Skip to main content

Lessons for the Clinical Implant

  • Chapter
Cardiac Bioelectric Therapy

Our goal in this chapter is to provide a practical review for clinicians of how our under standing of defibrillation scientific results can help with their clinical practice. Some of the typical implant practices are found to be driven by dogma and not by science.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Denman RA, Umesan C, Martin PT, Forbes RN, Kroll MW, Anskey EJ, Burnett HE. Benefit of millisecond waveform durations for patients with high defibrillation thresholds. Heart Rhythm2006;3:536–541

    PubMed  Google Scholar 

  2. White JB, Walcott GP, Wayland JL Jr, Smith WM, Ideker RE. Predicting the relative efficacy of shock waveforms for transthoracic defibrillation in dogs. Ann Emerg Med1999;34:309–320

    PubMed  CAS  Google Scholar 

  3. Mehdirad AA, Love CJ, Stanton MS, Strickberger SA, Duncan JL, Kroll MW. Pre liminary clinical results of a biphasic waveform and an RV lead system. Pacing Clin Electrophysiol1999;22:594–599

    PubMed  CAS  Google Scholar 

  4. Schauerte P, Schondube FA, Grossmann M, Dorge H, Stein F, Dohmen B, Moumen A, Erena K, Messmer BJ, Hanrath P, Stellbrink C. Influence of phase duration of biphasic waveforms on defibrillation energy requirements with a 70-microF capacitance. Circulation1998;97:2073–2078

    PubMed  CAS  Google Scholar 

  5. Walcott GP, Walker RG, Cates AW, Krassowska W, Smith WM, Ideker RE. Choos ing the optimal monophasic and biphasic waveforms for ventricular defibrillation. J Cardiovasc Electrophysiol1995;6:737–750

    PubMed  CAS  Google Scholar 

  6. Sharma AD, Fain E, O'Neill PG, Skadsen A, Damle R, Baker J, Chauhan V, Mazuz M, Ross T, Zhang Z. Shock on T versus direct current voltage for induction of ven tricular fibrillation: a randomized prospective comparison. Pacing Clin Electrophysiol2004;27:89–94

    PubMed  Google Scholar 

  7. Mehdirad AA, Stohr EC, Love CJ, Nelson SD, Schaal SF. Implantable defibrillators impedance measurement using pacing pulses versus shock delivery with intact and modified high voltage lead system. Pacing Clin Electrophysiol1999;22:437–441

    PubMed  CAS  Google Scholar 

  8. Pendekanti R, Henriquez C, Tomassoni G, Miner W, Fain E, Hoffmann D, Wolf P. Surface coverage effects on defibrillation impedance for transvenous electrodes. Ann Biomed Eng1997;25:739–746

    PubMed  CAS  Google Scholar 

  9. Olsovsky MR, Shorofsky SR, Gold MR. The effect of shock configuration and delivered energy on defibrillation impedance. Pacing Clin Electrophysiol1999;22:165–168

    PubMed  CAS  Google Scholar 

  10. Weiss DN, Shorofsky SR, Peters RW, Gold MR. The effect of delivered energy on defibrillation shock impedance. J Interv Card Electrophysiol1998;2:273–277

    PubMed  CAS  Google Scholar 

  11. Kontos MC, Ellenbogen KA, Wood MA, Damiano RJ Jr, Akosah KO, Nixon JV, Stambler BS. Factors associated with elevated impedance with a nonthoracotomy defibrillation lead system. Am J Cardiol1997;79:48–52

    PubMed  CAS  Google Scholar 

  12. Schwartzman D, Hull ML, Callans DJ, Gottlieb CD, Marchlinski FE. Serial defibril lation lead impedance in patients with epicardial and nonthoracotomy lead systems. J Cardiovasc Electrophysiol1996;7:697–703

    PubMed  CAS  Google Scholar 

  13. Iskos D, Lock K, Lurie KG, Fahy GJ, Petersen-Stejskal S, Benditt DG. Submuscular versus subcutaneous pectoral implantation of cardioverter-defibrillators: effect on high voltage pathway impedance and defibrillation efficacy. J Interv Card Electrophysiol1998;2:47–52

    PubMed  CAS  Google Scholar 

  14. Swerdlow C, Kass R, Hwang C, Gang E, Chen P, Peter C. Effect of voltage and respiration on impedance in nonthoracotomy defibrillation pathways. Am J Cardiol1994;73:688–692

    PubMed  CAS  Google Scholar 

  15. Prevost J, Batelli F. Quelques effets des decharges electriques sur le coeur des mam-miferes. J Phys Pathol Gen1900;2:40:52

    Google Scholar 

  16. Peleska B. [Transthoracic and direct defibrillation]. Rozhl Chir1957;36:731–755

    PubMed  CAS  Google Scholar 

  17. Schuder J, Stoeckle H, JAW. Transthoracic ventricular defibrillation in the dog with truncated exponential stimuli. IEEE Trans Biomed Eng BME1971;18:410–415

    CAS  Google Scholar 

  18. Feeser S, Tang A, Kavanagh K, Rollins D, WM S, Wolf P, Ideker R. Strength-duration and probability of success curves for defibrillation with biphasic waveforms. Circulation1990;82:2128–2141

    PubMed  CAS  Google Scholar 

  19. Dixon EG, Tang AS, Wolf PD, Meador JT, Fine MJ, Calfee RV, Ideker RE. Improved defibrillation thresholds with large contoured epicardial electrodes and biphasic wave forms. Circulation1987;76:1176–1184

    PubMed  CAS  Google Scholar 

  20. Tang A, Yabe S, Wharton J, Dolker M, Smith W, Ideker R. Ventricular defibrillation using biphasic waveforms: the importance of phasic defibrillation. J Am Coll Cardiol1989;13:207–214

    PubMed  CAS  Google Scholar 

  21. Peekema, RM, Beesley, JP. Factors affecting the impedence of foil-type electrolytic capacitors. Electrochem. Technol.1968;6:166

    CAS  Google Scholar 

  22. Malkin RA, Guan D, Wikswo JP. Experimental evidence of improved transtho racic defibrillation with electroporation-enhancing pulses. IEEE Trans Biomed Eng2006;53:1901–1910

    PubMed  Google Scholar 

  23. Blair H. On the intensity-time relations for stimulation by electric currents, I. J Gen Physiol1932;15:709–729

    Google Scholar 

  24. Blair H. On the intensity-time relations for stimulation by electric currents, II. J Gen Physiol1932;15:731–755

    Google Scholar 

  25. Seidl K, Denman R, JC M, Mouchawar G, Stoeppler C, Becker T, Weise U, Anskey E, Burnett H, Kroll M. Stepped defibrillation waveform is substantially more efficient than the 50/50% tilt biphasic. Heart Rhythm2006;3(12):1406–1411

    PubMed  Google Scholar 

  26. Cleland B. A conceptual basis for defibrillation waveforms. Pacing Clin Electrophysiol1996;19:1186–1195

    PubMed  CAS  Google Scholar 

  27. Fishler MG. Theoretical predictions of the optimal monophasic and biphasic defibril lation waveshapes. IEEE Trans Biomed Eng2000;47:59–67

    PubMed  CAS  Google Scholar 

  28. Kroll MW. A minimal model of the monophasic defibrillation pulse. Pacing Clin Electrophysiol1993;16:769–777

    PubMed  CAS  Google Scholar 

  29. Kroll MW. A minimal model of the single capacitor biphasic defibrillation waveform. Pacing Clin Electrophysiol1994;17:1782–1792

    PubMed  CAS  Google Scholar 

  30. Swerdlow C, Fan W, Brewer J. Charge-burping theory correctly predicts optimal ratios of phase duration for biphasic defibrillation waveforms. Circulation1996;94:2278–2284

    PubMed  CAS  Google Scholar 

  31. Dillon SM, Kwaku KF. Progressive depolarization: a unified hypothesis for defibril lation and fibrillation induction by shocks. J Cardiovasc Electrophysiol1998;9:529– 552

    PubMed  CAS  Google Scholar 

  32. Chen P-S, Wolf PD, Ideker RE. The mechanism of cardiac defibrillation: a different point of view. Circulation1991;84:913–919

    PubMed  CAS  Google Scholar 

  33. Cheng Y, Mowrey KA, Van Wagoner DR, Tchou PJ, Efimov IR. Virtual electrode induced reexcitation: a mechanism of defibrillation. Circ Res1999;85:1056–1066

    PubMed  CAS  Google Scholar 

  34. Efimov IR, Cheng Y, Yamanouchi Y, Tchou PJ. Direct evidence of the role of virtual electrode-induced phase singularity in success and failure of defibrillation. J Cardiovasc Electrophysiol2000;11:861–868

    PubMed  CAS  Google Scholar 

  35. Hodgkin A. The subthreshold potentials in a crustacean nerve fiber. Proc R Soc Lond B1938;126:87–121

    Google Scholar 

  36. Kao CY, Hoffman BF. Graded and decremental response in heart muscle fibers. Am J Physiol1958;194:187–196

    PubMed  CAS  Google Scholar 

  37. Krassowska W, Cabo C, Knisley SB, Ideker RE. Propagation versus delayed activation during field stimulation of cardiac muscle. Pacing Clin Electrophysiol1992;15:197–210

    PubMed  CAS  Google Scholar 

  38. Tovar O, Tung L. Electroporation of cardiac cell membranes with monophasic or biphasic rectangular pulses. Pacing Clin Electrophysiol1991;14:1887–1892

    PubMed  CAS  Google Scholar 

  39. Jones JL, Jones RE. Improved defibrillator waveform safety factor with biphasic waveforms. Am J Physiol1983;245:H60–H65

    PubMed  CAS  Google Scholar 

  40. Jones JL, Jones RE. Decreased defibrillator-induced dysfunction with biphasic rectan gular waveforms. Am J Physiol1984;247:H792–H796

    PubMed  CAS  Google Scholar 

  41. Anderson C, Trayanova N, Skouibine K. Termination of spiral waves with biphasic shocks: role of virtual electrode polarization. J Cardiovasc Electrophysiol2000;11:1386– 1396

    PubMed  CAS  Google Scholar 

  42. Behrens S, Li C, Kirchhof P, Fabritz FL, Franz MR. Reduced arrhythmogenicity of biphasic versus monophasic T-wave shocks. Implications for defibrillation efficacy. Circulation1996;94:1974–1980

    PubMed  CAS  Google Scholar 

  43. Efimov IR, Cheng Y, Van Wagoner DR, Mazgalev T, Tchou PJ. Virtual electrode induced phase singularity: a basic mechanism of defibrillation failure. Circ Res1998;82:918–925

    PubMed  CAS  Google Scholar 

  44. Efimov IR, Cheng YN, Biermann M, Van Wagoner DR, Mazgalev TN, Tchou PJ. Transmembrane voltage changes produced by real and virtual electrodes during monophasic defibrillation shock delivered by an implantable electrode. J Cardiovasc Electrophysiol1997;8:1031–1045

    PubMed  CAS  Google Scholar 

  45. Schauerte PN, Ziegert K, Waldmann M, Schondube FA, Birkenhauer F, Mischke K, Grossmann M, Hanrath P, Stellbrink C. Effect of biphasic shock duration on defib rillation threshold with different electrode configurations and phase 2 capacitances: prediction by upper-limit-of-vulnerability determination. Circulation1999;99:1516– 1522

    PubMed  CAS  Google Scholar 

  46. Mouchawar G, Kroll M, Val-Mejias JE, Schwartzman D, McKenzie J, Fitzgerald D, Prater S, Katcher M, Fain E, Syed Z. ICD waveform optimization: a randomized, prospective, pair-sampled multicenter study. Pacing Clin Electrophysiol2000;23:1992– 1995

    PubMed  CAS  Google Scholar 

  47. Shorofsky SR, Rashba E, Havel W, Belk P, Degroot P, Swerdlow C, Gold MR. Improved defibrillation efficacy with an ascending ramp waveform in humans. Heart Rhythm2005;2:388–394

    PubMed  Google Scholar 

  48. Kroll M, Lehmann M, Tchou P. Defining the defibrillation dosage. In: Kroll M, Lehmann M, eds. Implantable Cardioverter-Defibrillator Therapy: The Engineering-Clinical Interface. Norwell, MA: Kluwer Academic; 1996:63–88

    Google Scholar 

  49. Hillsley R, Walker R, Swanson D, Rollins D, Wolf P, Ideker R. Is the second phase of a biphasic waveform the defibrillating phase? Pacing Clin Electrophysiol1993;16:1402– 1411

    Google Scholar 

  50. Hoorweg J. Condensatorentladung und Auseinanderetzung mit du Bois-Reymond. Pfugers Arch1892;52:87–108

    Google Scholar 

  51. Weiss G. Sur la possibilite' de rendre comparable entre eux les appareils survant a l'excitation electrique. Arch Ital de Biol1901;35:413–446

    Google Scholar 

  52. Bourland JD, Tacker WA, Geddes LA. Strength duration curves for trapezoidal wave forms of various tilts for transchest defibrillation in animals. Med Instrum1978;12:38– 41

    PubMed  CAS  Google Scholar 

  53. Gold J, Schuder J, Stoeckle H, Granberg T, Hamdani S, Rychlewski J. Transthoracic ventricular defibrillation in the 100 kg calf with unidirectional rectangular pulses. Circulation1977;56:745

    PubMed  CAS  Google Scholar 

  54. Wessale J, Bourland J, Tacker W, Geddes L. Bipolar catheter defibrillation in dogs using trapezoidal waveforms of various tilts. J Electocardiol1980;13:359–366

    CAS  Google Scholar 

  55. Geddes LA, Niebauer MJ, Babbs CF, Bourland JD. Fundamental criteria underlying the efficacy and safety of defibrillating current waveforms. Med Biol Eng Comput1985;23:122–130

    PubMed  CAS  Google Scholar 

  56. Niebauer MJ, Babbs CF, Geddes LA, Bourland JD. Efficacy and safety of defibrillation with rectangular waves of 2- to 20-milliseconds duration. Crit Care Med1983;11:95–98

    PubMed  CAS  Google Scholar 

  57. Swerdlow CD, Brewer JE, Kass RM, Kroll MW. Application of models of defibrillation to human defibrillation data: implications for optimizing implantable defibrillator capacitance. Circulation1997;96:2813–2822

    PubMed  CAS  Google Scholar 

  58. Shorofsky S, Rashba E, DeGroot P, Havel W, Mugglin A, Gold M. Is the membrane time constant for defibrillation independent of the waveform? Pacing Clin Electrophys iol2002;24:620 (abstract)

    Google Scholar 

  59. Gold MR, Shorofsky SR. Strength-duration relationship for human transvenous defib rillation. Circulation1997;96:3517–3520

    PubMed  CAS  Google Scholar 

  60. Mouchawar GA, Geddes LA, Bourland JD. Ability of the Lapicque and Blair strength duration curves to fit experimentally obtained data from the dog heart. IEEE Trans Biomed Eng1989;36:971–974

    PubMed  CAS  Google Scholar 

  61. Hahn S, Heil J, Lin Y, Derfus D, Lang D. Improved defibrillation with small capacitance and optimized biphasic waveforms. Circulation1994;90:I–175

    Google Scholar 

  62. Jung W, Moosdorf R, Korte T, Wolpert C, Spehl S, Bauer T, Manz M. Effect of capacitance on the defibrillation threshold in patients using a new unipolar defibrilla tion system. Circulation1994;90(4):I–229

    Google Scholar 

  63. Rist K, Tchou PJ, Mowrey K, Kroll MW, Brewer JE. Smaller capacitors improve the biphasic waveform. J Cardiovasc Electrophysiol1994;5:771–776

    PubMed  CAS  Google Scholar 

  64. Leonelli FM, Kroll MW, Brewer JE. Defibrillation thresholds are lower with smaller storage capacitors. Pacing Clin Electrophysiol1995;18:1661–1665

    PubMed  CAS  Google Scholar 

  65. Swerdlow CD, Brewer JE, Kass RM, Kroll M. Estimation of optimal ICD capacitance from human strength-duration data. J Am Coll Cardiol1997;96(9):2813–2822

    CAS  Google Scholar 

  66. Swerdlow C, Kass R, Hwang C, Chen P-S, Raissi S. Effect of capacitor size and pathway resistance on defibrillation threshold for implantable defibrillators. Circulation1994;90:1840–1846

    PubMed  CAS  Google Scholar 

  67. Sticherling C, Klingenheben T, Cameron D, Hohnloser SH. Worldwide clinical expe rience with a down-sized active can implantable cardioverter defibrillator in 162 consecutive patients. Worldwide 7221 ICD Investigators. Pacing Clin Electrophysiol1998;21:1778–1783

    PubMed  CAS  Google Scholar 

  68. Thammanomai A, Sweeney M, Eisenberg S. A comparison of the output character istics of several implantable cardioverter defibrillators. Heart Rhythm2006;3:1053– 1059

    PubMed  Google Scholar 

  69. Yamanouchi Y, Brewer JE, Mowrey KA, Donohoo AM, Wilkoff BL, Tchou PJ. Optimal small-capacitor biphasic waveform for external defibrillation: influence of phase-1 tilt and phase-2 voltage. Circulation1998;98:2487–2493

    PubMed  CAS  Google Scholar 

  70. Malkin RA. Large sample test of defibrillation waveform sensitivity. J Cardiovasc Electrophysiol2002;13:361–370

    PubMed  Google Scholar 

  71. Cheng Y, Mowrey KA, Nikolski V, Tchou PJ, Efimov IR. Mechanisms of shock-induced arrhythmogenesis during acute global ischemia. Am J Physiol Heart Circ Physiol2002;282:H2141–H2151

    PubMed  CAS  Google Scholar 

  72. Natarajan S, Henthorn R, Burroughs J, Esberg D, Zweibel S, Ross T, Kroll M, Gianola D, Oza A. Fixed duration “tuned” defibrillation waveforms outperform fixed 50/50% tilt defibrillation waveforms: a randomized, prospective, pair-sampled multicenter study. Pacing Clin Electrophysiol2007;30:S139–S142

    PubMed  Google Scholar 

  73. Sweeney MO, Natale A, Volosin KJ, Swerdlow CD, Baker JH, Degroot P. Prospec tive randomized comparison of 50%/50% versus 65%/65% tilt biphasic waveform on defibrillation in humans. Pacing Clin Electrophysiol2001;24:60–65

    PubMed  CAS  Google Scholar 

  74. Strickberger SA, Hummel JD, Horwood LE, Jentzer J, Daoud E, Niebauer M, Bakr O, Man KC, Williamson BD, Kou W, et al. Effect of shock polarity on ventricular defib rillation threshold using a transvenous lead system. J Am Coll Cardiol1994;24:1069– 1072

    PubMed  CAS  Google Scholar 

  75. O'Neill PG, Boahene KA, Lawrie GM, Harvill LF, Pacifico A. The automatic implantable cardioverter-defibrillator: effect of patch polarity on defibrillation thresh old. J Am Coll Cardiol1991;17:707–711

    PubMed  Google Scholar 

  76. Bardy GH, Ivey TD, Allen MD, Johnson G, Greene HL. Evaluation of electrode polarity on defibrillation efficacy. Am J Cardiol1989;63:433–437

    PubMed  CAS  Google Scholar 

  77. Kroll MW, Efimov IR, Tchou PJ. Present understanding of shock polarity for internal defibrillation: the obvious and non-obvious clinical implications. Pacing Clin Electro physiol2006;29:885–891

    Google Scholar 

  78. Swerdlow C, Ahern T, Chen P-S. Comparative reproducibility of defibrillation thresh old and upper limit of vulnerability. Pacing Clin Electrophysiol1996;19:2103–2111

    PubMed  CAS  Google Scholar 

  79. Yamanouchi Y, Cheng Y, Tchou PJ, Efimov IR. The mechanisms of the vulnerable window: the role of virtual electrodes and shock polarity. Can J Physiol Pharmacol2001;79:25–33

    PubMed  CAS  Google Scholar 

  80. Strickberger SA, Daoud E, Goyal R, Chan KK, Bogun F, Castellani M, Harvey M, Horwood LE, Niebauer M, Man KC, Morady F. Prospective randomized comparison of anodal monophasic shocks versus biphasic cathodal shocks on defibrillation energy requirements. Am Heart J1996;131:961–965

    PubMed  CAS  Google Scholar 

  81. Mowrey KA, Cheng Y, Tchou PJ, Efimov R. Kinetics of defibrillation shock induced response: design implications for the optimal defibrillation waveform. Europace2002;4:27–39

    PubMed  CAS  Google Scholar 

  82. Tomassoni G, Newby K, Deshpande S, Axtell K, Sra J, Akhtar M, Natale A. Defibril lation efficacy of commercially available biphasic impulses in humans. Importance of negative-phase peak voltage. Circulation1997;95:1822–1826

    PubMed  CAS  Google Scholar 

  83. Swerdlow CD. ICD waveforms: what really matters? Heart Rhythm2006;3:1060–1062

    PubMed  Google Scholar 

  84. Peleska B. Cardiac arrhythmias following condenser discharges and their dependence upon strength of current and phase of cardiac cycle. Circ Res1963;13:21–32

    PubMed  CAS  Google Scholar 

  85. Nikolski VP, Efimov IR. Electroporation of the heart. Europace2005;7(Suppl 2):146– 154

    PubMed  Google Scholar 

  86. Jones DL, Klein GJ, Guiraudon GM, Sharma AD, Kallok MJ, Bourland JD, Tacker WA. Internal cardiac defibrillation in man: pronounced improvement with sequential pulse delivery to two different lead orientations. Circulation1986;73:484–491

    PubMed  CAS  Google Scholar 

  87. Russo AM, Sauer W, Gerstenfeld EP, Hsia HH, Lin D, Cooper JM, Dixit S, Verdino RJ, Nayak HM, Callans DJ, Patel V, Marchlinski FE. Defibrillation threshold testing: is it really necessary at the time of implantable cardioverter-defibrillator insertion? Heart Rhythm2005;2:456–461

    PubMed  Google Scholar 

  88. Shukla HH, Flaker GC, Jayam V, Roberts D. High defibrillation thresholds in transve nous biphasic implantable defibrillators: clinical predictors and prognostic implications. Pacing Clin Electrophysiol2003;26:44–48

    PubMed  Google Scholar 

  89. Anderson KP. Sudden cardiac death unresponsive to implantable defibrillator therapy: an urgent target for clinicians, industry and government. J Interv Card Electrophysiol2005;14:71–78

    PubMed  Google Scholar 

  90. Mitchell LB, Pineda EA, Titus JL, Bartosch PM, Benditt DG. Sudden death in patients with implantable cardioverter defibrillators: the importance of post-shock electromechanical dissociation. J Am Coll Cardiol2002;39:1323–1328

    PubMed  Google Scholar 

  91. Poole J, Johnson G, Callans D, Raitt M, Yee R, Reddy R, Wilber D, Guarnieri T, Talajic M, Marchlinski F, Lee K, Bardy G, Investigators S-H. Analysis of implantable defibrillator shock electrograms in the Sudden Cardiac Death-Heart Failure Trial. Heart Rhythm2004;1:S178 (abstract)

    Google Scholar 

  92. Tokano T, Bach D, Chang J, Davis J, Souza JJ, Zivin A, Knight BP, Goyal R, Man KC, Morady F, Strickberger SA. Effect of ventricular shock strength on cardiac hemodynamics. J Cardiovasc Electrophysiol1998;9:791–797

    PubMed  CAS  Google Scholar 

  93. Holmes H, Bourland J, Tacker W Jr, Geddes L. Hemodynamic responses to two defibrillating trapezoidal waveforms. Med Instrumen1980;14:47–50

    CAS  Google Scholar 

  94. Boriani G, Biffi M, Silvestri P, Martignani C, Valzania C, Diemberger I, Moulder C, Mouchawar G, Kroll M, Branzi A. Mechanisms of pain associated with internal defibrillation shocks: results of a randomized study of shock waveform. Heart Rhythm2005;2:708–713

    PubMed  Google Scholar 

  95. Boriani G, Kroll M, Biffi M, Silvestri P, Martignani C, Valzania C, Diemberger I, Moulder C, Mouchawar G, Branzi A. Plateau waveform shape allows a higher patient shock energy tolerance. Heart Rhythm2006;3:S13

    Google Scholar 

  96. Gold M, Val-Mejias J, Leman R, Tummala R, Goyal S, Kluger J, Kroll M, Oza A. Effect of SVC coil usage and SVC electrode spacing on defibrillation thresholds. Circulation2006;114:II–690

    Google Scholar 

  97. Gold MR, Olsovsky MR, DeGroot PJ, Cuello C, Shorofsky SR. Optimization of transvenous coil position for active can defibrillation thresholds. J Cardiovasc Elec trophysiol2000;11:25–29

    CAS  Google Scholar 

  98. Gold MR, Foster AH, Shorofsky SR. Lead system optimization for transvenous defib rillation. Am J Cardiol1997;80:1163–1167

    PubMed  CAS  Google Scholar 

  99. Gold MR, Olsovsky MR, Pelini MA, Peters RW, Shorofsky SR. Comparison of single- and dual-coil active pectoral defibrillation lead systems. J Am Coll Cardiol1998;31:1391–1394

    PubMed  CAS  Google Scholar 

  100. Libero L, Lozano IF, Bocchiardo M, Marcolongo M, Sallusti L, Madrid A, Gaita F, Trevi GP. Comparison of defibrillation thresholds using monodirectional electrical vector versus bidirectional electrical vector. Ital Heart J2001;2:449–455

    PubMed  CAS  Google Scholar 

  101. Gold M, Val-Mejias J, Leman R, Tummala R, Goyal S, Kluger J, Kroll M, Oza A. What is the optimal SVC coil usage in ICD patients? Results from a randomized, prospective multicenter study. Heart Rhythm2008;5(3):394–349

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC.

About this chapter

Cite this chapter

Kroll, M.W., Swerdlow, C.D. (2009). Lessons for the Clinical Implant. In: Efimov, I.R., Kroll, M.W., Tchou, P.J. (eds) Cardiac Bioelectric Therapy. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-79403-7_19

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-79403-7_19

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-79402-0

  • Online ISBN: 978-0-387-79403-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics