Skip to main content

Resonance and Feedback Strategies for Low-Voltage Defibrillation

  • Chapter
Book cover Cardiac Bioelectric Therapy
  • 1223 Accesses

Early experiments on defibrillation revealed that it is sometimes possible to achieve defib-rillation by lower voltage pulses, if they are applied several times and are properly timed.1 This chapter will review some ideas about detailed mechanisms and how this method may work. Most of these ideas are theoretical and tested only in numerical simulations or in a chemical model of the cardiac tissue, the Belousov—Zhabotinsky (BZ) reaction medium; only in some cases have experimentalists attempted a direct verification in cardiac preparations. The literature on the subject is vast; as the space allocated for this review is limited, the focus here will be on a few cornerstone ideas and somewhat arbitrarily selected examples.

Multiple wave sources in an excitable medium compete with one another. During such competition, the fastest source entrains increasingly more of the tissue. If the faster source is the stimulating electrode and it entrains the whole of the cardiac tissue, it would have expelled the reentrant circuits and perhaps stopped the fibrillation. However, the success of that depends on what happens to the reentry source when the high-frequency waves reach it. This was first investigated in the chemical model of excitable tissues, the BZ reaction medium,2 and then subsequently in more details in numerical simulations of a variant of the FitzHugh—Nagumo model.3 Figure 1 illustrates the main concept. The first panels show the process of entrainment of the medium by the faster source, which in this particular case is the electrode located at the lower boundary of the model medium. When the entrained region reaches the spiral wave, the latter changes its nature: it is no longer a rotating source of waves, but is a dislocation in the otherwise regular field of waves emitted by the fast source. Notice that it cannot disappear completely for topological reasons, as it carries a topological charge. When the approximately periodic waves are passing through a certain point in the medium, one observes oscillations of the dynamic variables at that point and can assign a phase to those oscillations. The increment of change of the phase of oscillations around a contour encircling the spiral or that is the dislocation is the same for both of them, as it cannot change as long as the oscillations persist, which they do unless the contour is crossed by the dislocation. Hence the dislocation carries this topological charge of the spiral wave. Typically it does not stay but drifts; this is sometimes called high-frequency induced drift of spirals, to distinguish it from drift caused by other mechanisms. The direction of drift depends on the parameters of the problem, in particular on the frequency of the entraining source. When the entraining source stops, the dislocation immediately turns back into a spiral wave, which locates in a new place. If the duration and direction of the induced drift are such that the dislocation reaches the place where the regular oscillations are not observed (e.g., the inexcitable border or a Wenckebach block zone), then the topological restriction is lifted and the dislocation may be eliminated, so when the high-frequency source stops, the spiral wave does not resume, and the reentry is stopped.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.Gurvich PL.The Main Principles of Cardiac Defibrillation. Moscow: Meditsina; 1975

    Google Scholar 

  2. 2.Krinsky VI, Agladze KI. Interaction of rotating waves in an active chemical mediumPhysica D1983;8:50–56

    Article  Google Scholar 

  3. 3.Ermakova EA, Krinsky VI, Panfilov AV, Pertsov AM. Interaction between spiral and flat periodic waves in an active medium.Biofizika1986;31:318–323

    PubMed  CAS  Google Scholar 

  4. Sinha S, Pande A, Pandit R. Defibrillation via the elimination of spiral turbulence in a model for ventricular fibrillation.Phys Rev Lett2001;86:3678–3681

    Article  PubMed  CAS  Google Scholar 

  5. Pandit R, Pande A, Sinha S, Sen A. Spiral turbulence and spatiotemporal chaos:characterization and control in two excitable media.Physica A2002;306:211–219

    Article  Google Scholar 

  6. Davydov VA, Zykov VS, Mikhailov AS, Brazhnik PK. Drift and resonance of spiral waves in distributed media.Sov Phys Radiophys1988;31:574–582

    Google Scholar 

  7. Agladze KI, Davydov VA, Mikhailov AS. An observation of resonance of spiral waves in distributed excitable medium.Sov Phys JETP Lett1987;45:601–603

    CAS  Google Scholar 

  8. Mikhailov AS, Davydov VA, Zykov VS. Complex dynamics of spiral waves and motion of curves.Physica D.1994;70:1–39

    Article  Google Scholar 

  9. Biktashev VN, Holden AV. Control of re-entrant activity by resonant drift in a two-dimensional model of isotropic homogeneous atrial tissue.Proc Roy Soc Lond Ser B1995;260:211–217

    Article  CAS  Google Scholar 

  10. Biktashev VN, Holden AV. Resonant drift of the autowave vortex in abounded medium.Phys Lett A1993;181:216–224

    Article  Google Scholar 

  11. Biktashev VN, Holden AV. Resonant drift of autowave vortices in 2D and the effects of boundaries and inhomogeneities.Chaos Solitons Fractals1995;5:575–622

    Article  Google Scholar 

  12. Biktashev VN, Holden AV. Design principles of a low-voltage cardiac defibrillator based on the effect of feed-back resonant drift.J Theor Biol1994;169:101–112

    Article  PubMed  CAS  Google Scholar 

  13. Zykov VS, Engel H. Feedback-mediated control of spiral waves.Physica D2004;199:243–263

    Article  Google Scholar 

  14. Zykov VS, Engel H. Feedback-mediated control of spiral waves In: Schimansky-Geier L, Fiedler B, Kurths J, Schoell E, eds.Analysis and Control of Complex Nonlinear Processes in Physics, Chemistry and Biology. Singapore: World Scientific;2007

    Google Scholar 

  15. Grill S, Zykov VS, Muller SC. Feedback-controlled dynamics of meandering spiral waves.Phys Rev Lett1995;75:3368–3371

    Article  PubMed  CAS  Google Scholar 

  16. Sabbagh H. Stochastic properties of autowave turbulence elimination.Chaos Solitons Fractals2000;11:2141–2148

    Article  Google Scholar 

  17. Panfilov AV, Rudenko AN. 2 regimes of the scroll ring drift in the 3-dimensional active media.Physica D1987;28:215–218

    Article  Google Scholar 

  18. Brazhnik PK, Davydov VA, Zykov VS, Mikhailov AS. Vortex rings in excitable media.Zhurnal Eksperimentalnoi I Teoreticheskoi Fiziki1987;93:1725–1736

    Google Scholar 

  19. Yakushevich LV. Vortex filament elasticity in active medium.Studia Biophysica1984;100:195–200

    Google Scholar 

  20. Keener JP. The dynamics of 3-dimensional scroll waves in excitable media.Physica D1988;31:269–276

    Article  Google Scholar 

  21. Biktashev VN, Holden AV, Zhang H. Tension of organizing filaments of scroll waves.Philos Trans R Soc Lond Ser A1994;347:611–630

    Article  Google Scholar 

  22. Winfree AT. Electrical turbulence in three-dimensional heart muscle.Science1994;266:1003–1006

    Article  PubMed  CAS  Google Scholar 

  23. Biktashev VN. A three-dimensional autowave turbulence.Int J Bifurcat Chaos1998;8:677–684

    Article  Google Scholar 

  24. Fenton FH, Cherry EM, Hastings HM, Evans SJ. Multiple mechanisms of spiral wave breakup in a model of cardiac electrical activity.Chaos2002;12:852–892

    Article  PubMed  Google Scholar 

  25. Alonso S, Sagues F, Mikhailov AS. Negative-tension instability of scroll waves and Winfree turbulence in the Oregonator model.J Phys Chem A2006;110:12063–12071

    Article  PubMed  CAS  Google Scholar 

  26. Alonso S, Panfilov AV. Negative filament tension in the Luo—Rudy model of cardiac tissue.Chaos2007;17:015102

    Article  PubMed  CAS  Google Scholar 

  27. Fenton F, Karma A. Vortex dynamics in three-dimensional continuous myocardium with fiber rotation: filament instability and fibrillation.Chaos1998;8:20–47

    Article  PubMed  Google Scholar 

  28. Fenton F, Karma A. Fiber-rotation-induced vortex turbulence in thick myocardium.Phys Rev Lett1998;81:481–484

    Article  CAS  Google Scholar 

  29. Verschelde H, Dierckx H, Bernus O. Covariant string dynamics of scroll wave filaments in anisotropic cardiac tissue.Phys Rev Lett2007;99:168104

    Article  PubMed  Google Scholar 

  30. Alonso S, Sagues F, Mikhailov AS. Taming Winfree turbulence of scroll waves in excitable media.Science2003;299:1722–1725

    Article  PubMed  CAS  Google Scholar 

  31. Alonso S, Sagues F, Mikhailov AS. Periodic forcing of scroll rings and control of Winfree turbulence in excitable media.Chaos2006;16:023124

    Article  PubMed  CAS  Google Scholar 

  32. Vinson M, Pertsov A, Jalife J. Anchoring of vortex filaments in 3D excitable media.Physical D1994;72:119–134

    Article  Google Scholar 

  33. Nikolaev EV, Biktashev VN, Holden AV. On feedback resonant drift and interaction with the boundaries in circular and annular excitable media.Chaos Solitons Fractals1998;9:363–376

    Article  Google Scholar 

  34. Pazo D, Kramer L, Pumir A, Kanani S, Efimov I, Krinsky V. Pinning force in active media.Phys Rev Lett2004;93:168303

    Article  PubMed  CAS  Google Scholar 

  35. Biktasheva IV, Holden AV, Biktashev VN. Localization of response functions of spiral waves in the FitzHugh–Nagumo system.Int J Bifurcat Chaos2006;16(5):1547–1555

    Article  Google Scholar 

  36. Biktasheva IV, Elkin Yu E, Biktashev VN. Localised sensitivity of spiral waves in the complex Ginzburg—Landau equation.Phys Rev E1998;57:2656–2659

    Article  CAS  Google Scholar 

  37. Sambelashvili AT, Nikolski VP, Efimov IR. Nonlinear effects in subthreshold virtual electrode polarization.Am J Physiol Heart Circ Physiol2003;284:H2368–H2374

    PubMed  CAS  Google Scholar 

  38. Takagi S, Pumir A, Efimov I, Pazó D, Nikolski V, Krinsky V. Unpinning and removal of a rotating wave in cardiac muscle.Phys Rev Lett2004;93:058101

    Article  PubMed  CAS  Google Scholar 

  39. Krinsky VI, Biktashev VN, Pertsov AM. Autowave approaches to cessation of reentrant arrhythmias.Ann N Y Acad Sci1990;591:232–246

    Article  PubMed  CAS  Google Scholar 

  40. Huyet G, Dupont C, Corriol T, Krinsky V. Unpinning of a vortex in a chemical excitable medium.Int J Bifurcat Chaos1998;8:1315–1323

    Article  Google Scholar 

  41. Pumir A, Krinsky V. Unpinning of a rotating wave in cardiac muscle by an electric field.J Theor Biol1999;199:311–319

    Article  PubMed  CAS  Google Scholar 

  42. Takagi S, Pumir A, Pazó D, Efimov I, Nikolski V, Krinsky V. A physical approach to remove anatomical reentries: a bidomain study.J Theor Biol2004;230:489–497

    Article  PubMed  CAS  Google Scholar 

  43. Ripplinger CM, Krinsky VI, Nikolski VP, Efimov IR. Mechanisms of unpinning and termination of ventricular tachycardia.Am J Physiol Heart Circ Physiol2006;291:H184–H192

    Article  PubMed  CAS  Google Scholar 

  44. Alekseev VV, Loskutov AY. Control of a system with a strange attractor through periodic parametric action.Sov Phys Dokl1987;32:270–271

    Google Scholar 

  45. Loskutov AY, Cheremin RV, Vysotskii SA. Stabilization of turbulent dynamics in excitable media by an external point action.Dokl Phys2005;50:490–493

    Article  CAS  Google Scholar 

  46. Loskutov AY, Vysotskii SA. New approach to the defibrillation problem: suppression of the spiral wave activity of cardiac tissue.JETP Lett2006;84:524–529

    Article  CAS  Google Scholar 

  47. Ott E, Grebogi C, Yorke JA. Controlling chaos.Phys Rev Lett1990;64:1196–1199

    Article  PubMed  Google Scholar 

  48. Garfinkel A, Spano ML, Ditto WL, Weiss JN. Controlling cardiac chaos.Science1992;257:1230–1235

    Article  PubMed  CAS  Google Scholar 

  49. Pak HN, Liu YB, Hayashi H, Okuyama Y, Chen PS, Lin SF. Synchronization of ventricular fibrillation with real-time feedback pacing: implication to low-energy defibrillationAm J Physiol2003;285:H2704–H2711

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC.

About this chapter

Cite this chapter

Biktashev, V.N. (2009). Resonance and Feedback Strategies for Low-Voltage Defibrillation. In: Efimov, I.R., Kroll, M.W., Tchou, P.J. (eds) Cardiac Bioelectric Therapy. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-79403-7_20

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-79403-7_20

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-79402-0

  • Online ISBN: 978-0-387-79403-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics