Buchanan J. Mitogenic activity of blood components. I. Thrombin and prothrombin. Proc Natl Acad Sci USA 1975;72:131–5.

    Article  PubMed  CAS  Google Scholar 

  52. Gospodarowicz D, Brown K, Birdwell C, Zetter B. Control of proliferation of human vascular endothelial cells. Characterization of the response of human umbilical vein endothelial cells to fibroblast growth factor, epidermal growth factor, and thrombin. J Cell Biol 1978;77:774–88.

    Article  PubMed  CAS  Google Scholar 

  53. Caunt M, Huang YQ, Brooks PC, Karpatkin S. Thrombin induces neoangiogenesis in the chick chorioallantoic membrane. J Thromb Haemost 2003;1(10):2097–102.

    Article  PubMed  CAS  Google Scholar 

  54. Nierodzik M, Plotkin A, Kajumo F, Karpatkin S. Thrombin stimulates tumor-platelet adhesion in vitro and metastasis in vivo. J Clin Invest 1991;87:229–36.

    Article  PubMed  CAS  Google Scholar 

  55. Dardik R, Savion N, Kaufmann Y, Varon D. Thrombin promotes platelet-mediated melanoma cell adhesion to endothelial cells under flow conditions: role of platelet glycoproteins P-selectin and GPIIb-IIIa. Br J Cancer 1998;77:2069–75.

    Article  PubMed  CAS  Google Scholar 

  56. Nierodzik ML, Bain RM, Liu L-X, Shivji M, Takeshita K, Karpatkin S. Presence of the seven transmembrane thrombin receptor on human tumour cells: effect of activation on tumour adhesion to platelets and tumour tyrosine phosphorylation. Br J Haematol 1996;92:452–7.

    Article  PubMed  CAS  Google Scholar 

  57. Even-Ram S, Uziely B, Cohen P, et al. Thrombin receptor overexpression in malignant and physiological invasion processes. Nat Med 1998;4:909–14.

    Article  PubMed  CAS  Google Scholar 

  58. Shi X, Gangadharan B, Brass LF, Ruf W, Mueller BM. Protease-activated receptors (PAR1 and PAR2) contribute to tumor cell motility and metastasis. Mol Cancer Res 2004;2(7):395–402.

    PubMed  CAS  Google Scholar 

  59. Nierodzik M, Chen K, Takeshita K, et al. Protease-activated receptor 1 (PAR-1) is required and rate-limiting for thrombin-enhanced experimental pulmonary metastasis. Blood 1998;92(10):3694–700.

    PubMed  CAS  Google Scholar 

  60. Caunt M, Hu L, Tang T, Brooks PC, Ibrahim S, Karpatkin S. Growth-regulated oncogene is pivotal in thrombin-induced angiogenesis. Cancer Res 2006;66(8):4125–32.

    Article  PubMed  CAS  Google Scholar 

  61. Hu L, Roth JM, Brooks P, Ibrahim S, Karpatkin S. Twist is required for thrombin-induced tumor angiogenesis and growth. Cancer Res 2008;68(11).

    Google Scholar 

  62. Yang J, Mani SA, Donaher JL, et al. Twist, a master regulator of morphogenesis, plays an essential role in tumor metastasis. Cell 2004;117(7):927–39.

    Article  PubMed  CAS  Google Scholar 

  63. Hu L, Roth JM, Brooks P, Luty J, Simon K. Thrombin up-regulates Cathepsin D which enhances angiogenesis, growth, and metastasis. Cancer Res 2008;68(12).

    Google Scholar 

  64. Hu L, Lee M, Campbell W, Perez-Soler R, Karpatkin S. Role of endogenous thrombin in tumor implantation, seeding and spontaneous metastasis. Blood 2004;104:2746–51.

    Article  PubMed  CAS  Google Scholar 

  65. Mueller B, Reisfeld R, Edgington T, Ruf W. Expression of tissue factor by melanoma cells promotes efficient hematogenous metastasis. Proc Natl Acad Sci USA 1992;89:832–6.

    Article  Google Scholar 

  66. Fisher E, Ruf W, Mueller B. Tissue factor-initiated thrombin generation activates the signaling thrombin receptor on malignant melanoma cells. Cancer Res 1995;55:1629–32.

    Google Scholar 

  67. Zacharski L, Memoli V, Morain W, Schlaeppi J-M, Rousseau S. Cellular localization of enzymatically-active thrombin in intact tissue by hirudin binding. Thromb Haemostas 1995;73:793–7.

    CAS  Google Scholar 

  68. Palumbo JS, Kombrinck KW, Drew AF, et al. Fibrinogen is an important determinant of the metastatic potential of circulating tumor cells. Blood 2000;96(10):3302–9.

    PubMed  CAS  Google Scholar 

  69. Offermanns S, Toombs CF, Hu YH, Simon MI. Defective platelet activation in Gαq-deficient mice. Nature 1997;389:183–6.

    Article  PubMed  CAS  Google Scholar 

  70. Spaet TH. Vascular factors in the pathogenesis of hemorrhagic syndromes. Blood 1952;7(6):641–52.

    PubMed  CAS  Google Scholar 

  71. Gimbrone MA Jr, Aster RH, Cotran RS, Corkery J, Jandl JH, Folkman J. Preservation of vascular integrity in organs perfused in vitro with a platelet-rich medium. Nature 1969;222(5188):33–6.

    Article  PubMed  Google Scholar 

  72. Kitchens CS, Weiss L. Ultrastructural changes of the endothelium associated with thrombocytopenia. Blood 1975;46:567–78.

    Google Scholar 

  73. Kitchens CS, Pendergast JF. Human thrombocytopenia is associated with structural abnormalities of the endothelium that are ameliorated by glucocorticosteroid administration. Blood 1986;67:203–6.

    Google Scholar 

  74. Pintucci G, Froum S, Pinnell J, Mignatti P, Rafii S, Green D. Trophic effects of platelets on cultured endothelial cells are mediated by platelet-associated fibroblast growth factor-2 (FGF-2) and vascular endothelial growth factor (VEGF). Thromb Haemost 2002;88(5):834–42.

    PubMed  Google Scholar 

  75. Pipili-Synetos E, Papadimitriou E, Maragoudakis ME. Evidence that platelets promote tube formation by endothelial cells on matrigel. Br J Pharmacol 1998;125(6):1252–7.

    Article  PubMed  CAS  Google Scholar 

  76. Miyazono K, Takaku F. Platelet-derived growth factors. Blood Reviews 1989;3(4):269–76.

    Google Scholar 

  77. Liu Y, Wada R, Yamashita T, et al. Edg-1, the G protein-coupled receptor for sphingosine-1-phosphate, is essential for vascular maturation. J Clin Invest 2000;106(8):951–61.

    Article  PubMed  CAS  Google Scholar 

  78. Paik JH, Skoura A, Chae SS, et al. Sphingosine 1-phosphate receptor regulation of N-cadherin mediates vascular stabilization. Genes Dev 2004;18(19):2392–403.

    Article  PubMed  CAS  Google Scholar 

  79. Boucharaba A, Serre CM, Gres S, et al. Platelet-derived lysophosphatidic acid supports the progression of osteolytic bone metastases in breast cancer. J Clin Invest 2004;114(12):1714–25.

    PubMed  CAS  Google Scholar 

  80. Brill A, Elinav H, Varon D. Differential role of platelet granular mediators in angiogenesis. Cardiovasc Res 2004;63(2):226–35.

    Article  PubMed  CAS  Google Scholar 

  81. Brill A, Dashevsky O, Rivo J, Gozal Y, Varon D. Platelet-derived microparticles induce angiogenesis and stimulate post-ischemic revascularization. Cardiovasc Res 2005;67(1):30–8.

    Article  PubMed  CAS  Google Scholar 

  82. Ma L, Elliott SN, Cirino G, Buret A, Ignarro LJ, Wallace JL. Platelets modulate gastric ulcer healing: role of endostatin and vascular endothelial growth factor release. Proc Natl Acad Sci USA 2001;98(11):6470–5.

    Article  PubMed  CAS  Google Scholar 

  83. Italiano JE Jr, Richardson JL, Patel-Hett S, Battinelli E, et al. Angiogenesis is regulated by a novel mechanism: pro- and antiangiogenic proteins are organized into separate platelet alpha granules and differentially released. Blood 2008;111(3):1227–33.

    Article  PubMed  CAS  Google Scholar 

  84. Cervi D, Yip T-T, Bhattacharya N, Podust VN, et al. Platelet-associated PF-4 as a biomarker of early tumor growth. Blood 2008;111(3):1201–7.

    Article  PubMed  CAS  Google Scholar 

  85. Frenette PS, Johnson RC, Hynes RO, Wagner DD. Platelets roll on stimulated endothelium in vivo: an interaction mediated by endothelial P-selectin. Proc Natl Acad Sci USA 1995;92(16):7450–4.

    Article  PubMed  CAS  Google Scholar 

  86. Frenette PS, Denis CV, Weiss L, et al. P-Selectin glycoprotein ligand 1 (PSGL-1) is expressed on platelets and can mediate platelet-endothelial interactions in vivo. J Exp Med 2000;191(8):1413–22.

    Article  PubMed  CAS  Google Scholar 

  87. Jin DK, Shido K, Kopp HG, et al. Cytokine-mediated deployment of SDF-1 induces revascularization through recruitment of CXCR4+ hemangiocytes. Nat Med 2006;12(5):557–67.

    Article  PubMed  CAS  Google Scholar 

  88. Pinedo HM, Verheul HM, D'Amato RJ, Folkman J. Involvement of platelets in tumour angiogenesis? Lancet 1998;352(9142):1775–7.

    Article  PubMed  CAS  Google Scholar 

  89. Verheul HM, Hoekman K, Luykx-de Bakker S, et al. Platelet: transporter of vascular endothelial growth factor. Clin Cancer Res 1997;3(12 Pt 1):2187–90.

    PubMed  CAS  Google Scholar 

  90. Thun MJ, Namboodiri MM, Heath CW Jr. Aspirin use and reduced risk of fatal colon cancer. N Engl J Med 1991;325(23):1593–6.

    Article  PubMed  CAS  Google Scholar 

  91. Thun MJ, Namboodiri MM, Calle EE, Flanders WD, Heath CW Jr. Aspirin use and risk of fatal cancer. Cancer Res 1993;53(6):1322–7.

    PubMed  CAS  Google Scholar 

  92. Bosetti C, Gallus S, La Vecchia C. Aspirin and cancer risk: an updated quantitative review to 2005. Cancer Causes Control 2006;17(7):871–88.

    Article  PubMed  Google Scholar 

  93. Lebeau B, Chastang C, Muir JF, Vincent J, Massin F, Fabre C. No effect of an antiaggregant treatment with aspirin in small cell lung cancer treated with CCAVP16 chemotherapy. Results from a randomized clinical trial of 303 patients. The “Petites Cellules” Group. Cancer 1993;71(5):1741–5.

    Article  PubMed  CAS  Google Scholar 

  94. Miller G, Bauer K, Howarth D, Cooper J, Humphries S, Rosenberg R. Increased incidence of neoplasia of the digestive tract in men with persistent activation of the coagulant pathway. J Thromb Haemost 2004;2:2107–14.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David L. Green .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Green, D.L., Karpatkin, S. (2009). Effect of Cancer on Platelets. In: Kwaan, H., Green, D. (eds) Coagulation in Cancer. Cancer Treatment and Research, vol 148. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-79962-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-79962-9_2

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-79961-2

  • Online ISBN: 978-0-387-79962-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics