Skip to main content

Abstract

Maize kernels contain a persistent endosperm and a developmentally precocious embryo, each of which is comprised of a relatively small number of distinct tissue types. Clonally distinct yet genetically identical structures, the embryo and endosperm are an exquisite experimental system for analyses of developmental interactions. Several decades of classical and molecular genetic research utilizing an especially abundant array of informative mutants have provided unique insight into the developmental mechanisms of maize kernel morphogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Balandin M, Royo J, G ómez E, Muniz LM, Molina A, Hueros G (2005) A protective role for the embryo surrounding region of the maize endosperm, as evidenced by the characterization of ZmESR-6, a defensin gene specifically expressed in this region . Plant Mol Biol58:269–282.

    Article  CAS  PubMed  Google Scholar 

  • Bate NJ, Niu X, Wang Y, Reimann KS, Helentjaris TG (2004) An invertase inhibitor from maize localizes to the embryo surrounding region during early kernel development . Plant Physiol134:246–254.

    Article  CAS  PubMed  Google Scholar 

  • Bauer MJ, Birchler JA (2006) Organization of endoreduplicated chromosomes in the endosperm of Zea mays L. Chromosoma115:383–394.

    Article  PubMed  Google Scholar 

  • Becraft PW (2001) Cell fate specification in the cereal endosperm. Semin Cell Dev Biol .12:387–394.

    Article  CAS  PubMed  Google Scholar 

  • Becraft PW, Asuncion-Crabb Y (2000) Positional cues specify and maintain aleurone cell fate in maize endosperm development . Development127:4039–4048.

    CAS  PubMed  Google Scholar 

  • Becraft PW, Stinard PS, McCarty DR (1996) CRINKLY4: a TNFR-like receptor kinase involved in maize epidermal differentiation . Science273:1406–1409.

    Article  CAS  PubMed  Google Scholar 

  • Bonello J, Sevilla-Lecoq S, Berne A, Risueno M, Dumas C, Rogowsky PM (2002) Esr proteins are secreted by the cells of the embryo surrounding region . J Exp Bot53:1559–1568.

    Article  CAS  PubMed  Google Scholar 

  • Bonello J-F, Opsahl-Ferstad H-G, Perez P, Dumas C, Rogowsky PM (2000) Esr genes show different levels of expression in the same region of maize endosperm . Gene246:219–227.

    Article  CAS  PubMed  Google Scholar 

  • Burr B, Burr FA, St. John TP, Thomas M, Davis RD (1982) Zein storage gene family of maize . J Mol Biol154:33–49.

    Article  CAS  PubMed  Google Scholar 

  • Cai G, Faleri C, Del Casino C, Hueros G, Thompson RD, Cresti M (2002) Subcellular localisation of BETL-1, -2 and -4 in Zea maysL. endosperm. Sex Plant Reprod15:85–98.

    Article  CAS  Google Scholar 

  • Charlton WL, Keen CL, Merriman C, Lynch P, Greenland AJ, Dickinson HG (1995) Endosperm development in Zea mays; implication of gametic imprinting and paternal excess in regulation of transfer layer development . Development121:3089–3097.

    CAS  Google Scholar 

  • Cheng WH, Taliercio EW, Chourey PS (1996) The Miniature1seed locus of maize encodes a cell wall invertase required for normal development of endosperm and maternal cells in the pedicel. Plant Cell8:971–983.

    Article  CAS  PubMed  Google Scholar 

  • Clark JK, Sheridan WF (1991) Isolation and Characterization of 51 embryo-specific Mutations of Maize. Plant Cell3:935–951.

    Article  PubMed  Google Scholar 

  • Cock JM, McCormick S (2001) A large family of genes that share homology with CLAVATA3. Plant Physiol126:939–942.

    Article  CAS  PubMed  Google Scholar 

  • Coelho CM, Dante RA, Sabelli PA, Sun Y, Dilkes BP, Gordon-Kamm WJ, Larkins BA (2005) Cyclin-dependent kinase inhibitors in maize endosperm and their potential role in endoredu-plication. Plant Physiol138:2323–2336.

    Article  CAS  PubMed  Google Scholar 

  • Costa LM, Gutierrez-Marcos JF, Brutnell TP, Greenland AJ, Dickinson HG (2003) The globby1–1 (glo1–1)mutation disrupts nuclear and cell division in the developing maize seed causing alterations in endosperm cell fate and tissue differentiation . Development130:5009–5017.

    Article  CAS  PubMed  Google Scholar 

  • Danilevskaya ON, Hermon P, Hantke S, Muszynski MG, Kollipara K, Ananiev EV (2003) Duplicated fiegenes in maize expression pattern and imprinting suggest distinct functions . Plant Cell15:425–438.

    Article  CAS  PubMed  Google Scholar 

  • Demerec M (1923) Heritable characters of maize. XV-Germless seeds. J Hered14:297–300.

    Google Scholar 

  • Dewitte W, Murray JAH (2003) The plant cell cycle. Annu Rev Plant Biol54:235–264.

    Article  CAS  PubMed  Google Scholar 

  • Dilkes BP, Dante RA, Coelho C, Larkins BA (2002) Genetic analyses of endoreduplication in Zea maysendosperm: evidence of sporophytic and zygotic maternal control . Genetics160:1163–1177.

    PubMed  Google Scholar 

  • Doan DNR, Linnestad C, Olsen OA (1996) Isolation of molecular markers from the barley endosperm coenocyte and the surrounding nucellus cell layers . Plant Mol Biol31:877–886.

    Article  CAS  PubMed  Google Scholar 

  • Duvik DN (1961) Protein granules of maize endosperm cells. Cereal Chem38:374–385.

    Google Scholar 

  • Edgar BA, Orr-Weaver TL (2001) Endoreplication cell cycles: more for less. Cell105:297–306.

    Article  CAS  PubMed  Google Scholar 

  • Evans MM, Kermicle JL (2001) Interaction between maternal effect and zygotic effect mutations during maize seed development. Genetics159:303–315.

    CAS  PubMed  Google Scholar 

  • Fedoroff NV, Furtek DB, Nelson OE (1984) Cloning of the bronze locus in maize by a simple and generalizable procedure using the transposable controlling element Activator (Ac). PNAS81:3825–3829.

    Article  CAS  PubMed  Google Scholar 

  • Fletcher JC, Brand U, Running MP, Simon R, Meyerowitz EM (1999) Signaling of cell fate decisions by CLAVATA3 in Arabidopsis shoot meristems . Science283:1911–1914.

    Article  CAS  PubMed  Google Scholar 

  • Friedman WE (2001) Developmental and evolutionary hypotheses for the origin of double fertilization and endosperm . C R Acad Sci III324:559–567.

    CAS  PubMed  Google Scholar 

  • Fu S, Scanlon MJ (2004) Clonal Mosaic Analysis of EMPTY PERICARP2 reveals nonredundant functions of the duplicated HEAT SHOCK FACTOR BINDING PROTEINs during maize shoot development. Genetics167:1381–1394.

    Google Scholar 

  • Fu S, Meeley R, Scanlon MJ (2002) empty pericarp2encodes a negative regulator of the heat shock response and is required for early stages of maize embryogenesis . Plant Cell14:3119–3132.

    Article  CAS  PubMed  Google Scholar 

  • Fu S, Rogowsky P, Lutz N, Scanlon MJ (2006) The maize heat shock factor-binding protein para-logs EMP2 and HSBP2 interact non-redundantly with specific heat shock factors . Planta22:42–52.

    Article  CAS  Google Scholar 

  • Gallie DR, Young TE (2004) The ethylene biosynthetic and perception machinery is differentially expressed during endosperm and embryo development in maize . Mol Genet Genomics271:267–281.

    Article  CAS  PubMed  Google Scholar 

  • Gavazzi G, Dolfini S, Allegra D, Castiglioni P, Todesco G, Hoxha M (1997) Dap (defective aleurone pigmentation) mutations affect maize aleurone development . Mol Gen Genet256:223–230.

    Article  CAS  PubMed  Google Scholar 

  • Geisler-Lee J, Gallie DR (2005) Aleurone Cell identity is suppressed following connation in maize kernels. Plant Physiol139:204–212.

    Article  CAS  PubMed  Google Scholar 

  • Geraghty D, Peifer MA, Rubenstein I, Messing J (1981) The primary structure of a plant storage protein: zein. Nucleic Acids Res9:5163–5174.

    Article  CAS  PubMed  Google Scholar 

  • Gomez E, Royo J, Guo Y, Thompson R, Hueros G (2002) Establishment of cereal endosperm expression domains: Identification and properties of a maize transfer cell-specific transcription factor, ZmMRP-1 Plant Cell14:599–610.

    Article  CAS  Google Scholar 

  • Grafi G, Larkins BA (1995) Endoreduplication in maize endosperm: Involvement of M-phase-promoting factor inhibition and induction of S-phase-related kinases . Science269:1262–1264.

    Article  CAS  PubMed  Google Scholar 

  • Grafi G, Burnett RJ, Helentjaris T, Larkins BA, DeCaprio JA, Sellers WR, Kaelin WG (1996) A maize cDNA encoding a member of the retinoblastoma protein family: Involvement in endore-duplication. PNAS93:8962–8967.

    Article  CAS  PubMed  Google Scholar 

  • Gruis DF, Guo H, Selinger D, Tian Q, Olsen OA (2006) Surface position, not signaling from surrounding maternal tissues, specifies aleurone epidermal cell fate in maize . Plant Physiol141:898–909.

    Article  CAS  PubMed  Google Scholar 

  • Gutierrez-Marcos JF, Pennington PD, Costa LM, Dickinson HG (2003) Imprinting in the endosperm: a possible role in preventing wide hybridization . Philos Trans R Soc Lond B Biol Sci358:1105–1111.

    Article  CAS  PubMed  Google Scholar 

  • Gutierrez-Marcos JF, Costa LM, Biderre-Petit C, Khbaya B, O'Sullivan DM, Wormald M, Perez P, Dickinson HG (2004) Maternally expressed gene1is a novel maize endosperm transfer cell-specific gene with a maternal parent-of-origin pattern of expression . Plant Cell16:1288–1301.

    Article  CAS  PubMed  Google Scholar 

  • Gutierrez-Marcos JF, Costa LM, Evans MMS (2006) Maternal gametophytic baseless1is required for development of the central cell and early endosperm patterning in maize ( Zea mays). Genetics174:317–329.

    Article  CAS  PubMed  Google Scholar 

  • Hable WE, Oishi KK, Schumaker KS (1998) Viviparous-5 encodes phytoene desaturase, an enzyme essential for abscisic acid (ABA) accumulation and seed development in maize . Mol Gen Genet257:167–176.

    Article  CAS  PubMed  Google Scholar 

  • Hattori T, Vasil V, Rosenkrans L, Hannah LC, McCarty DR, Vasil IK (1992) The viviparous-1gene and abscisic acid activate the C1regulatory gene for anthocyanin biosynthesis during seed maturation in maize . Genes Dev6:609–618.

    Article  CAS  PubMed  Google Scholar 

  • Heckel T, Werner K, Sheridan WF, Dumas C, Rogowsky PM (1999) Novel phenotypes and developmental arrest in early embryo specific mutants of maize . Planta210:1–8.

    Article  CAS  PubMed  Google Scholar 

  • Hoecker U, Vasil IK, McCarty DR (1999) Signaling from the embryo conditions Vp1-mediated repression of alpha-amylase genes in the aleurone of developing maize seeds . Plant J19:371–377.

    Article  CAS  PubMed  Google Scholar 

  • Hueros G, Varotto S, Salamini F, Thompson RD (1995) Molecular characterization of BET1, a gene expressed in the endosperm transfer cells of maize . Plant Cell7:747–757.

    Article  CAS  PubMed  Google Scholar 

  • Hueros G, Gomez E, Cheikh N, Edwards J, Weldon M, Salamini F, Thompson RD (1999) Identification of a promoter sequence from the BETL1gene cluster able to confer transfer-cell-specific expression in transgenic maize . Plant Physiol121:1143–1152.

    Article  CAS  PubMed  Google Scholar 

  • Jacobson JV, Chandler PM (1987) Gibberellin and abscisic acid in germinating cereals, In: Davies PJ (ed) Plant Hormones and Their Role in Plant Growth and Development. Dordrecht: Martinus Nijoff, pp. 164–193.

    Google Scholar 

  • Jin P, Guo T, Becraft PW (2000) The maize CR4 receptor-like kinase mediates a growth factor-like differentiation response. Genesis27:104–116.

    Article  CAS  PubMed  Google Scholar 

  • Jones DF (1920) Heritable characters of maize IV. A lethal factor-defective seeds. J Hered11:161–167.

    Google Scholar 

  • Kaplan DR (1973). The monocotyledons: their evolution and comparative biology. VII. The problem of leaf morphology and evolution in the monocotyledons . Q Rev Biol48:437–457.

    Article  Google Scholar 

  • Kessler S, Seiki S, Sinha N (2002) Xcl1causes delayed oblique periclinal cell divisions in developing maize leaves, leading to cellular differentiation by lineage instead of position . Development129:1859–1869.

    CAS  PubMed  Google Scholar 

  • Kowles RV, Phillips RL (1985) DNA amplification patterns in maize endosperm nuclei during kernel development. PNAS82:7010–7014.

    Article  CAS  PubMed  Google Scholar 

  • Kowles RV, Srienc F, Phillips RL (1990) Endoreduplication of nuclear DNA in the developing maize endosperm. Dev Genet11:125–132.

    Article  CAS  Google Scholar 

  • Kowles RV, McMullen MD, Yerk G, Phillips RL, Kraemer S, Srienc F (1992) Endosperm mitotic activity and endoreduplication in maize affected by defective kernel mutations . Genome35:68–77.

    Google Scholar 

  • Kowles RV, Yerk GL, Haas KM, Phillips RL (1997) Maternal effects influencing DNA endoredu-plication in developing endosperm of Zea mays Genome40:798–805.

    CAS  Google Scholar 

  • Larkins BA, Dilkes BP, Dante RA, Coelho CM, Woo YM, Liu Y (2001) Investigating the hows and whys of DNA endoreduplication . J Exp Bot52:183–192.

    Article  CAS  PubMed  Google Scholar 

  • Lauria M, Rupe M, Guo M, Kranz E, Pirona R, Viotti A, Lund G (2004) Extensive maternal DNA hypomethylation in the endosperm of Zea mays Plant Cell16:510–522.

    CAS  Google Scholar 

  • Leblanc O, Pointe C, Hernandez M (2002) Cell cycle progression during endosperm development in Zea maysdepends on parental dosage effects . Plant J32:1057–1066.

    Article  CAS  PubMed  Google Scholar 

  • Leiva-Neto JT, Grafi G, Sabelli PA, Dante RA, Woo Y-M, Maddock S, Gordon-Kamm WJ, Larkins BA (2004) A dominant negative mutant of cyclin-dependent kinase A reduces endore-duplication but not cell size or gene expression in maize endosperm . Plant Cell16:1854–1869.

    Article  CAS  PubMed  Google Scholar 

  • Lid SE, Gruis D, Jung R, Lorentzen JA, Ananiev E, Chamberlin M, Niu X, Meeley R, Nichols S, Olsen OA (2002) The defective kernel 1 (dek1)gene required for aleurone cell development in the endosperm of maize grains encodes a membrane protein of the calpain gene superfamily . PNAS99:5460–5465.

    Article  CAS  PubMed  Google Scholar 

  • Lid SE, Al RH, Krekling T, Meeley RB, Ranch J, Opsahl-Ferstad H-G, Olsen OA (2004) The maize disorganized aleurone layer 1 and 2 (dil1, dil2) mutants lack control of the mitotic division plane in the aleurone layer of developing endosperm . Planta218:370–378.

    Article  CAS  PubMed  Google Scholar 

  • Lur HS, Setter TL (1993) Role of auxin in maize endosperm development (timing of nuclear DNA endoreduplication, zeinexpression, and cytokinin) . Plant Physiol103:273–280.

    CAS  PubMed  Google Scholar 

  • Magnard JL, Le Deunff E, Domenech J, Rogowsky PM, Testillano PS, Rougier M, Risue ño MC, Vergne P, Dumas C (2000) Genes normally expressed in the endosperm are expressed at early stages of microspore embryogenesis in maize . Plant Mol Biol44:559–574.

    Article  CAS  PubMed  Google Scholar 

  • Magnard JL, Lehouque G, Massonneau A, Frangne N, Heckel T, Gutierrez-Marcos JF, Perez P, Dumas C, Rogowsky PM (2003) ZmEBEgenes show a novel, continuous expression pattern in the central cell before fertilization and in specific domains of the resulting endosperm after fertilization. Plant Mol Biol.53:821–836.

    Article  CAS  PubMed  Google Scholar 

  • Mangelsdorf PC (1923) The inheritance of defective seeds in maize. J Hered14:119–125.

    Google Scholar 

  • McCarty DR, Carson CB, Stinard PS, Robertson DS (1989) Molecular analysis of viviparous-1: an abscisic acid insensitive mutant of maize . Plant Cell1:523–532.

    Article  CAS  PubMed  Google Scholar 

  • McCarty DR, Hattori T, Carson CB, Vasil V, Lazar M, Vasil IK (1991) The Viviparous-developmental gene of maize encodes a novel transcriptional activator. Cell66:895–905.

    Article  CAS  PubMed  Google Scholar 

  • McClintock B (1978) Development of the maize endosperm as revealed by clones. In Subtelny S, Sussex IM (eds) The Clonal Basis of Development. New York: Academic Press Inc. pp. 217–237.

    Google Scholar 

  • Miller ME, Chourey PS (1992) The maize invertase-deficient miniature-1seed mutation is associated with aberrant pedicel and endosperm development . Plant Cell4:297–305.

    Article  CAS  PubMed  Google Scholar 

  • Mu ñiz LM, Royo J, G ómez E, Barrero C, Bergareche D, Hueros G (2006) The maize transfer cell-specific type-A response regulator ZmTCRR-1appears to be involved in intercellular signaling. Plant J48:17–27.

    Article  CAS  Google Scholar 

  • Neuffer MG, Sheridan WF (1980) Defective kernel mutants of maize. I. Genetic and lethality studies. Genetics95:929–944.

    CAS  PubMed  Google Scholar 

  • N üsslein-Volhard C, Wieschaus E (1980) Mutations affecting segment number and polarity in Drosophila. Nature287:795–801.

    Article  Google Scholar 

  • Ohad N, Margossian L, Hsu Y-C, Williams C, Repetti P, Fischer RL (1996) A mutation that allows endosperm development without fertilization . Proc Natl Acad Sci USA93 : 5319 – 5324 .

    Article  CAS  PubMed  Google Scholar 

  • Ohad N, Yadegari R, Margossian L, Hannon M, Daphna Michaeli, Harada JJ, Goldberg RB, Fischer RL (1999) Mutations in FIE, a WD polycomb group gene, allow endosperm development without fertilization . Plant Cell11:407–416.

    Article  CAS  PubMed  Google Scholar 

  • Olsen OA (2001) Endosperm development: cellularization and cell fate specification. Annu Rev Plant Physiol Plant Mol Biol52:233–267.

    Article  CAS  PubMed  Google Scholar 

  • Olsen OA (2004) Nuclear endosperm development in cereals and Arabidopsis thaliana Plant Cell16:S214–S227.

    Article  CAS  PubMed  Google Scholar 

  • Opsahl-Ferstad H-G, Deunff EL, Dumas C, Rogowsky PM (1997) ZmEsr, a novel endosperm-specific gene expressed in a restricted region around the maize embryo . Plant J12:235–246.

    Article  CAS  PubMed  Google Scholar 

  • O'Reilly C, Shepherd NS, Pereira A, Schwarz-Sommer Z, Bertram I, Robertson DS, Peterson PA, Saedler H (1985) Molecular cloning of the a1 locus of Zea mays using the transposable elements En and Mu1 . EMBO J4:877–882.

    PubMed  Google Scholar 

  • Pedersen K, Devereux J, Wilson DR, Sheldon E, Larkins BA (1982) Cloning and sequence analysis reveal structural variation among related zein genes in maize . Cell29:1015–1026.

    Article  CAS  PubMed  Google Scholar 

  • Porch TG, Tseung CW, Schmelz EA, Settles AM (2006) The maize viviparous10/viviparous13 locus encodes the Cnx1 gene required for molybdenum cofactor biosynthesis . Plant J45:250–263.

    Article  CAS  PubMed  Google Scholar 

  • Robertson DS (1955) The genetics of vivipary in maize. Genetics40:745–760.

    PubMed  Google Scholar 

  • Scanlon MJ, Myers AM (1998) Characterization and molecular analysis of dsc1, a novel locus functioning in maize kernel development . Plant Mol Biol37:483–493.

    Article  CAS  PubMed  Google Scholar 

  • Scanlon MJ, Stinard PS, James MG, Myers AM, Robertson DS (1994) Genetic analysis of 63 mutations affecting maize kernel development isolated from mutator stocks . Genetics136:281–294.

    CAS  PubMed  Google Scholar 

  • Scanlon MJ, Schneeberger RG, Myers AM, Freeling M (1997) The empty pericarp-2 gene is required for leaf development during maize embryogenesis . Plant J12:901–909.

    Article  CAS  Google Scholar 

  • sSchel JHN, Kieft H, van Lammeren AAM (1984) Interaction between embryo and endosperm during early developmental stages of maize caryopses ( Zea mays) Can J Bot62:2842–2853.

    Article  Google Scholar 

  • Schweizer L, Yerk-Davis GL, Phillips RL, Srienc F, Jones RJ (1995) Dynamics of maize endosperm development and DNA endoreduplication . Proc Natl Acad Sci USA92:7070–7074.

    Article  CAS  PubMed  Google Scholar 

  • Serna A, Maitz M, O'Connell T, Santandrea G, Thevissen K, Tienens K, Hueros G, Faleri C, Cai G, Lottspeich F, Thompson RD (2001) Maize endosperm secretes a novel antifungal protein into adjacent maternal tissue . Plant J25:687–698.

    Article  CAS  PubMed  Google Scholar 

  • Sharma VK, Ramirez J, Fletcher JC (2003) The Arabidopsis CLV3-like (CLE) genes are expressed in diverse tissues and encode secreted proteins . Plant Mol Biol51:415–425.

    Article  CAS  PubMed  Google Scholar 

  • Shen B, Li C, Min Z, Meeley RB, Tarczynski MC, Olsen OA (2003) Sal1 determines the number of aleurone cell layers in maize endosperm and encodes a class E vacuolar sorting protein . PNAS100:6552–6557.

    Article  CAS  PubMed  Google Scholar 

  • Shure M, Wessler S, Fedoroff N (1983) Molecular identification and isolation of the waxy locus in maize. Cell35:225–233.

    Article  CAS  PubMed  Google Scholar 

  • Sprague GF (1932) The nature and extent of hetero-fertilization in maize. Genetics17:358–368.

    CAS  PubMed  Google Scholar 

  • St Johnston D, N üsslein-Volhard C (1992) The origin of pattern and polarity in the Drosophilaembryo. Cell68:201–219.

    Article  CAS  PubMed  Google Scholar 

  • Stinard P, Robertson D (1987) Dappled: a putative Mu-induced aleurone developmental mutant. Maize Genet Coop Newsl61:7–9.

    Google Scholar 

  • Sugimoto-Shirasu K, Roberts K (2003) “Big it up”: endoreduplication and cell-size control in plants. Curr Opin Plant Biol6:544–553.

    Article  CAS  PubMed  Google Scholar 

  • Sun Y, Flannigan BA, Setter TL (1999a) Regulation of endoreduplication in maize ( Zea maysL.) endosperm. Isolation of a novel B1-type cyclin and its quantitative analysis . Plant Mol Biol41:245–258.

    Article  CAS  Google Scholar 

  • Sun YJ, Dilkes BP, Zhang CS, Dante RA, Carneiro NP, Lowe KS, Jung R, Gordon-Kamm WJ, Larkins BA (1999b) Characterization of maize ( Zea maysL.) Wee1 and its activity in developing endosperm. Proc Natl Acad Sci USA96:4180–4185.

    Article  CAS  Google Scholar 

  • Suzuki M, Settles AM, Tseung CW, Li QB, Latshaw S, Wu S, Porch TG, Schmelz EA, James MG, McCarty DR (2006) The maize viviparous15 locus encodes the molybdopterin synthase small subunit. Plant J45:264–274.

    Article  CAS  PubMed  Google Scholar 

  • Taliercio EW, Kim JY, Mahe A, Shanker S, Choi J, Cheng WH, Prioul JL, Chourey PS (1999) Isolation, characterization and expression analyses of two cell wall invertase genes in maize . J Plant Physiol155:197–204.

    CAS  Google Scholar 

  • Weatherwax P (1920) Position of the scutellum and homology of coleoptile in maize. Bot Gaz69:179–182.

    Article  Google Scholar 

  • Williams JH, Friedman WE (2002) Identification of diploid endosperm in an early angiosperm lineage. Nature415:522–526.

    Article  PubMed  Google Scholar 

  • Young TE, Gallie DR (2000a) Regulation of programmed cell death in maize endosperm by absci-sic acid. Plant Mol Biol42:397–414.

    Article  CAS  Google Scholar 

  • Young TE, Gallie DR (2000b) Programmed cell death during endosperm development. Plant Mol Biol44:283–301.

    Article  CAS  Google Scholar 

  • Young TE, Callie DR, DeMason DA (1997) Ethylene-mediated programmed cell death during maize endosperm development of wild-type and shrunken2genotypes. Plant Physiol115:737–751.

    CAS  PubMed  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science + Business Media, LLC

About this chapter

Cite this chapter

Scanlon, M. ., Takacs, E.M. (2009). Kernel Biology. In: Bennetzen, J.L., Hake, S.C. (eds) Handbook of Maize: Its Biology. Springer, New York, NY. https://doi.org/10.1007/978-0-387-79418-1_7

Download citation

Publish with us

Policies and ethics