Skip to main content

Biomarkers in Schizophrenia

  • Chapter
  • First Online:
Book cover Biomarkers for Psychiatric Disorders

Abstract

Schizophrenia is a heterogeneous disorder presenting as episodes of psychosis against the background of cognitive, social, and functional impairments. Schizophrenia has been studied extensively, and a large number of biological abnormalities associated with the disorder have been described. Many of these abnormalities have been proposed as biomarkers, some of which may represent useful endophenotypes for dissecting the etiology or pathophysiology of schizophrenia. The main molecular, electrophysiological, imaging, and psychological features of schizophrenia are described, with a critical evaluation of their utility as diagnostic and endophenotypic biomarkers. While none of these biomarkers are useful at present for clinical diagnosis, they may identify subgroups of schizophrenia or represent dimensions of the illness that can be subject to further study. With the recent identification of several promising candidate susceptibility genes, models of pathophysiology can now be generated to integrate this diverse collection of abnormalities from the molecular level of description with that of abnormal psychology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AS:

Antisaccade

BDNF:

Brain derived neurotrophic factor

CAPON:

Also known as nitric oxide synthase 1(neuronal) adaptor protein (NOS1AP)

CHRNA7:

Cholinergic receptor, nicotinic, alpha 7

CI:

Cortical inhibition

CNS:

Central nervous system

COMT:

Catechol-o-methyltransferase

CSF:

Cerebrospinal fluid

CT:

Catscan

DISC1:

Disrupted in schizophrenia 1

DNA:

Deoxyribonucleic acid

DPFC:

Dorsolateral prefrontal cortex

DTNBP1:

Dysbindin-1, dystrobrevin-binding protein 1

EGF:

Epidermal growth factor

EPN4:

Epsin-related protein, clathrin interactor 1

ErbB:

Epidermal growth factor receptor

ERP:

Event-related potential

fMRI:

Functional MRI

G72:

D-amino acid oxidase, D-amino acid oxidase activator

DOA:

DAOA

GABA:

γ-Aminobutyrate

GAD67:

67-kDa isoform of glutamic acid decarboxylase

GRM3:

Glutamate receptor, metabotropic 3

GS:

Gamma synchrony

IBZM:

Iodobenzamide

IL:

Interleukin

INFγ:

Interferon gamma

MEG:

Magnetoencephalography

MMN:

Mismatch negativity

MRI:

Magnetic resonance imaging

mRNA:

Messenger ribonucleic acid

NRG1:

Neuregulin 1

PET:

Positron emission tomography

PFC:

Prefrontal cortex

PPI:

Prepulse inhibition

PPP3C:

Protein phosphatase 3 (formerly 2B), catalytic subunit, gamma isoform

PRODH:

Proline dehydrogenase (proline oxidase)

RGS4:

Regulator of G-protein signaling 4

SELENBP1:

Selenium binding protein 1

SNP:

Single nucleotide polymorphism

SPECT:

Single positron emission computed tomography

TAAR6:

Trace amine associated receptor 6

TMS:

Transcranial magnetic stimulation

TNFα:

Tumour necrosis factor alpha

TOM:

Theory of mind

References

  • Abi-Dargham A, Rodenhiser J, Printz D, Zea-Ponce Y, Gil R, Kegeles LS, Weiss R, Cooper TB, Mann JJ, Van Heertum RL, Gorman JM, Laruelle M (2000) Increased baseline occupancy of D2 receptors by dopamine in schizophrenia. Proc Natl Acad Sci USA 97: 8104–9

    Article  PubMed  CAS  Google Scholar 

  • Adler LE, Freedman R, Ross RG, Olincy A, Waldo MC (1999) Elementary phenotypes in the neurobiological and genetic study of schizophrenia. Biol Psychiatr 46: 8–18

    Article  CAS  Google Scholar 

  • Altar CA, Jurata LW, Charles V, Lemire A, Liu P, Bukhman Y, Young TA, Bullard J, Yokoe H, Webster MJ, Knable MB, Brockman JA, Palfreyman MG, Hook DJ, Klimczak LJ, Brockman JA, Evans DM, Altar CA, Jordan S, Koprivica V, Chen R, Tottori K, Kikuchi T, Altar CA (2005) Deficient hippocampal neuron expression of proteasome, ubiquitin, and mitochondrial genes in multiple schizophrenia cohorts. Biol Psychiatr 58: 85–96

    Article  CAS  Google Scholar 

  • Andreasen NC (1997) Linking mind and brain in the study of mental illnesses: a project for a scientific psychopathology. Science 275: 1586–93

    Article  PubMed  CAS  Google Scholar 

  • Andrews J, Wang L, Csernansky JG, Gado MH, Barch DM (2006) Abnormalities of thalamic activation and cognition in schizophrenia. Am J Psychiatr 163: 463–9

    Article  PubMed  Google Scholar 

  • Anokhin AP, Heath AC, Myers E, Ralano A, Wood S (2003) Genetic influences on prepulse inhibition of startle reflex in humans. Neurosci Lett 353: 45–8

    Article  PubMed  CAS  Google Scholar 

  • Arguello PA, Gogos JA (2006) Modeling madness in mice: one piece at a time. Neuron 52: 179–96

    Article  PubMed  CAS  Google Scholar 

  • Aston C, Jiang L, Sokolov BP (2004) Microarray analysis of postmortem temporal cortex from patients with schizophrenia. J Neurosci Res 77: 858–66

    Article  PubMed  CAS  Google Scholar 

  • Baddeley A (2003) Working memory: looking back and looking forward. Nat Rev Neurosci 4: 829–39

    Article  PubMed  CAS  Google Scholar 

  • Badner JA, Gershon ES (2002) Meta-analysis of whole-genome linkage scans of bipolar disorder and schizophrenia. Mol Psychiatr 7: 405–11

    Article  CAS  Google Scholar 

  • Bassett AS, Chow EW (1999) 22q11 deletion syndrome: a genetic subtype of schizophrenia. Biol Psychiatr 46: 882–91

    Article  CAS  Google Scholar 

  • Bassett AS, Chow EW, AbdelMalik P, Gheorghiu M, Husted J, Weksberg R (2003) The schizophrenia phenotype in 22q11 deletion syndrome. Am J Psychiatr 160: 1580–6

    Article  PubMed  Google Scholar 

  • Blackwood D (2000) P300, a state and a trait marker in schizophrenia. Lancet 355: 771–2

    Article  PubMed  CAS  Google Scholar 

  • Bowie CR, Harvey PD (2005) Cognition in schizophrenia: impairments, determinants, and functional importance. Psychiatr Clin North Am 28: 613–33; 626

    Article  PubMed  Google Scholar 

  • Braff DL, Freedman R (2002) Endophenotypes in studies of the genetics of schizophrenia. In: Davis KL, Charney D, Coyle JT (eds) Neuropsychopharmacology: the fifth generation of progress. American College of Neuropsychopharmacology, p 703

    Google Scholar 

  • Braff DL, Light GA (2005) The use of neurophysiological endophenotypes to understand the genetic basis of schizophrenia. Dialogues Clin Neurosci 7: 125–35

    PubMed  Google Scholar 

  • Braff DL, Geyer MA, Swerdlow NR (2001) Human studies of prepulse inhibition of startle: normal subjects, patient groups, and pharmacological studies. Psychopharmacology (Berl) 156: 234–58

    Article  CAS  Google Scholar 

  • Bramon E, Rabe-Hesketh S, Sham P, Murray RM, Frangou S (2004) Meta-analysis of the P300 and P50 waveforms in schizophrenia. Schizophr Res 70: 315–29

    Article  PubMed  Google Scholar 

  • Breier A, Su TP, Saunders R, Carson RE, Kolachana BS, de Bartolomeis A, Weinberger DR, Weisenfeld N, Malhotra AK, Eckelman WC, Pickar D (1997) Schizophrenia is associated with elevated amphetamine-induced synaptic dopamine concentrations: evidence from a novel positron emission tomography method. Proc Natl Acad Sci U S A 94: 2569–74

    Article  PubMed  CAS  Google Scholar 

  • Bressler SL (2003) Cortical coordination dynamics and the disorganization syndrome in schizophrenia. Neuropsychopharmacology 28 (Suppl 1): S35–9

    Article  PubMed  Google Scholar 

  • Brune M (2005) “Theory of mind” in schizophrenia: a review of the literature. Schizophr Bull 31: 21–42

    Article  PubMed  Google Scholar 

  • Cadenhead KS, Swerdlow NR, Shafer KM, Diaz M, Braff DL (2000) Modulation of the startle response and startle laterality in relatives of schizophrenic patients and in subjects with schizotypal personality disorder: evidence of inhibitory deficits. Am J Psychiatr 157: 1660–8

    Article  PubMed  CAS  Google Scholar 

  • Cahn W, Hulshoff Pol HE, Lems EB, van Haren NE, Schnack HG, van der Linden JA, Schothorst PF, van Engeland H, Kahn RS (2002) Brain volume changes in first-episode schizophrenia: a 1-year follow-up study. Arch Gen Psychiatr 59: 1002–1010

    Article  PubMed  Google Scholar 

  • Calkins ME, Iacono WG, Curtis CE (2003) Smooth pursuit and antisaccade performance evidence trait stability in schizophrenia patients and their relatives. Int J Psychophysiol 49: 139–146

    Article  PubMed  Google Scholar 

  • Calvano SE, Xiao W, Richards DR, Felciano RM, Baker HV, Cho RJ, Chen RO, Brownstein BH, Cobb JP, Tschoeke SK, Miller-Graziano C, Moldawer LL, Mindrinos MN, Davis RW, Tompkins RG, Lowry SF (2005) A network-based analysis of systemic inflammation in humans. Nature 437: 1032–1037

    Article  PubMed  CAS  Google Scholar 

  • Cannon TD, Glahn DC, Kim J, Van Erp TG, Karlsgodt K, Cohen MS, Nuechterlein KH, Bava S, Shirinyan D (2005) Dorsolateral prefrontal cortex activity during maintenance and manipulation of information in working memory in patients with schizophrenia. Arch Gen Psychiatr 62: 1071–1080

    Article  PubMed  Google Scholar 

  • Cardno AG, Gottesman, II (2000) Twin studies of schizophrenia: from bow-and-arrow concordances to star wars Mx and functional genomics. Am J Med Genet 97: 12–17

    Article  PubMed  CAS  Google Scholar 

  • Castner SA, Williams GV, Goldman-Rakic PS (2000) Reversal of antipsychotic-induced working memory deficits by short-term dopamine D1 receptor stimulation. Science 287: 2020–2022

    Article  PubMed  CAS  Google Scholar 

  • Catts SV, Shelley AM, Ward PB, Liebert B, McConaghy N, Andrews S, Michie PT (1995) Brain potential evidence for an auditory sensory memory deficit in schizophrenia. Am J Psychiatr 152: 213–219

    PubMed  CAS  Google Scholar 

  • Cho RY, Konecky RO, Carter CS (2006) Impairments in frontal cortical gamma synchrony and cognitive control in schizophrenia. Proc Natl Acad Sci U S A 103: 19878–19883

    Article  PubMed  CAS  Google Scholar 

  • Chua SE, McKenna PJ (1995) Schizophrenia—a brain disease? A critical review of structural and functional cerebral abnormality in the disorder. Br J Psychiatr 166: 563–582

    Article  CAS  Google Scholar 

  • Clapcote SJ, Lipina TV, Millar JK, Mackie S, Christie S, Ogawa F, Lerch JP, Trimble K, Uchiyama M, Sakuraba Y, Kaneda H, Shiroishi T, Houslay MD, Henkelman RM, Sled JG, Gondo Y, Porteous DJ, Roder JC (2007) Behavioral phenotypes of Disc1 missense mutations in mice. Neuron 54: 387–402

    Article  PubMed  CAS  Google Scholar 

  • Clementz BA, Geyer MA, Braff DL (1998) Poor P50 suppression among schizophrenia patients and their first-degree biological relatives. Am J Psychiatr 155: 1691–1694

    PubMed  CAS  Google Scholar 

  • Corfas G, Roy K, Buxbaum JD (2004) Neuregulin 1-erbB signaling and the molecular/cellular basis of schizophrenia. Nat Neurosci 7: 575–580

    Article  PubMed  CAS  Google Scholar 

  • Coull JT (1998) Neural correlates of attention and arousal: insights from electrophysiology, functional neuroimaging and psychopharmacology. Prog Neurobiol 55: 343–361

    Article  PubMed  CAS  Google Scholar 

  • Craddock N, Owen MJ (2007) Rethinking psychosis: the disadvantages of a dichotomous classification now outweigh the advantages. World Psychiatr 6: 20–27

    Google Scholar 

  • Craddock N, O'Donovan MC, Owen MJ (2007) Symptom dimensions and the Kraepelinian dichotomy. Br J Psychiatr 190: 361; author reply 361–362

    Article  Google Scholar 

  • Curtis CE, Calkins ME, Grove WM, Feil KJ, Iacono WG (2001) Saccadic disinhibition in patients with acute and remitted schizophrenia and their first-degree biological relatives. Am J Psychiatr 158: 100–106

    Article  PubMed  CAS  Google Scholar 

  • Daskalakis ZJ, Christensen BK, Chen R, Fitzgerald PB, Zipursky RB, Kapur S (2002) Evidence for impaired cortical inhibition in schizophrenia using transcranial magnetic stimulation. Arch Gen Psychiatr 59: 347–354

    Article  PubMed  Google Scholar 

  • Dazzan P, Morgan KD, Orr K, Hutchinson G, Chitnis X, Suckling J, Fearon P, McGuire PK, Mallett RM, Jones PB, Leff J, Murray RM (2005) Different effects of typical and atypical antipsychotics on grey matter in first episode psychosis: the AESOP study. Neuropsychopharmacology 30: 765–774

    PubMed  CAS  Google Scholar 

  • DeLisi LE (2000) Critical overview of current approaches to genetic mechanisms in schizophrenia research. Brain Res Brain Res Rev 31: 187–192

    Article  PubMed  CAS  Google Scholar 

  • Drzyzga L, Obuchowicz E, Marcinowska A, Herman ZS (2006) Cytokines in schizophrenia and the effects of antipsychotic drugs. Brain Behav Immun 20: 532–345

    Article  PubMed  CAS  Google Scholar 

  • Elvevag B, Goldberg TE (2000) Cognitive impairment in schizophrenia is the core of the disorder. Crit Rev Neurobiol 14: 1–21

    PubMed  CAS  Google Scholar 

  • Everett J, Lavoie K, Gagnon JF, Gosselin N (2001) Performance of patients with schizophrenia on the Wisconsin Card Sorting Test (WCST). J Psychiatr Neurosci 26: 123–130

    CAS  Google Scholar 

  • Fitzgerald PB, Brown TL, Daskalakis ZJ, Kulkarni J (2002) A transcranial magnetic stimulation study of the effects of olanzapine and risperidone on motor cortical excitability in patients with schizophrenia. Psychopharmacology (Berl) 162: 74–81

    Article  CAS  Google Scholar 

  • Frankle WG, Laruelle M (2002) Neuroreceptor imaging in psychiatric disorders. Ann Nucl Med 16: 437–446

    Article  PubMed  CAS  Google Scholar 

  • Freedman R, Adler LE, Waldo MC, Pachtman E, Franks RD (1983) Neurophysiological evidence for a defect in inhibitory pathways in schizophrenia: comparison of medicated and drug-free patients. Biol Psychiatr 18: 537–551

    CAS  Google Scholar 

  • Freedman R, Waldo M, Bickford-Wimer P, Nagamoto H (1991) Elementary neuronal dysfunctions in schizophrenia. Schizophr Res 4: 233–343

    Article  PubMed  CAS  Google Scholar 

  • Freedman R, Adler LE, Myles-Worsley M, Nagamoto HT, Miller C, Kisley M, McRae K, Cawthra E, Waldo M (1996) Inhibitory gating of an evoked response to repeated auditory stimuli in schizophrenic and normal subjects. Human recordings, computer simulation, and an animal model. Arch Gen Psychiatr 53: 1114–1121

    Article  PubMed  CAS  Google Scholar 

  • Frith CD, Frith U (1999) Interacting minds—a biological basis. Science 286: 1692–1695

    Article  PubMed  CAS  Google Scholar 

  • Galletly CA, Clark CR, McFarlane AC (2005) Clozapine improves working memory updating in schizophrenia. Eur Neuropsychopharmacol 15: 601–608

    Article  PubMed  CAS  Google Scholar 

  • Glatt SJ, Everall IP, Kremen WS, Corbeil J, Sasik R, Khanlou N, Han M, Liew CC, Tsuang MT (2005) Comparative gene expression analysis of blood and brain provides concurrent validation of SELENBP1 up-regulation in schizophrenia. Proc Natl Acad Sci U S A 102(43): 15533–15538

    Article  PubMed  CAS  Google Scholar 

  • Gogos JA, Gerber DJ (2006) Schizophrenia susceptibility genes: emergence of positional candidates and future directions. Trends Pharmacol Sci 27: 226–233

    Article  PubMed  CAS  Google Scholar 

  • Goldman-Rakic PS (1994) Working memory dysfunction in schizophrenia. J Neuropsychiatr Clin Neurosci 6: 348–357

    CAS  Google Scholar 

  • Gottesman II (1991) Schizophrenia Genesis: The Origins of Madness. W.H. Freeman

    Google Scholar 

  • Gottesman, II, Gould TD (2003) The endophenotype concept in psychiatry: etymology and strategic intentions. Am J Psychiatr 160: 636–45

    Article  PubMed  Google Scholar 

  • Green MF (2006) Cognitive impairment and functional outcome in schizophrenia and bipolar disorder. J Clin Psychiatr 67 (Suppl 9): 3–8; discussion 36–42

    Google Scholar 

  • Gur RC, Gur RE (1995) Hypofrontality in schizophrenia: RIP. Lancet 345: 1383–4

    Article  PubMed  CAS  Google Scholar 

  • Gur RE, Cowell P, Turetsky BI, Gallacher F, Cannon T, Bilker W, Gur RC (1998) A follow-up magnetic resonance imaging study of schizophrenia. Relationship of neuroanatomical changes to clinical and neurobehavioral measures. Arch Gen Psychiatr 55: 145–52

    Article  PubMed  CAS  Google Scholar 

  • Gur RE, McGrath C, Chan RM, Schroeder L, Turner T, Turetsky BI, Kohler C, Alsop D, Maldjian J, Ragland JD, Gur RC (2002) An fMRI study of facial emotion processing in patients with schizophrenia. Am J Psychiatr 159: 1992–9

    Article  PubMed  Google Scholar 

  • Hakak Y, Walker JR, Li C, Wong WH, Davis KL, Buxbaum JD, Haroutunian V, Fienberg AA (2001) Genome-wide expression analysis reveals dysregulation of myelination-related genes in chronic schizophrenia. Proc Natl Acad Sci U S A 98: 4746–51

    Article  PubMed  CAS  Google Scholar 

  • Hallett PE (1978) Primary and secondary saccades to goals defined by instructions. Vision Res 18: 1279–96

    Article  PubMed  CAS  Google Scholar 

  • Hammer TB, Oranje B, Glenthoj BY (2007) The effects of imipramine on P50 suppression, prepulse inhibition and habituation of the startle response in humans. Int J Neuropsychopharmacol 25: 1–9

    Google Scholar 

  • Haraldsson HM, Ferrarelli F, Kalin NH, Tononi G (2004) Transcranial Magnetic Stimulation in the investigation and treatment of schizophrenia: a review. Schizophr Res 71: 1–16

    Article  PubMed  Google Scholar 

  • Harrington L, Siegert RJ, McClure J (2005) Theory of mind in schizophrenia: a critical review. Cognit Neuropsychiatr 10: 249–86

    Article  Google Scholar 

  • Harrison PJ (1999) The neuropathology of schizophrenia. A critical review of the data and their interpretation. Brain 122: 593–624

    Article  PubMed  Google Scholar 

  • Harrison PJ, Weinberger DR (2005) Schizophrenia genes, gene expression, and neuropathology: on the matter of their convergence. Mol Psychiatr 10: 40–68; image 5

    Article  CAS  Google Scholar 

  • Harvey PD, Bowie CR, Friedman JI (2001) Cognition in schizophrenia. Curr Psychiatr Rep 3: 423–8

    Article  CAS  Google Scholar 

  • Heinrichs RW (2001) In Search of Madness: Schizophrenia and Neuroscience. Oxford University Press, Oxford

    Google Scholar 

  • Hennah W, Thomson P, Peltonen L, Porteous D (2006) Genes and schizophrenia: beyond schizophrenia: the role of DISC1 in major mental illness. Schizophr Bull 32: 409–16

    Article  PubMed  Google Scholar 

  • Higgs BW, Elashoff M, Richman S, Barci B (2006) An online database for brain disease research. BMC Genomics 7: 70

    Article  PubMed  CAS  Google Scholar 

  • Hikida T, Jaaro-Peled H, Seshadri S, Oishi K, Hookway C, Kong S, Wu D, Xue R, Andrade M, Tankou S, Mori S, Gallagher M, Ishizuka K, Pletnikov M, Kida S, Sawa A (2007) Dominant-negative DISC1 transgenic mice display schizophrenia-associated phenotypes detected by measures translatable to humans. Proc Natl Acad Sci U S A 3: 3

    Google Scholar 

  • Hill K, Mann L, Laws KR, Stephenson CM, Nimmo-Smith I, McKenna PJ (2004) Hypofrontality in schizophrenia: a meta-analysis of functional imaging studies. Acta Psychiatr Scand 110: 243–256

    Article  PubMed  CAS  Google Scholar 

  • Ho BC, Andreasen NC, Nopoulos P, Arndt S, Magnotta V, Flaum M (2003) Progressive structural brain abnormalities and their relationship to clinical outcome: a longitudinal magnetic resonance imaging study early in schizophrenia. Arch Gen Psychiatr 60: 585–594

    Article  PubMed  Google Scholar 

  • Hofer A, Niedermayer B, Kemmler G, Rettenbacher MA, Trebo E, Widschwendter CG, Fleischhacker WW (2007) Cognitive impairment in schizophrenia: clinical ratings are not a suitable alternative to neuropsychological testing. Schizophr Res 92: 126–131

    Article  PubMed  Google Scholar 

  • Hollingshead D, Lewis DA, Mirnics K (2005) Platform influence on DNA microarray data in postmortem brain research. Neurobiol Dis 18: 649–655

    Article  PubMed  CAS  Google Scholar 

  • Honea R, Crow TJ, Passingham D, Mackay CE (2005) Regional deficits in brain volume in schizophrenia: a meta-analysis of voxel-based morphometry studies. Am J Psychiatr 162: 2233–2245

    Article  PubMed  Google Scholar 

  • Hsieh MH, Swerdlow NR, Braff DL (2006) Effects of background and prepulse characteristics on prepulse inhibition and facilitation: implications for neuropsychiatric research. Biol Psychiatr 59: 555–559

    Article  Google Scholar 

  • Hutton SB, Ettinger U (2006) The antisaccade task as a research tool in psychopathology: a critical review. Psychophysiology 43: 302–313

    Article  PubMed  Google Scholar 

  • Hutton SB, Crawford TJ, Puri BK, Duncan LJ, Chapman M, Kennard C, Barnes TR, Joyce EM (1998) Smooth pursuit and saccadic abnormalities in first-episode schizophrenia. Psychol Med 28: 685–692

    Article  PubMed  CAS  Google Scholar 

  • Iacono WG (1998) Identifying psychophysiological risk for psychopathology: examples from substance abuse and schizophrenia research. Psychophysiology 35: 621–637

    Article  PubMed  CAS  Google Scholar 

  • Ingvar DH, Franzen G (1974) Abnormalities of cerebral blood flow distribution in patients with chronic schizophrenia. Acta Psychiatr Scand 50: 425–462

    Article  PubMed  CAS  Google Scholar 

  • Iwamoto K, Kato T (2006) Gene expression profiling in schizophrenia and related mental disorders. Neuroscientist 12: 349–361

    Article  PubMed  CAS  Google Scholar 

  • Iwamoto K, Bundo M, Kato T (2005) Altered expression of mitochondria-related genes in postmortem brains of patients with bipolar disorder or schizophrenia, as revealed by large-scale DNA microarray analysis. Hum Mol Genet 14: 241–253

    Article  PubMed  CAS  Google Scholar 

  • Javitt DC, Doneshka P, Zylberman I, Ritter W, Vaughan HG, Jr. (1993) Impairment of early cortical processing in schizophrenia: an event-related potential confirmation study. Biol Psychiatr 33: 513–519

    Article  CAS  Google Scholar 

  • Jessen F, Fries T, Kucharski C, Nishimura T, Hoenig K, Maier W, Falkai P, Heun R (2001) Amplitude reduction of the mismatch negativity in first-degree relatives of patients with schizophrenia. Neurosci Lett 309: 185–188

    Article  PubMed  CAS  Google Scholar 

  • Johnson MR, Morris NA, Astur RS, Calhoun VD, Mathalon DH, Kiehl KA, Pearlson GD (2006) A functional magnetic resonance imaging study of working memory abnormalities in schizophrenia. Biol Psychiatr 60: 11–21

    Article  Google Scholar 

  • Jurata LW, Bukhman YV, Charles V, Capriglione F, Bullard J, Lemire AL, Mohammed A, Pham Q, Laeng P, Brockman JA, Altar CA (2004) Comparison of microarray-based mRNA profiling technologies for identification of psychiatric disease and drug signatures. J Neurosci Methods 138: 173–188

    Article  PubMed  CAS  Google Scholar 

  • Kanaan RA, Kim JS, Kaufmann WE, Pearlson GD, Barker GJ, McGuire PK (2005) Diffusion tensor imaging in schizophrenia. Biol Psychiatr 58: 921–929

    Article  Google Scholar 

  • Katsel P, Davis KL, Haroutunian V (2005) Variations in myelin and oligodendrocyte-related gene expression across multiple brain regions in schizophrenia: a gene ontology study. Schizophr Res 79: 157–173

    Article  PubMed  Google Scholar 

  • Kendler KS, Gardner CO (1997) The risk for psychiatric disorders in relatives of schizophrenic and control probands: a comparison of three independent studies. Psychol Med 27: 411–419

    Article  PubMed  CAS  Google Scholar 

  • Kirov G, Ivanov D, Williams NM, Preece A, Nikolov I, Milev R, Koleva S, Dimitrova A, Toncheva D, O'Donovan MC, Owen MJ (2004) Strong evidence for association between the dystrobrevin binding protein 1 gene (DTNBP1) and schizophrenia in 488 parent-offspring trios from Bulgaria. Biol Psychiatr 55: 971–975

    Article  CAS  Google Scholar 

  • Koch C, Laurent G (1999) Complexity and the nervous system. Science 284: 96–98

    Article  PubMed  CAS  Google Scholar 

  • Korostenskaja M, Dapsys K, Siurkute A, Maciulis V, Ruksenas O, Kahkonen S (2005) Effects of olanzapine on auditory P300 and mismatch negativity (MMN) in schizophrenia spectrum disorders. Prog Neuropsychopharmacol Biol Psychiatr 29: 543–548

    Article  CAS  Google Scholar 

  • Kraepelin E (1971) Dementia Praecox and Paraphrenia. Robert R. Krieger, New York

    Google Scholar 

  • Kronfol Z, Remick DG (2000) Cytokines and the brain: implications for clinical psychiatry. Am J Psychiatr 157: 683–694

    Article  PubMed  CAS  Google Scholar 

  • Kubicki M, McCarley R, Westin CF, Park HJ, Maier S, Kikinis R, Jolesz FA, Shenton ME (2007) A review of diffusion tensor imaging studies in schizophrenia. J Psychiatr Res 41: 15–30

    Article  PubMed  Google Scholar 

  • Kumari V, Das M, Zachariah E, Ettinger U, Sharma T (2005a) Reduced prepulse inhibition in unaffected siblings of schizophrenia patients. Psychophysiology 42: 588–594

    Article  Google Scholar 

  • Kumari V, Ettinger U, Crawford TJ, Zachariah E, Sharma T (2005b) Lack of association between prepulse inhibition and antisaccadic deficits in chronic schizophrenia: implications for identification of schizophrenia endophenotypes. J Psychiatr Res 39: 227–240

    Article  Google Scholar 

  • Kuromitsu J, Yokoi A, Kawai T, Nagasu T, Aizawa T, Haga S, Ikeda K (2001) Reduced neuropeptide Y mRNA levels in the frontal cortex of people with schizophrenia and bipolar disorder. Brain Res Gene Expr Patterns 1: 17–21

    Article  PubMed  CAS  Google Scholar 

  • Laruelle M, Abi-Dargham A, Gil R, Kegeles L, Innis R (1999) Increased dopamine transmission in schizophrenia: relationship to illness phases. Biol Psychiatr 46: 56–72

    Article  CAS  Google Scholar 

  • Laruelle M, Abi-Dargham A, van Dyck CH, Gil R, D'Souza CD, Erdos J, McCance E, Rosenblatt W, Fingado C, Zoghbi SS, Baldwin RM, Seibyl JP, Krystal JH, Charney DS, Innis RB (1996) Single photon emission computerized tomography imaging of amphetamine- induced dopamine release in drug-free schizophrenic subjects. Proc Natl Acad Sci U S A 93: 9235–9240

    Article  PubMed  CAS  Google Scholar 

  • Law AJ, Lipska BK, Weickert CS, Hyde TM, Straub RE, Hashimoto R, Harrison PJ, Kleinman JE, Weinberger DR (2006) Neuregulin 1 transcripts are differentially expressed in schizophrenia and regulated by 5' SNPs associated with the disease. Proc Natl Acad Sci U S A 103: 6747–6752

    Article  PubMed  CAS  Google Scholar 

  • Lee KH, Williams LM, Breakspear M, Gordon E (2003) Synchronous gamma activity: a review and contribution to an integrative neuroscience model of schizophrenia. Brain Res Brain Res Rev 41: 57–78

    Article  PubMed  Google Scholar 

  • Lewis DA, Lieberman JA (2000) Catching up on schizophrenia: natural history and neurobiology. Neuron 28: 325–334

    Article  PubMed  CAS  Google Scholar 

  • Lewis DA, Levitt P (2002) Schizophrenia as a disorder of neurodevelopment. Annu Rev Neurosci 25: 409–432. Epub 2002 Mar 22

    Article  PubMed  CAS  Google Scholar 

  • Lewis DA, Hashimoto T, Volk DW (2005) Cortical inhibitory neurons and schizophrenia. Nat Rev Neurosci 6: 312–324

    Article  PubMed  CAS  Google Scholar 

  • Lieberman J, Chakos M, Wu H, Alvir J, Hoffman E, Robinson D, Bilder R (2001) Longitudinal study of brain morphology in first episode schizophrenia. Biol Psychiatr 49: 487–499

    Article  CAS  Google Scholar 

  • Light GA, Geyer MA, Clementz BA, Cadenhead KS, Braff DL (2000) Normal P50 suppression in schizophrenia patients treated with atypical antipsychotic medications. Am J Psychiatr 157: 767–771

    Article  PubMed  CAS  Google Scholar 

  • Lipska BK, Peters T, Hyde TM, Halim N, Horowitz C, Mitkus S, Weickert CS, Matsumoto M, Sawa A, Straub RE, Vakkalanka R, Herman MM, Weinberger DR, Kleinman JE (2006) Expression of DISC1 binding partners is reduced in schizophrenia and associated with DISC1 SNPs. Hum Mol Genet 15: 1245–1258

    Article  PubMed  CAS  Google Scholar 

  • McCarley RW, Faux SF, Shenton ME, Nestor PG, Adams J (1991) Event-related potentials in schizophrenia: their biological and clinical correlates and a new model of schizophrenic pathophysiology. Schizophr Res 4: 209–231

    Article  PubMed  CAS  Google Scholar 

  • McCurdy RD, Feron F, Perry C, Chant DC, McLean D, Matigian N, Hayward NK, McGrath JJ, Mackay-Sim A (2006) Cell cycle alterations in biopsied olfactory neuroepithelium in schizophrenia and bipolar I disorder using cell culture and gene expression analyses. Schizophr Res 6: 6

    Google Scholar 

  • McGrath JJ (2007) The surprisingly rich contours of schizophrenia epidemiology. Arch Gen Psychiatr 64: 14–16

    Article  PubMed  Google Scholar 

  • McGrath J, Saha S, Welham J, El Saadi O, MacCauley C, Chant D (2004) A systematic review of the incidence of schizophrenia: the distribution of rates and the influence of sex, urbanicity, migrant status and methodology. BMC Med 2: 13

    Article  PubMed  Google Scholar 

  • McHugh PR (1995) Witches, multiple personalities, and other psychiatric artifacts. Nat Med 1: 110–114

    Article  PubMed  CAS  Google Scholar 

  • Meyer-Lindenberg A, Kohn PD, Kolachana B, Kippenhan S, McInerney-Leo A, Nussbaum R, Weinberger DR, Berman KF (2005) Midbrain dopamine and prefrontal function in humans: interaction and modulation by COMT genotype. Nat Neurosci 8: 594–596

    Article  PubMed  CAS  Google Scholar 

  • Michie PT (2001) What has MMN revealed about the auditory system in schizophrenia? Int J Psychophysiol 42: 177–194

    Article  PubMed  CAS  Google Scholar 

  • Middleton FA, Mirnics K, Pierri JN, Lewis DA, Levitt P (2002) Gene expression profiling reveals alterations of specific metabolic pathways in schizophrenia. J Neurosci 22: 2718–2729

    PubMed  CAS  Google Scholar 

  • Middleton FA, Pato CN, Gentile KL, McGann L, Brown AM, Trauzzi M, Diab H, Morley CP, Medeiros H, Macedo A, Azevedo MH, Pato MT (2005) Gene expression analysis of peripheral blood leukocytes from discordant sib-pairs with schizophrenia and bipolar disorder reveals points of convergence between genetic and functional genomic approaches. Am J Med Genet B Neuropsychiatr Genet 136: 12–25

    Google Scholar 

  • Millar JK, Wilson-Annan JC, Anderson S, Christie S, Taylor MS, Semple CA, Devon RS, Clair DM, Muir WJ, Blackwood DH, Porteous DJ (2000) Disruption of two novel genes by a translocation co-segregating with schizophrenia. Hum Mol Genet 9: 1415–1423

    Article  PubMed  CAS  Google Scholar 

  • Millar JK, Pickard BS, Mackie S, James R, Christie S, Buchanan SR, Malloy MP, Chubb JE, Huston E, Baillie GS, Thomson PA, Hill EV, Brandon NJ, Rain JC, Camargo LM, Whiting PJ, Houslay MD, Blackwood DH, Muir WJ, Porteous DJ (2005) DISC1 and PDE4B are interacting genetic factors in schizophrenia that regulate cAMP signaling. Science 310: 1187–1191

    Article  PubMed  CAS  Google Scholar 

  • Mirnics K, Middleton FA, Marquez A, Lewis DA, Levitt P (2000) Molecular characterization of schizophrenia viewed by microarray analysis of gene expression in prefrontal cortex. Neuron 28: 53–67

    Article  PubMed  CAS  Google Scholar 

  • Nagasaka Y, Dillner K, Ebise H, Teramoto R, Nakagawa H, Lilius L, Axelman K, Forsell C, Ito A, Winblad B, Kimura T, Graff C (2005) A unique gene expression signature discriminates familial Alzheimer's disease mutation carriers from their wild-type siblings. Proc Natl Acad Sci U S A 102: 14854–14859

    Article  PubMed  CAS  Google Scholar 

  • Nawa H, Takei N (2006) Recent progress in animal modeling of immune inflammatory processes in schizophrenia: implication of specific cytokines. Neurosci Res 56: 2–13

    Article  PubMed  CAS  Google Scholar 

  • Nawa H, Takahashi M, Patterson PH (2000) Cytokine and growth factor involvement in schizophrenia—support for the developmental model. Mol Psychiatr 5: 594–603

    Article  CAS  Google Scholar 

  • Owen MJ, Williams NM, O'Donovan MC (2004) Dysbindin-1 and schizophrenia: from genetics to neuropathology. J Clin Investig 113: 1255–1257

    PubMed  CAS  Google Scholar 

  • Owen MJ, Craddock N, O'Donovan MC (2005) Schizophrenia: genes at last? Trends Genet 21: 518–525

    Article  PubMed  CAS  Google Scholar 

  • Ozeki Y, Tomoda T, Kleiderlein J, Kamiya A, Bord L, Fujii K, Okawa M, Yamada N, Hatten ME, Snyder SH, Ross CA, Sawa A (2003) Disrupted-in-Schizophrenia-1 (DISC-1): mutant truncation prevents binding to NudE-like (NUDEL) and inhibits neurite outgrowth. Proc Natl Acad Sci U S A 100: 289–294

    Article  PubMed  CAS  Google Scholar 

  • Pfefferbaum A, Ford JM, White PM, Roth WT (1989) P3 in schizophrenia is affected by stimulus modality, response requirements, medication status, and negative symptoms. Arch Gen Psychiatr 46: 1035–1044

    Article  PubMed  CAS  Google Scholar 

  • Piskulic D, Olver JS, Norman TR, Maruff P (2007) Behavioural studies of spatial working memory dysfunction in schizophrenia: a quantitative literature review. Psychiatr Res 150: 111–121

    Article  Google Scholar 

  • Plomin R, Owen MJ, McGuffin P (1994) The genetic basis of complex human behaviors. Science 264: 1733–1739

    Article  PubMed  CAS  Google Scholar 

  • Pollmacher T, Hinze-Selch D, Fenzel T, Kraus T, Schuld A, Mullington J (1997) Plasma levels of cytokines and soluble cytokine receptors during treatment with haloperidol. Am J Psychiatr 154: 1763–1765

    PubMed  CAS  Google Scholar 

  • Porteous DJ, Millar JK (2006) Disrupted in schizophrenia 1: building brains and memories. Trends Mol Med 12: 255–261

    Article  PubMed  CAS  Google Scholar 

  • Porteous DJ, Thomson P, Brandon NJ, Millar JK (2006) The genetics and biology of DISC1—an emerging role in psychosis and cognition. Biol Psychiatr 60: 123–131

    Article  CAS  Google Scholar 

  • Potkin SG, Alva G, Fleming K, Anand R, Keator D, Carreon D, Doo M, Jin Y, Wu JC, Fallon JH (2002) A PET study of the pathophysiology of negative symptoms in schizophrenia. Positron emission tomography. Am J Psychiatr 159: 227–237

    Article  PubMed  Google Scholar 

  • Potter D, Summerfelt A, Gold J, Buchanan RW (2006) Review of clinical correlates of P50 sensory gating abnormalities in patients with schizophrenia. Schizophr Bull 32: 692–700

    Article  PubMed  Google Scholar 

  • Premack DG, Woodruff G (1978) Does the chimpanzee have a theory of mind? Behav Brain Sci 1: 515–526

    Article  Google Scholar 

  • Price GW, Michie PT, Johnston J, Innes-Brown H, Kent A, Clissa P, Jablensky AV (2006) A multivariate electrophysiological endophenotype, from a unitary cohort, shows greater research utility than any single feature in the Western Australian family study of schizophrenia. Biol Psychiatr 60: 1–10

    Article  Google Scholar 

  • Prigogine I (1996) The End of Certainty. The Free Press, New York

    Google Scholar 

  • Prusiner SB (1998) Prions. Proc Natl Acad Sci U S A 95: 13363–13383

    Article  PubMed  CAS  Google Scholar 

  • Pulver AE (2000) Search for schizophrenia susceptibility genes. Biol Psychiatr 47: 221–230

    Article  CAS  Google Scholar 

  • Radich JP, Mao M, Stepaniants S, Biery M, Castle J, Ward T, Schimmack G, Kobayashi S, Carleton M, Lampe J, Linsley PS (2004) Individual-specific variation of gene expression in peripheral blood leukocytes. Genomics 83: 980–988

    Article  PubMed  CAS  Google Scholar 

  • Reveley AM, Reveley MA, Clifford CA, Murray RM (1982) Cerebral ventricular size in twins discordant for schizophrenia. Lancet 1: 540–541

    Article  PubMed  CAS  Google Scholar 

  • Risch N (1990) Linkage strategies for genetically complex traits. I. Multilocus models. Am J Hum Genet 46: 222–228

    PubMed  CAS  Google Scholar 

  • Role LW, Talmage DA (2007) Neurobiology: new order for thought disorders. Nature 448: 263–265

    Article  PubMed  CAS  Google Scholar 

  • Ross CA, Margolis RL, Reading SA, Pletnikov M, Coyle JT (2006) Neurobiology of schizophrenia. Neuron 52: 139–153

    Article  PubMed  CAS  Google Scholar 

  • Saha N, Tsoi WF, Low PS, Basair J, Tay JS (1994) Lack of association of the dopamine D3 receptor gene polymorphism (BalI) in Chinese schizophrenic males. Psychiatr Genet 4: 201–204

    Article  PubMed  CAS  Google Scholar 

  • Saka MC, Atbasoglu EC, Ozguven HD, Sener HO, Ozay E (2005) Cortical inhibition in first-degree relatives of schizophrenic patients assessed with transcranial magnetic stimulation. Int J Neuropsychopharmacol 8: 595–599

    Article  PubMed  Google Scholar 

  • Salisbury DF, Shenton ME, Sherwood AR, Fischer IA, Yurgelun-Todd DA, Tohen M, McCarley RW (1998) First-episode schizophrenic psychosis differs from first-episode affective psychosis and controls in P300 amplitude over left temporal lobe. Arch Gen Psychiatr 55: 173–180

    Article  PubMed  CAS  Google Scholar 

  • Salisbury DF, Shenton ME, Griggs CB, Bonner-Jackson A, McCarley RW (2002) Mismatch negativity in chronic schizophrenia and first-episode schizophrenia. Arch Gen Psychiatr 59: 686–694

    Article  PubMed  Google Scholar 

  • Sartorius N, Jablensky A, Korten A (1986) Early manifestations and first contact incidence of schizophrenia in different cultures: a preliminary report on the inital evaluation phase of the WHO collaborative study on determinants of outcome of severe mental disorders. Psychol Med 16: 909–928

    Article  PubMed  CAS  Google Scholar 

  • Sawa A, Snyder SH (2002) Schizophrenia: diverse approaches to a complex disease. Science 296: 692–695

    Article  PubMed  CAS  Google Scholar 

  • Schreiber H, Stolz-Born G, Kornhuber HH, Born J (1992) Event-related potential correlates of impaired selective attention in children at high risk for schizophrenia. Biol Psychiatr 32: 634–651

    Article  CAS  Google Scholar 

  • Seeman P, Lee T (1975) Antipsychotic drugs: direct correlation between clinical potency and presynaptic action on dopamine neurons. Science 188: 1217–1219

    Article  PubMed  CAS  Google Scholar 

  • Seeman P, Tallerico T (1998) Antipsychotic drugs which elicit little or no parkinsonism bind more loosely than dopamine to brain D2 receptors, yet occupy high levels of these receptors. Mol Psychiatr 3: 123–134

    Article  CAS  Google Scholar 

  • Seeman P, Guan HC, Niznik HB (1989) Endogenous dopamine lowers the dopamine D2 receptor density as measured by [3H]raclopride: implications for positron emission tomography of the human brain. Synapse 3: 96–97

    Article  PubMed  CAS  Google Scholar 

  • Shinozaki N, Yabe H, Sato Y, Hiruma T, Sutoh T, Nashida T, Matsuoka T, Kaneko S (2002) The difference in Mismatch negativity between the acute and post-acute phase of schizophrenia. Biol Psychol 59: 105–119

    Article  PubMed  Google Scholar 

  • Staal WG, Hulshoff Pol HE, Kahn RS (1999) Outcome of schizophrenia in relation to brain abnormalities. Schizophr Bull 25: 337–348

    PubMed  CAS  Google Scholar 

  • Staal WG, Hulshoff Pol HE, Schnack HG, Hoogendoorn ML, Jellema K, Kahn RS (2000) Structural brain abnormalities in patients with schizophrenia and their healthy siblings. Am J Psychiatr 157: 416–421

    Article  PubMed  CAS  Google Scholar 

  • Steen RG, Mull C, McClure R, Hamer RM, Lieberman JA (2006) Brain volume in first-episode schizophrenia: systematic review and meta-analysis of magnetic resonance imaging studies. Br J Psychiatr 188: 510–518

    Article  Google Scholar 

  • Stefansson H, Sigurdsson E, Steinthorsdottir V, Bjornsdottir S, Sigmundsson T, Ghosh S, Brynjolfsson J, Gunnarsdottir S, Ivarsson O, Chou TT, Hjaltason O, Birgisdottir B, Jonsson H, Gudnadottir VG, Gudmundsdottir E, Bjornsson A, Ingvarsson B, Ingason A, Sigfusson S, Hardardottir H, Harvey RP, Lai D, Zhou M, Brunner D, Mutel V, Gonzalo A, Lemke G, Sainz J, Johannesson G, Andresson T, Gudbjartsson D, Manolescu A, Frigge ML, Gurney ME, Kong A, Gulcher JR, Petursson H, Stefansson K (2002) Neuregulin 1 and susceptibility to schizophrenia. Am J Hum Genet 71: 877–92

    Article  PubMed  Google Scholar 

  • Stefansson H, Sarginson J, Kong A, Yates P, Steinthorsdottir V, Gudfinnsson E, Gunnarsdottir S, Walker N, Petursson H, Crombie C, Ingason A, Gulcher JR, Stefansson K, Clair DS (2003) Association of neuregulin 1 with schizophrenia confirmed in a Scottish population. Am J Hum Genet 72: 83–87

    Article  PubMed  CAS  Google Scholar 

  • Straub RE, Jiang Y, MacLean CJ, Ma Y, Webb BT, Myakishev MV, Harris-Kerr C, Wormley B, Sadek H, Kadambi B, Cesare AJ, Gibberman A, Wang X, O'Neill FA, Walsh D, Kendler KS (2002) Genetic variation in the 6p22.3 gene DTNBP1, the human ortholog of the mouse dysbindin gene, is associated with schizophrenia. Am J Hum Genet 71: 337–348

    Article  PubMed  CAS  Google Scholar 

  • Suddath RL, Christison GW, Torrey EF, Casanova MF, Weinberger DR (1990) Anatomical abnormalities in the brains of monozygotic twins discordant for schizophrenia. N Engl J Med 322: 789–794

    Article  PubMed  CAS  Google Scholar 

  • Sullivan PF, Fan C, Perou CM (2006) Evaluating the comparability of gene expression in blood and brain. Am J Med Genet B Neuropsychiatr Genet 141: 261–268

    Google Scholar 

  • Sunderland T, Gur RE, Arnold SE (2005) The use of biomarkers in the elderly: current and future challenges. Biol Psychiatr 58: 272–276

    Article  CAS  Google Scholar 

  • Swerdlow NR, Stephany N, Wasserman LC, Talledo J, Shoemaker J, Auerbach PP (2003) Amphetamine effects on prepulse inhibition across-species: replication and parametric extension. Neuropsychopharmacology 28: 640–650

    Article  PubMed  CAS  Google Scholar 

  • Swerdlow NR, Light GA, Cadenhead KS, Sprock J, Hsieh MH, Braff DL (2006) Startle gating deficits in a large cohort of patients with schizophrenia: relationship to medications, symptoms, neurocognition, and level of function. Arch Gen Psychiatr 63: 1325–1335

    Article  PubMed  Google Scholar 

  • Swerdlow NR, Sprock J, Light GA, Cadenhead K, Calkins ME, Dobie DJ, Freedman R, Green MF, Greenwood TA, Gur RE, Mintz J, Olincy A, Nuechterlein KH, Radant AD, Schork NJ, Seidman LJ, Siever LJ, Silverman JM, Stone WS, Tsuang DW, Tsuang MT, Turetsky BI, Braff DL (2007) Multi-site studies of acoustic startle and prepulse inhibition in humans: initial experience and methodological considerations based on studies by the Consortium on the Genetics of Schizophrenia. Schizophr Res 92: 237–251

    Article  PubMed  Google Scholar 

  • Symond MP, Harris AW, Gordon E, Williams LM (2005) “Gamma synchrony” in first-episode schizophrenia: a disorder of temporal connectivity? Am J Psychiatr 162: 459–65

    Article  PubMed  Google Scholar 

  • Talbot K, Eidem WL, Tinsley CL, Benson MA, Thompson EW, Smith RJ, Hahn CG, Siegel SJ, Trojanowski JQ, Gur RE, Blake DJ, Arnold SE (2004) Dysbindin-1 is reduced in intrinsic, glutamatergic terminals of the hippocampal formation in schizophrenia. J Clin Invest 113: 1353–1363

    PubMed  CAS  Google Scholar 

  • Tallon-Baudry C, Bertrand O, Delpuech C, Pernier J (1996) Stimulus specificity of phase-locked and non-phase-locked 40 Hz visual responses in human. J Neurosci 16: 4240–4249

    PubMed  CAS  Google Scholar 

  • Tamminga CA (2006) The neurobiology of cognition in schizophrenia. J Clin Psychiatr 67: e11

    Article  Google Scholar 

  • Tamminga CA, Holcomb HH (2005) Phenotype of schizophrenia: a review and formulation. Mol Psychiatr 10: 27–39

    Article  CAS  Google Scholar 

  • Todd J, Michie PT, Schall U, Karayanidis F, Yabe H, Naatanen R (2007) Deviant Matters: Duration, Frequency, and Intensity Deviants Reveal Different Patterns of Mismatch Negativity Reduction in Early and Late Schizophrenia. Biol Psychiatr 20: 20

    Google Scholar 

  • Tsuang MT, Nossova N, Yager T, Tsuang MM, Guo SC, Shyu KG, Glatt SJ, Liew CC (2005) Assessing the validity of blood-based gene expression profiles for the classification of schizophrenia and bipolar disorder: a preliminary report. Am J Med Genet B Neuropsychiatr Genet 133: 1–5

    Google Scholar 

  • Turetsky BI, Calkins ME, Light GA, Olincy A, Radant AD, Swerdlow NR (2007) Neurophysiological endophenotypes of schizophrenia: the viability of selected candidate measures. Schizophr Bull 33: 69–94

    Article  PubMed  Google Scholar 

  • Uhlhaas PJ, Singer W (2006) Neural synchrony in brain disorders: relevance for cognitive dysfunctions and pathophysiology. Neuron 52: 155–168

    Article  PubMed  CAS  Google Scholar 

  • van Haren NE, Cahn W, Hulshoff Pol HE, Schnack HG, Caspers E, Lemstra A, Sitskoorn MM, Wiersma D, van den Bosch RJ, Dingemans PM, Schene AH, Kahn RS (2003) Brain volumes as predictor of outcome in recent-onset schizophrenia: a multi-center MRI study. Schizophr Res 64: 41–52

    Article  PubMed  Google Scholar 

  • Vawter MP, Barrett T, Cheadle C, Sokolov BP, Wood WH III, Donovan DM, Webster M, Freed WJ, Becker KG (2001) Application of cDNA microarrays to examine gene expression differences in schizophrenia. Brain Res Bull 55: 641–650

    Article  PubMed  CAS  Google Scholar 

  • Vawter MP, Thatcher L, Usen N, Hyde TM, Kleinman JE, Freed WJ (2002) Reduction of synapsin in the hippocampus of patients with bipolar disorder and schizophrenia. Mol Psychiatr 7: 571–578

    Article  CAS  Google Scholar 

  • Velakoulis D, Wood SJ, Wong MT, McGorry PD, Yung A, Phillips L, Smith D, Brewer W, Proffitt T, Desmond P, Pantelis C (2006) Hippocampal and amygdala volumes according to psychosis stage and diagnosis: a magnetic resonance imaging study of chronic schizophrenia, first-episode psychosis, and ultra-high-risk individuals. Arch Gen Psychiatr 63: 139–149

    Article  PubMed  Google Scholar 

  • Wang Y, Klijn JG, Zhang Y, Sieuwerts AM, Look MP, Yang F, Talantov D, Timmermans M, Meijer-van Gelder ME, Yu J, Jatkoe T, Berns EM, Atkins D, Foekens JA (2005) Gene-expression profiles to predict distant metastasis of lymph-node-negative primary breast cancer. Lancet 365: 671–679

    PubMed  CAS  Google Scholar 

  • Weinberger DR, Berman KF (1996) Prefrontal function in schizophrenia: confounds and controversies. Philos Trans R Soc Lond B Biol Sci 351: 1495–1503

    Article  PubMed  CAS  Google Scholar 

  • Wilke I, Arolt V, Rothermundt M, Weitzsch C, Hornberg M, Kirchner H (1996) Investigations of cytokine production in whole blood cultures of paranoid and residual schizophrenic patients. Eur Arch Psychiatr Clin Neurosci 246: 279–284

    Article  CAS  Google Scholar 

  • Williams NM, Preece A, Spurlock G, Norton N, Williams HJ, Zammit S, O'Donovan MC, Owen MJ (2003) Support for genetic variation in neuregulin 1 and susceptibility to schizophrenia. Mol Psychiatr 8: 485–487

    Article  CAS  Google Scholar 

  • Williams NM, Preece A, Morris DW, Spurlock G, Bray NJ, Stephens M, Norton N, Williams H, Clement M, Dwyer S, Curran C, Wilkinson J, Moskvina V, Waddington JL, Gill M, Corvin AP, Zammit S, Kirov G, Owen MJ, O'Donovan MC (2004) Identification in 2 independent samples of a novel schizophrenia risk haplotype of the dystrobrevin binding protein gene (DTNBP1). Arch Gen Psychiatr 61: 336–344

    Article  PubMed  CAS  Google Scholar 

  • Winkler I, Karmos G, Naatanen R (1996) Adaptive modeling of the unattended acoustic environment reflected in the mismatch negativity event-related potential. Brain Res 742: 239–252

    Article  PubMed  CAS  Google Scholar 

  • Wong AH, Van Tol HH (2003) Schizophrenia: from phenomenology to neurobiology. Neurosci Biobehav Rev 27: 269–306

    Article  PubMed  Google Scholar 

  • Wong AH, Macciardi F, Klempan T, Kawczynski W, Barr CL, Lakatoo S, Wong M, Buckle C, Trakalo J, Boffa E, Oak J, Azevedo MH, Dourado A, Coelho I, Macedo A, Vicente A, Valente J, Ferreira CP, Pato MT, Pato CN, Kennedy JL, Van Tol HH (2003) Identification of candidate genes for psychosis in rat models, and possible association between schizophrenia and the 14-3-3eta gene. Mol Psychiatr 8: 156–166

    Article  CAS  Google Scholar 

  • Wong AH, Gottesman, II, Petronis A (2005a) Phenotypic differences in genetically identical organisms: the epigenetic perspective. Hum Mol Genet 14 (Spec No 1): R11–8

    Article  CAS  Google Scholar 

  • Wong AH, Lipska BK, Likhodi O, Boffa E, Weinberger DR, Kennedy JL, Van Tol HH (2005b) Cortical gene expression in the neonatal ventral-hippocampal lesion rat model. Schizophr Res 77: 261–70

    Article  Google Scholar 

  • Yao JK, van Kammen DP (2004) Membrane phospholipids and cytokine interaction in schizophrenia. Int Rev Neurobiol 59: 297–326

    Article  PubMed  CAS  Google Scholar 

  • Yao JK, Sistilli CG, van Kammen DP (2003) Membrane polyunsaturated fatty acids and CSF cytokines in patients with schizophrenia. Prostaglandins Leukot Essent Fatty Acids 69: 429–436

    Article  PubMed  CAS  Google Scholar 

  • Zipursky RB, Lim KO, Sullivan EV, Brown BW, Pfefferbaum A (1992) Widespread cerebral gray matter volume deficits in schizophrenia. Arch Gen Psychiatr 49: 195–205

    Article  PubMed  CAS  Google Scholar 

  • Zipursky RB, Lambe EK, Kapur S, Mikulis DJ (1998) Cerebral gray matter volume deficits in first episode psychosis. Arch Gen Psychiatr 55: 540–546

    Article  PubMed  CAS  Google Scholar 

  • Zipursky RB, Meyer JH, Verhoeff NP (2007) PET and SPECT imaging in psychiatric disorders. Can J Psychiatr 52: 146–157

    Google Scholar 

Download references

Acknowledgments

AHCW is supported by a Clinician-Scientist Fellowship from the Canadian Institutes for Health Research (CIHR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Albert Wong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Wong, A., Feldcamp, L. (2008). Biomarkers in Schizophrenia. In: Turck, C. (eds) Biomarkers for Psychiatric Disorders. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-79251-4_2

Download citation

Publish with us

Policies and ethics