Skip to main content

Immunomics of Immune Rejection

  • Chapter
  • First Online:
Clinical Applications of Immunomics

Part of the book series: Immunomics Reviews ((IMMUN,volume 2))

  • 527 Accesses

Abstract

There is overwhelming evidence that the innate and adaptive arms of the human immune system can interact with autologous tumor cells and can, in rare circumstances, clear the host of cancer. Yet, most often tumor cells strike a favorable balance with the host’s immune response and continue their proliferation. The coexistence of immune responses with their targets is not a phenomenon restricted to cancer and it can be observed during therapeutically controlled chronic allograft rejection, during chronic viral diseases, or mild autoimmune reactions. Thus, systemic and peripheral immune reactions comprise an array of afferent cognitive loops and efferent effector mechanisms, whose balance dictates the final outcome of the disease. Recent surveys of the human tumor microenvironment using high-throughput scanning techniques suggest that autologous tumor rejection represents a distinct aspect of tissue-specific destruction similar to the clearance of pathogen, acute allograft rejection, or flares of autoimmunity. Identification of commonalities among the different immune pathologies may shed insights into the requirements for an effective immune response. We argue here that, due to the multiplicity of factors that may influence the balance of host/target interaction, a system biology approach based on high-throughput platforms may best suit the identification of this immunological constant of tissue rejection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CTL:

Cytotoxic T lymphocytes;

EBV:

Epstein-Barr virus;

HLA:

Human Leukocyte Antigen;

TIL:

Tumor Infiltrating Lymphocytes.

References

  • Appay V, Dunbar PR, Callan M, Klenerman P, Gillespie GMA, Papagno L et al.: Memory CD8+ T cells vary in differentiation phenotype in different persistent virus infections. Nat Med 2002, 8: 379–385.

    PubMed  CAS  Google Scholar 

  • Atkins MB, Lotze MT, Dutcher JP, Fisher RI, Weiss G, Margolin K et al.: High-dose recombinant interleukin-2 therapy for patients with metastatic melanoma: analysis of 270 patients treated between 1985 and 1993. J Clin Oncol 1998, 17: 2105–2116.

    Google Scholar 

  • Badoual C, Hans S, Rodriguez J, Peyrard S, Klein C, Agueznay NH et al.: Prognostic value of tumor-infiltrating CD4+ T-cell subpopulations in head and neck cancers. Clin Cancer Res 2006, 12: 465–472.

    PubMed  CAS  Google Scholar 

  • Bioley G, Jandus C, Tuyaerts S, Rimoldi D, Kwok WW, Speiser DE et al.: Melan-A/MART-1-specific CD4 T cells in melanoma patients: identification of new epitopes and ex vivo visualization of specific T cells by MHC class II tetramers. J Immunol 2006, 177: 6769–6779.

    PubMed  CAS  Google Scholar 

  • Boon T, Cerottini J-C, Van den Eynde B, van der Bruggen P, Van Pel A: Tumor antigens recognized by T lymphocytes. Annu Rev Immunol 1994, 12: 337–365.

    PubMed  CAS  Google Scholar 

  • Boon T, Coulie PG, Van den Eynde B: Tumor antigens recognized by T cells. Immunol Today 1997, 18: 267–268.

    PubMed  CAS  Google Scholar 

  • Bowen DG, Walker CM: Adaptive immune responses in acute and chronic hepatitis C virus infection. Nature 2005, 436: 946–952.

    PubMed  CAS  Google Scholar 

  • Brander C, O'Connor P, Suscovich T, Jones NG, Lee Y, Kedes D et al.: Definition of an optimal cytotoxic T lymphocyte epitope in the latently expressed Kaposi's sarcoma-associated herpesvirus kaposin protein. J Infect Dis 2001, 184: 119–126.

    PubMed  CAS  Google Scholar 

  • Champagne P, Ogg GS, King A, Knabenhans C, Ellefsen K, Nobile M et al.: Skewed maturation of memory HIV-specific CD8 T lymphoctes. Nature 2001, 410: 106–111.

    PubMed  CAS  Google Scholar 

  • Chua D, Huang J, Zheng B, Lau SY, Luk W, Kwong DL et al.: Adoptive transfer of autologous Epstein-Barr virus-specific cytotoxic T cells for nasopharyngeal carcinoma. Int J Cancer 2001, 94: 73–80.

    PubMed  CAS  Google Scholar 

  • Conti P, Kempuraj D, Kandere K, Di Gioacchino M, Reale M, Barbacane RC et al.: Interleukin-16 network in inflammation and allergy. Allergy Asthma Proc 2002, 23: 103–108.

    PubMed  CAS  Google Scholar 

  • Cormier JN, Salgaller ML, Prevette T, Barracchini KC, Rivoltini L, Restifo NP et al.: Enhancement of cellular immunity in melanoma patients immunized with a peptide from MART-1/Melan A [see comments]. Cancer J Sci Am 1997, 3: 37–44.

    PubMed  CAS  Google Scholar 

  • Critchley-Thorne RJ, Yan N, Nacu S, Weber J, Holmes SP, Lee PP: Down-regulation of the interferon signaling pathway in T lymphocytes from patients with metastatic melanoma. PLoS Med 2007, 4: e176.

    PubMed  Google Scholar 

  • Cui SH, Lin Y: Apparent correlation between nasopharyngeal carcinoma and HLA phenotype. Zhong Hua Zhong Liu Zhi 1982, 4: 249–253.

    CAS  Google Scholar 

  • Curiel TJ, Coukos G, Zou L, Alvarez X, Cheng P, Mottram P et al.: Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nat Med 2004, 10: 942–949.

    PubMed  CAS  Google Scholar 

  • Deonarine K, Panelli MC, Stashower ME, Jin P, Smith K, Slade HB et al.: Gene expression profiling of cutaneous wound healing. J Transl Med 2007, 5: 11.

    PubMed  Google Scholar 

  • Dinarello CA, Kim SH: IL-32, a novel cytokine with a possible role in disease. Ann Rheum Dis 2006, 65(3): iii61–iii64.

    PubMed  Google Scholar 

  • D'Souza S, Rimoldi D, Lienard D, Lejeune F, Cerottini JC, Romero P: Circulating Melan-A/Mart-1 specific cytolytic T lymphocyte precursors in HLA-A2+ melanoma patients have a memory phenotype. Int J Cancer 1998, 78: 699–706.

    PubMed  Google Scholar 

  • Dunn GP, Bruce AT, Ikeda H, Old LJ, Schreiber RD: Cancer immunoediting: from immunosurveillance to tumor escape. Nature Immunol 2002, 3: 991–998.

    CAS  Google Scholar 

  • Dunn GP, Old LJ, Schreiber RD: The three Es of cancer immunoediting. Annu Rev Immunol 2004a, 22: 329–360.

    CAS  Google Scholar 

  • Dunn GP, Old LJ, Schreiber RD: The immunobiology of cancer immunosurveillance and immunoediting. Immunity 2004b, 21: 137–148.

    CAS  Google Scholar 

  • Ensoli B, Sirianni MC: Kaposi's sarcoma pathogenesis: alink between immunology and tumor biology. Crit Rev Oncog 1998, 9: 107–124.

    PubMed  CAS  Google Scholar 

  • Fuchs EJ, Matzinger P: Is cancer dangerous to the immune system? Semin Immunol 1996, 8: 271–280.

    PubMed  CAS  Google Scholar 

  • Galon J, Costes A, Sanchez-Cabo F, Kirilovsky A, Mlecnik B, Lagorce-Pages C et al.: Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. Science 2006, 313: 1960–1964.

    PubMed  CAS  Google Scholar 

  • Gottschalk S, Edwards OL, Sili U, Huls MH, Goltsova T, Davis AR et al.: Generating CTLs against the subdominant Epstein-Barr virus LMP1 antigen for the adoptive immunotherapy of EBV-associated malignancies. Blood 2003, 101: 1905–1912.

    PubMed  CAS  Google Scholar 

  • Gottschalk S, Heslop HE, Rooney CM: Treatment of Epstein-Barr virus-associated malignancies with specific T cells. Adv Cancer Res 2002, 84: 175–201.

    PubMed  CAS  Google Scholar 

  • Green M: Management of Epstein-Barr virus-induced post-tranplant lymphoproliferative disease in recipients of solid organ transplanation. Am J Transplant 2001, 1: 103–108.

    PubMed  CAS  Google Scholar 

  • Hamann D, Baars PA, Rep MHG, Hoolbrink B, Kerkhof-Garde SR, Klein MR et al.: Phenotype and functional separation of memory and effector human CD8+ T cells. J Exp Med 1997, 186: 1407–1418.

    PubMed  CAS  Google Scholar 

  • Haque T, Taylor C, Wilkie GM, Murad P, Amlot PL, Beath S et al.: Complete regression of posttransplant lymphoproliferative disease using partially HLA-matched Epstein Barr virus-specific cytotoxic T cells. Transplantation 2001, 72: 1399–1402.

    PubMed  CAS  Google Scholar 

  • He XS, Ji X, Hale MB, Cheung R, Ahmed A, Guo Y et al.: Global transcriptional response to interferon is a determinant of HCV treatment outcome and is modified by race. Hepatology 2006, 44: 352–359.

    PubMed  CAS  Google Scholar 

  • Heslop HE, Rooney CM: Adoptive cellular immunotherapy for EBV lymphoproliferative disease. Immunol Rev 1997, 157: 217–222.

    PubMed  CAS  Google Scholar 

  • Hildesheim A, Apple RJ, Chen C-J, Wang SS, Cheng Y-J, Klitz W et al.: Association of HLA class I and II alleles and extended haplotypes with nasopharyngeal carcinoma in Taiwan. J Natl Cancer Inst 2002, 94: 1780–1789.

    PubMed  CAS  Google Scholar 

  • Howell WM, Bateman AC, Turner SJ, Collins A, Theaker JM: Influence of vascular endothelial growth factor single nucleotide polymorphisms on tumour development in cutaneous malignant melanoma. Genes Immun 2002a, 3: 229–232.

    CAS  Google Scholar 

  • Howell WM, Calder PC, Grimble RF: Gene polymorphisms, inflammatory diseases and cancer. Proc Nutr Soc 2002b, 61: 447–456.

    CAS  Google Scholar 

  • Howell WM, Turner SJ, Bateman AC, Theaker JM: IL-10 promoter polymorphisms influence tumour development in cutaneous malignant melanoma. Genes Immun 2001, 2: 25–31.

    PubMed  CAS  Google Scholar 

  • Jin P, Panelli MC, Marincola FM, Wang E: Cytokine polymorphism and its possible impact on cancer. Immunol Res 2004, 30(2): 181–190.

    Google Scholar 

  • Jin P, Wang E: Polymorphism in clinical immunology. From HLA typing to immunogenetic profiling. J Transl Med 2003, 1: 8.

    PubMed  Google Scholar 

  • Jin P, Wang E, Provenzano M, Deola S, Selleri S, Jiaqiang R et al.: Molecular signatures induced by interleukin-2 on peripheral blood mononuclear cells and T cell subsets. J Transl Med 2006, 4: 26.

    PubMed  Google Scholar 

  • Kammula US, Lee K-H, Riker A, Wang E, Ohnmacht GA, Rosenberg SA et al.: Functional analysis of antigen-specific T lymphocytes by serial measurement of gene expression in peripheral blood mononuclear cells and tumor specimens. J Immunol 1999, 163: 6867–6879.

    PubMed  CAS  Google Scholar 

  • Khanna R, Bell S, Sherritt M, Galbraith A, Burrows SR, Rafter L et al.: Activation and adoptive transfer of Epsten-Barr virus-specific cytotoxic T cells in solid organ transplant patients with posttransplant lymphoproliferative disease. Proc Natl Acad Sci U S A 1999, 96: 10391–10396.

    Google Scholar 

  • Kim SH, Han SY, Azam T, Yoon DY, Dinarello CA: Interleukin-32: a cytokine and inducer of TNFalpha. Immunity 2005, 22: 131–142.

    PubMed  CAS  Google Scholar 

  • Lang KS, Recher M, Junt T, Navarini AA, Harris NL, Freigang S et al.: Toll-like receptor engagement converts T-cell autoreactivity into overt autoimmune disease. Nat Med 2005, 11: 138–145.

    PubMed  CAS  Google Scholar 

  • Lee JE, Reveille JD, Ross MI, Platsoucas CD: HLA-DQB1*0301 association with increased cutaneous melanoma risk. Int J Cancer1994, 59(4): 510–3.

    PubMed  CAS  Google Scholar 

  • Lee K-H, Wang E, Nielsen M-B, Wunderlich J, Migueles.S., Connors M et al.: Increased vaccine-specific T cell frequency after peptide-based vaccination correlates with increased susceptibility to in vitro stimulation but does not lead to tumor regression. J Immunol 1999, 163: 6292–6300.

    PubMed  CAS  Google Scholar 

  • Lee PP, Yee C, Savage PA, Fong L, Brockstedt D, Weber JS et al.: Characterization of circulating T cells specific for tumor-associated antigens in melanoma patients. Nat Med 1999, 5: 677–685.

    PubMed  CAS  Google Scholar 

  • Li X, Ghandri N, Piancatelli D, Adams S, Chen D, Robbins FM et al.: Associations between HLA class I alleles and the prevalence of nasopharyngeal carcinoma (NPC) among Tunisians. J Transl Med 2007, 5: 22.

    PubMed  Google Scholar 

  • Liu D, O'Day SJ, Yang D, Boasberg P, Milford R, Kristedja T et al.: Impact of gene polymorphisms on clinical outcome for stage IV melanoma patients treated with biochemotherapy: an exploratory study. Clin Cancer Res 2005, 11: 1237–1246.

    PubMed  CAS  Google Scholar 

  • Malyguine A, Strobl S, Shafer-Weaver K, Ulderich T, Troke A, Baseler M et al.: A modified human ELISPOT assay to detect specific responses to primary tumor cell targets. J Transl Med 2004, 2: 9.

    PubMed  Google Scholar 

  • Mandruzzato S, Callegaro A, Turcatel G, Francescato S, Montesco MC, Chiarion-Sileni V et al.: A gene expression signature associated with survival in metastatic melanoma. J Transl Med 2006, 4: 50.

    PubMed  Google Scholar 

  • Marincola FM: A balanced review of the status of T cell-based therapy against cancer. J Transl Med 2005, 3: 16.

    PubMed  Google Scholar 

  • Marincola FM, Ferrone S: Immunotherapy of melanoma: the good news, the bad news and what to do next. Sem Cancer Biol 2003, 13: 387–389.

    Google Scholar 

  • Marincola FM, Jaffe EM, Hicklin DJ, Ferrone S: Escape of human solid tumors from T cell recognition: molecular mechanisms and functional significance. Adv Immunol 2000, 74: 181–273.

    PubMed  CAS  Google Scholar 

  • Marincola FM: The multiple ways to tumor tolerance [comment]. J Immunother 1997, 20: 178–179.

    PubMed  CAS  Google Scholar 

  • Masramon L, Ribas M, Cifuentes P, Arribas R, Garcia F, Egozcue J et al.: Cytogenetic characterization of two colon cell lines by using conventional G-banding, comparative genomic hybridization, and whole chromosome painting. Cancer Genet Cytogenet 2000, 121: 17–21.

    PubMed  CAS  Google Scholar 

  • Marincola FM, Rivoltini L, Salgaller ML, Player M, Rosenberg SA: Differential anti-MART-1/MelanA CTL activity in peripheral blood of HLA-A2 melanoma patients in comparison to healthy donors: evidence for in vivo priming by tumor cells. J Immunother 1996, 19: 266–277.

    CAS  Google Scholar 

  • Marincola FM, Shamamian P, Rivoltini L, Salgaller ML, Reid J, Restifo NP et al.: HLA associations in the anti-tumor response against malignant melanoma. J Immunother 1996, 18: 242–252.

    Google Scholar 

  • Marincola FM, Wang E, Herlyn M, Seliger B, Ferrone S: Tumors as elusive targets of T cell-based active immunotherapy. Trends Immunol 2003, 24: 335–342.

    PubMed  CAS  Google Scholar 

  • Mantovani A, Romero P, Palucka AK, Marincola FM: Tumor immunity: effector response to tumor and role of the microenvironment. Lancet 2008, 371(9614):711–783.

    Google Scholar 

  • Matzinger P: An innate sense of danger. Semin Immunol 1998, 10: 399–415.

    PubMed  CAS  Google Scholar 

  • Matzinger P: Danger model of immunity. Scand J Immunol 2001, 54: 2–3.

    PubMed  CAS  Google Scholar 

  • Matzinger P: Friendly and dangerous signals: is the tissue in control? Nat Immunol 2007, 8: 11–13.

    PubMed  CAS  Google Scholar 

  • McKee MD, Roszkowski JJ, Nishimura MI: T cell avidity and tumor recognition: implications and therapeutic strategies. J Transl Med 2005, 3: 35.

    PubMed  Google Scholar 

  • Migueles SA, Laborico AC, Shupert WL, Sabbaghian MS, Rabin R, Hallahan CW et al.: HIV-specific CD8+ T cell proliferation is coupled to perforing expression and is maintained in nonprogressors. Nature Immunol 2002, 3: 1061–1068.

    CAS  Google Scholar 

  • Minev BR: Melanoma vaccines. Semin Oncol 2002, 29: 479–493.

    PubMed  CAS  Google Scholar 

  • Monsurro' V, Nagorsen D, Wang E, Provenzano M, Dudley ME, Rosenberg SA et al.: Functional heterogeneity of vaccine-induced CD8+ T cells. J Immunol 2002, 168: 5933–5942.

    Google Scholar 

  • Monsurro' V, Nielsen M-B, Perez-Diez A, Dudley ME, Wang E, Rosenberg SA et al.: Kinetics of TCR use in response to repeated epitope-specific immunization. J Immunol 2001, 166: 5817–5825.

    Google Scholar 

  • Monsurro' V, Wang E, Panelli MC, Nagorsen D, Jin P, Smith K et al.: Active-specific immunization against melanoma: is the problem at the receiving end? Sem Cancer Biol 2003, 13: 473–480.

    Google Scholar 

  • Monsurro' V, Wang E, Yamano Y, Migueles SA, Panelli MC, Smith K et al.: Quiescent phenotype of tumor-specific CD8+ T cells following immunization. Blood 2004, 104: 1970–1978.

    Google Scholar 

  • Moss P, Khan N: CD8(+) T-cell immunity to cytomegalovirus. Hum Immunol 2004, 65: 456–464.

    PubMed  CAS  Google Scholar 

  • Neidhardt-Berard EM, Berard F, Banchereau J, Palucka AK: Dendritic cells loaded with killed breast cancer cells induce differentiation of tumor-specific cytotoxic T lymphocytes. Breast Cancer Res 2004, 6: R322–R328.

    PubMed  CAS  Google Scholar 

  • Netea MG, Azam T, Ferwerda G, Girardin SE, Walsh M, Park JS et al.: IL-32 synergizes with nucleotide oligomerization domain (NOD) 1 and NOD2 ligands for IL-1beta and IL-6 production through a caspase 1-dependent mechanism. Proc Natl Acad Sci U S A 2005, 102: 16309–16314.

    Google Scholar 

  • Nielsen M-B, Monsurro' V, Miguelse S, Wang E, Perez-Diez A, Lee K-H et al.: Status of activation of circulating vaccine-elicited CD8+ T cells. J Immunol 2000, 165: 2287–2296.

    PubMed  CAS  Google Scholar 

  • Nicol AF, Fernandes AT, Bonecini-Almeida MG: Immune response in cervical dysplasia induced by human papillomavirus: the influence of human immunodeficiency virus-1 co-infection – review. Mem Inst Oswaldo Cruz 2005, 100: 1–12.

    PubMed  CAS  Google Scholar 

  • Ochsenbein AF, Klenerman P, Karrer U, Ludewig B, Pericin M, Hengartner H et al.: Immune suerveillance against a solid tumor fails because of immunological ignorance. Proc Natl Acad Sci U S A 1999, 96: 2233–2238.

    PubMed  CAS  Google Scholar 

  • Ohnmacht GA, Wang E, Mocellin S, Abati A, Filie A, Fetsch PA et al.: Short term kinetics of tumor antigen expression in response to vaccination. J Immunol 2001, 167: 1809–1820.

    PubMed  CAS  Google Scholar 

  • Old LJ, Chen YT: New Paths in Human Cancer Serology. J Exp Med 1998, 187: 1163–1167.

    PubMed  CAS  Google Scholar 

  • Ou B-X, Ruan H-Y, Fan Y: Study on association between HLA-A, B, C DR, and nasopharyngeal carcinoma in Guangzhou area. Ai Zheng 1985, 4: 5–8.

    Google Scholar 

  • Rooney CM, Roskrow MA, Smith CA, Brenner MK, Heslop HE: Immunotherapy of Epstein-Barr virus-associated cancer. J Natl Cancer Institute Monogr 1998, 23: 89–93.

    CAS  Google Scholar 

  • Paczesny S, Ueno H, Fay J, Banchereau J, Palucka AK: Dendritic cells as vectors for immunotherapy of cancer. Sem Cancer Biol 2003, 13: 439–447.

    CAS  Google Scholar 

  • Pages F, Berger A, Camus M, Sanchez-Cabo F, Costes A, Molidor R et al.: Effector memory T cells, early metastasis, and survival in colorectal cancer. N Engl J Med 2005, 353: 2654–2666.

    PubMed  CAS  Google Scholar 

  • Panelli MC, Martin B, Nagorsen D, Wang E, Smith K, Monsurro' V et al.: A genomic and proteomic-based hypothesis on the eclectic effects of systemic interleukin-2 administration in the context of melanoma-specific immunization. Cells Tissues Organs 2003, 177: 124–131.

    Google Scholar 

  • Panelli MC, Riker A, Kammula US, Lee K-H, Wang E, Rosenberg SA et al.: Expansion of Tumor-T cell pairs from Fine Needle Aspirates of Melanoma Metastases. J Immunol 2000, 164: 495–504.

    PubMed  CAS  Google Scholar 

  • Panelli MC, Stashower M, Slade HB, Smith K, Norwood C, Abati A et al.: Sequential gene profiling of basal cell carcinomas treated with Imiquimod in a placebo-controlled study defines the requirements for tissue rejection. Genome Biol 2006, 8: R8.

    Google Scholar 

  • Panelli MC, Wang E, Phan G, Puhlman M, Miller L, Ohnmacht GA et al.: Genetic profiling of peripheral mononuclear cells and melanoma metastases in response to systemic interleukin-2 administration. Genome Biol 2002, 3: RESEARCH0035.

    Google Scholar 

  • Panelli MC, White RLJr, Foster M, Martin B, Wang E, Smith K et al.: Forecasting the cytokine storm following systemic interleukin-2 administration. J Transl Med 2004, 2: 17.

    PubMed  Google Scholar 

  • Parmiani G, Castelli C, Dalerba P, Mortarini R, Rivoltini L, Marincola FM et al.: Cancer immunotherapy with peptide-based vaccines: what have we achieved? Where are we going? J Natl Cancer Inst 2002, 94: 805–818.

    PubMed  CAS  Google Scholar 

  • Parmiani G, Castelli C, Rivoltini L, Casati C, Tully GA, Novellino L et al.: Immunotherapy of melanoma. Sem Cancer Biol 2003, 13: 391–400.

    CAS  Google Scholar 

  • Perez-Diez A, Joncker NT, Choi K, Chan WF, Anderson CC, Lantz O et al.: CD4 cells can be more efficient at tumor rejection than CD8 cells. Blood 2007.

    Google Scholar 

  • Perez-Diez A, Spiess PJ, Restifo NP, Matzinger P, Marincola FM: Intensity of the vaccine-elicited immune response determines tumor clearence. J Immunol 2002, 168: 338–347.

    PubMed  CAS  Google Scholar 

  • Pittet MJ, Speiser DE, Valmori D, Rimoldi D, Lienard D, Lejeune F et al.: Ex vivo analysis of tumor antigen specific CD8+ T cell responses using MHC/peptide tetramers in cancer patients. Int Immunopharmacol 2001a, 1: 1235–1247.

    CAS  Google Scholar 

  • Pittet MJ, Zippelius A, Speiser DE, Assenmacher M, Guillaume P, Valmori D et al.: Ex vivo IFN-γ secretion by circulating CD8 T lymphocytes: implications of a novel approach for T cell monitoring in infectious and malignant diseases. J Immunol 2001b, 166: 7634–7640.

    CAS  Google Scholar 

  • Rehermann B, Nascimbeni M: Immunology of hepatitis B virus and hepatitis C virus infection. Nat Rev Immunol 2005, 5: 215–229.

    PubMed  CAS  Google Scholar 

  • Rinaldo CR, Jr., Torpey DJ, III: Cell-mediated immunity and immunosuppression in herpes simplex virus infection. Immunodeficiency 1993, 5: 33–90.

    PubMed  Google Scholar 

  • Rivoltini L, Kawakami Y, Sakaguchi K, Southwood S, Sette A, Robbins PF et al.: Induction of tumor reactive CTL from peripheral blood and tumor infiltrating lymphocytes of melanoma patients by in vitro stimulation with an immunodominant peptide of the human melanoma antigen MART-1. J Immunol 1995, 154: 2257–2265.

    PubMed  CAS  Google Scholar 

  • Rosenberg SA: Cancer vaccines based on the identification of genes encoding cancer regression antigens. Immunol Today 1997, 18: 175–182.

    PubMed  CAS  Google Scholar 

  • Rosenberg SA, Lotze MT, Yang JC, Aebersold PM, Linehan WM, Seipp CA et al.: Experience with the use of high-dose interleukin-2 in the treatment of 652 cancer patients. Ann Surg 1989, 210: 474–84; discus.

    PubMed  CAS  Google Scholar 

  • Rosenberg SA, Yang JC, Schwartzentruber D, Hwu P, Marincola FM, Topalian SL et al.: Immunologic and therapeutic evaluation of a synthetic tumor associated peptide vaccine for the treatment of patients with metastatic melanoma. Nat Med 1998, 4: 321–327.

    PubMed  CAS  Google Scholar 

  • Rubin JT, Adams SD, Simonis T, Lotze MT: HLA polymorphism and response to IL-2 bases therapy in patients with melanoma. Proc Soc Biol Ther Annu Meet 1991, 1: 18.

    Google Scholar 

  • Rubio V, Stuge TB, Singh N, Betts MR, Weber JS, Roederer M et al.: Ex vivo identification, isolation and analysis of tumor-cytolytic T cells. Nat Med 2003, 9: 1377–1382.

    PubMed  CAS  Google Scholar 

  • Salgaller ML, Afshar A, Marincola FM, Rivoltini L, Kawakami Y, Rosenberg SA: Recognition of multiple epitopes in the human melanoma antigen gp 100 by peripheral blood lymphocytes stimulated in vitro with synthetic peptides. Cancer Res 1995, 55: 4972–4979.

    PubMed  CAS  Google Scholar 

  • Sallusto F, Lenig D, Forster R, Lipp M, Lanzavecchia A: Two subsets of memory T lymphocytes with distinct homing potentials and effector functions. Nature 1999, 401: 659–660.

    Google Scholar 

  • Sarwal M, Chua MS, Kambham N, Hsieh SC, Satterwhite T, Masek M et al.: Molecular heterogeneity in acute renal allograft rejection identified by DNA microarray profiling. N Engl J Med 2003, 349: 125–138.

    PubMed  CAS  Google Scholar 

  • Shafer-Weaver K, Sayers T, Strobl S, Derby E, Ulderich T, Baseler M et al.: The Granzyme B ELISPOT assay: an alternative to the 51Cr-release assay for monitoring cell-mediated cytotoxicity. J Transl Med 2003, 1: 14.

    PubMed  Google Scholar 

  • Simons MJ, Day NE, Wee GB, Shanmugaratnam K, Ho HC, Wong SH et al.: Nasopharyngeal carcinoma V: immunogenetic studies of Southeast Asian ethnic groups with high and low risk for the tumor. Cancer Res 1974, 34: 1192–1195.

    PubMed  CAS  Google Scholar 

  • Simons MJ: HLA and nasopharyngeal carcinoma: 30 years on. ASHI Quarterly 2003, 27: 52–55.

    Google Scholar 

  • Slingluff CL, Jr., Speiser DE: Progress and controversies in developing cancer vaccines. J Transl Med 2005, 3: 18.

    PubMed  Google Scholar 

  • Slingluff CL, Jr., Petroni GR, Yamshchikov GV, Hibbitts S, Grosh WW, Chianese-Bullock KA et al.: Immunologic and clinical outcomes of vaccination with a multiepitope melanoma peptide vaccine plus low-dose interleukin-2 administered either concurrently or on a delayed schedule. J Clin Oncol 2004, 22: 4474–4485.

    PubMed  CAS  Google Scholar 

  • Smith MW, Yue ZN, Korth MJ, Do HA, Boix L, Fausto N et al.: Hepatitis C virus and liver disease: global transcriptional profiling and identification of potential markers. Hepatology 2003, 38: 1458–1467.

    PubMed  CAS  Google Scholar 

  • Speiser DE, Colonna M, Ayyoub M, Cella M, Pittet MJ, Batard P et al.: The activatory receptor 2B4 is expressed in vivo by human CD8+ effector alpha beta T cells. J Immunol 2001, 167: 6165–6170.

    PubMed  CAS  Google Scholar 

  • Speiser DE, Pittet MJ, Rimoldi D, Guillame P, Luescher IF, Lienard D et al.: Evaluation of melanoma vaccines with molecularly defined antigens by ex vivo monitoring of tumor specific T cells. Sem Cancer Biol 2003, 13: 461–472.

    CAS  Google Scholar 

  • Straathof KC, Bollard CM, Popat U, Huls MH, Lopez T, Morriss MC et al.: Treatment of nasopharyngeal carcinoma with Epstein-Barr virus – specific T lymphocytes. Blood 2005, 105: 1898–1904.

    PubMed  CAS  Google Scholar 

  • Stroncek DF, Basil C, Nagorsen D, Deola S, Arico E, Smith K et al.: Delayed Polarization of Mononuclear Phagocyte Transcriptional Program by Type I Interferon Isoforms. J Transl Med 2005, 3: 24.

    PubMed  Google Scholar 

  • Tomaru U, Yamano Y, Nagai M, Maric D, Kaumaya PT, Biddison W et al.: Detection of virus-specific T cells and CD8+ T-cell epitopes by acquisition of peptide-HLA-GFP complexes: analysis of T-cell phenotype and function in chronic viral infections. Nat Med 2003, 9: 469–476.

    PubMed  CAS  Google Scholar 

  • Trofe J, Beebe TM, Buell JF, Hanaway MJ, First MR, Alloway RR et al.: Posttransplant malignancy. Prog Transplant 2004, 14: 193–200.

    PubMed  Google Scholar 

  • Urosevic M, Maier T, Benninghoff B, Slade H, Burg G, Dummer R: Mechanisms unerlying imiquimod-induced regression of basal cell carcinoma in vivo. Arch Dermatol 2003, 139: 1325–1332.

    PubMed  CAS  Google Scholar 

  • van Baarle D, Kostense S, van Oers MHJ, Miedema F: Failing immune control as a result of impaired CD8+ T-cell maturation: CD27 might provide a clue. Trends Immunol 2002, 23: 586–591.

    PubMed  Google Scholar 

  • Viguier M, Lemaitre F, Verola O, Cho MS, Gorochov G, Dubertret L et al.: Foxp3 expressing CD4+CD25(high) regulatory T cells are overrepresented in human metastatic melanoma lymph nodes and inhibit the function of infiltrating T cells. J Immunol 2004, 173: 1444–1453.

    PubMed  CAS  Google Scholar 

  • Wang E, Miller LD, Ohnmacht GA, Mocellin S, Petersen D, Zhao Y et al.: Prospective molecular profiling of subcutaneous melanoma metastases suggests classifiers of immune responsiveness. Cancer Res 2002, 62: 3581–3586.

    PubMed  CAS  Google Scholar 

  • Wang E, Panelli MC, Zavaglia K, Mandruzzato S, Hu N, Taylor PR et al.: Melanoma-restricted genes. J Transl Med 2004, 2: 34.

    PubMed  Google Scholar 

  • Wolfel T, Schneider J, Meyer zum Buschenfelde KH, Rammensee HG, Rotzschke O, Falk K: Isolation of naturally processed peptides recognized by cytolytic T lymphocytes (CTL) on human melanoma cells in association with HLA-A2.1. Int J Cancer 1994, 57: 413–418.

    PubMed  CAS  Google Scholar 

  • Woo EY, Yeh H, Chu CS, Schlienger K, Carroll RG, Riley JL et al.: Cutting edge: Regulatory T cells from lung cancer patients directly inhibit autologous T cell proliferation. J Immunol 2002, 168: 4272–4276.

    PubMed  CAS  Google Scholar 

  • Yamaguchi T, Sakaguchi S: Regulatory T cells in immune surveillance and treatment of cancer. Semin Cancer Biol 2005, 2: 115–123.

    Google Scholar 

  • Yee C: Adoptive T cell therapy: addressing challanges in cancer immunotherapy. J Transl Med 2005, 3: 17.

    PubMed  Google Scholar 

  • Zea AH, Curti BD, Longo DL, Alvord WG, Strobl SL, Mizoguchi H et al.: Alterations in T cell receptor and signal transduction molecules in melanoma patients. Clin Cancer Res 1995, 1: 1327–1335.

    PubMed  CAS  Google Scholar 

  • Zhang L, Conejo-Garcia JR, Katsaros D, Gimotty PA, Massobrio M, Regnani G et al.: Intratumoral T cells, recurrence, and survival in epithelial ovarian cancer. N Engl J Med 2003, 348: 203–213.

    PubMed  CAS  Google Scholar 

  • Zhang JZ: Correlation between nasopharyngeal carcinoma (NPC) and HLA in Hunan Province. Zhong Hua Zhong Liu Zhi 1986, 8: 170–172.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco M Marincola .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Wang, E., Sabatino, M., Marincola, F.M. (2009). Immunomics of Immune Rejection. In: Falus, A. (eds) Clinical Applications of Immunomics. Immunomics Reviews, vol 2. Springer, New York, NY. https://doi.org/10.1007/978-0-387-79208-8_5

Download citation

Publish with us

Policies and ethics