Skip to main content

Seizure-Induced Neuronal Plasticity and Metabolic Effects

  • Chapter
  • First Online:
  • 995 Accesses

Abstract

Epilepsy, the most common acquired chronic neurological disease, occurs in 1% of the human population. Despite treatment with the newest antiepileptic medications, almost one-third of the individuals continue having seizures (Kwan and Brodie, 2000). Many of those with seizure persistence and even some with seizure ­remittance suffer often from under-appreciated co-morbidities including cognitive deficits and psychopathology such as anxiety, depression, and poor attention. Our understanding of epileptogenesis and its concurrent effects is based mainly on animal models. Using humans with epilepsy to study effects of human epilepsy is fraught with multiple problems including ethics, medication effects, and reproducibility. More recently, however, human brain tissue from surgical ­resections has been studied (this represents only a small subgroup of patients with epilepsy). Modern imaging techniques have also helped unveil widespread metabolic ­abnormalities associated with epilepsy.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Adams, B., Von Ling, E., Vaccarella, L., Ivy, G.O., Fahnestock, M., and Racine, R.J. 1998. Timecourse for kindling-induced changes in the hilar area of the dentate gyrus: reactive gliosis as apotential mechanism. Brain Res 804(2):331–336

    Article  PubMed  CAS  Google Scholar 

  • Andrew, R.D., Fagan, M., Ballyk, B.A., and Rosen, A.S. 1989. Seizure susceptibility and theosmotic state. Brain Res 498(1):175–180

    Article  PubMed  CAS  Google Scholar 

  • Babb, T.L., and Brown, W.J. 1986. Neuronal, dendritic, and vascular profiles of human temporallobe epilepsy correlated with cellular physiology in vivo. Adv Neurol 44:949–966

    PubMed  CAS  Google Scholar 

  • Bahar, S., Suh, M., Zhao, M., and Schwartz, T.H. 2006. Intrinsic optical signal imaging ofneocortical seizures: the ­ epileptic dip ’. Neuroreport 17(5):499–503

    Article  PubMed  Google Scholar 

  • Bailet, L.L., and Turk, W.R. 2000. The impact of childhood epilepsy on neurocognitive and behavioralperformance: a prospective longitudinal study. Epilepsia 41(4):426–431

    Article  PubMed  CAS  Google Scholar 

  • Barbarosie, M., and Avoli, M. 1997. CA3-driven hippocampal-entorhinal loop controls rather thansustains in vitro limbic seizures. J Neurosci 17(23):9308–9314

    PubMed  CAS  Google Scholar 

  • Beck, H., Steffens, R., Heinemann, U., and Elger, C.E. 1997. Properties of voltage-activated Ca2+currents in acutely isolated human hippocampal granule cells. J Neurophysiol 77(3):1526–1537

    PubMed  CAS  Google Scholar 

  • Benar, C.G., Gross, D.W., Wang, Y., Petre, V., Pike, B., Dubeau, F., and Gotman, J. 2002. TheBOLD response to interictal epileptiform discharges. Neuroimage 17(3):1182–1192

    Article  PubMed  Google Scholar 

  • Ben-Ari, Y. 2001. Cell death and synaptic reorganizations produced by seizures. Epilepsia 42(Suppl 3):5–7

    Article  PubMed  Google Scholar 

  • Benedek, K., Juhasz, C., Muzik, O., Chugani, D.C., and Chugani, H.T. 2004. Metabolic changesof subcortical structures in intractable focal epilepsy. Epilepsia 45(9):1100–1105

    Article  PubMed  Google Scholar 

  • Bernardi, P. 1999. Mitochondrial transport of cations: channels, exchangers, and permeabilitytransition. Physiol Rev 79(4):1127–1155

    PubMed  CAS  Google Scholar 

  • Bianchi, L., De Micheli, E., Bricolo, A., Ballini, C., Fattori, M., Venturi, C., Pedata, F., Tipton, K.F.,and Della Corte, L. 2004. Extracellular levels of amino acids and choline in human high gradegliomas: an intraoperative microdialysis study. Neurochem Res 29(1):325–334

    Article  PubMed  CAS  Google Scholar 

  • Binder, D.K., and Steinhauser, C. 2006. Functional changes in astroglial cells in epilepsy. Glia 54(5):358–368

    Article  PubMed  Google Scholar 

  • Binnie, C.D., and Marston, D. 1992. Cognitive correlates of interictal discharges. Epilepsia 33(Suppl 6):S11–S17

    PubMed  Google Scholar 

  • Bjornaes, H., Stabell, K., Henriksen, O., and Loyning, Y. 2001. The effects of refractory epilepsyon intellectual functioning in children and adults. A longitudinal study. Seizure 10(4):250–259

    Article  CAS  Google Scholar 

  • Bordey, A., and Sontheimer, H. 1998. Electrophysiological properties of human astrocytic tumorcells in situ: enigma of spiking glial cells. J Neurophysiol 79(5):2782–2793

    PubMed  CAS  Google Scholar 

  • Briellmann, R.S., Wellard, R.M., and Jackson, G.D. 2005. Seizure-associated abnormalities inepilepsy: evidence from MR imaging. Epilepsia 46(5):760–766

    Article  PubMed  Google Scholar 

  • Brooks-Kayal, A.R. 2005. Rearranging receptors. Epilepsia 46(Suppl 7):29–38

    Article  PubMed  CAS  Google Scholar 

  • Castillo, M., Smith, J.K., and Kwock, L. 2001. Proton MR spectroscopy in patients with acutetemporal lobe seizures. AJNR Am J Neuroradiol 22(1):152–157

    PubMed  CAS  Google Scholar 

  • Cavazos, J.E., and Sutula, T.P. 1990. Progressive neuronal loss induced by kindling: a possiblemechanism for mossy fiber synaptic reorganization and hippocampal sclerosis. Brain Res 527(1):1–6

    Article  PubMed  CAS  Google Scholar 

  • Cavazos, J.E., Golarai, G., and Sutula, T.P. 1991. Mossy fiber synaptic reorganization induced by kindling:time course of development, progression, and permanence. J Neurosci 11(9):2795–2803

    PubMed  CAS  Google Scholar 

  • Cavazos, J.E., Das, I., and Sutula, T.P. 1994. Neuronal loss induced in limbic pathways by kindling:evidence for induction of hippocampal sclerosis by repeated brief seizures. J Neurosci1 4(5 Pt 2):3106–3121

    Google Scholar 

  • Cendes, F., Andermann, F., Dubeau, F., Matthews, P.M., and Arnold, D.L. 1997. Normalization ofneuronal metabolic dysfunction after surgery for temporal lobe epilepsy. Evidence from protonMR spectroscopic imaging. Neurology 49(6):1525–1533

    Article  PubMed  CAS  Google Scholar 

  • Chuang, Y.C., Chang, A.Y., Lin, J.W., Hsu, S.P., and Chan, S.H. 2004. Mitochondrial dysfunctionand ultrastructural damage in the hippocampus during kainic acid-induced status epilepticus inthe rat. Epilepsia 45(10):1202–1209

    Article  PubMed  CAS  Google Scholar 

  • Cock, H.R., Tong, X., Hargreaves, I.P., Heales, S.J., Clark, J.B., Patsalos, P.N., Thom, M., Groves, M.,Schapira, A.H., Shorvon, S.D., and Walker, M.C. 2002. Mitochondrial dysfunction associatedwith neuronal death following status epilepticus in rat. Epilepsy Res 48(3):157–168

    Article  PubMed  CAS  Google Scholar 

  • Cortez, M.A., Perez Velazquez, J.L., and Snead, O.C., III 2006. Animal models of epilepsy andprogressive effects of seizures. Adv Neurol 97:293–304

    PubMed  Google Scholar 

  • Cossart, R., Bernard, C., and Ben-Ari, Y. 2005. Multiple facets of GABAergic neurons and synapses:multiple fates of GABA signalling in epilepsies. Trends Neurosci 28(2):108–115

    Article  PubMed  CAS  Google Scholar 

  • Coulter, D.A. 1999. Chronic epileptogenic cellular alterations in the limbic system after statusepilepticus. Epilepsia 40(Suppl 1):S23–S33; discussion S40-S21

    Article  PubMed  CAS  Google Scholar 

  • D’Ambrosio, R., Maris, D.O., Grady, M.S., Winn, H.R., and Janigro, D. 1999. Impaired K(+)homeostasis and altered electrophysiological properties of post-traumatic hippocampal glia. JNeurosci 19(18):8152–8162

    Google Scholar 

  • DeGiorgio, C.M., Correale, J.D., Gott, P.S., Ginsburg, D.L., Bracht, K.A., Smith, T., Boutros, R.,Loskota, W.J., and Rabinowicz, A.L. 1995. Serum neuron-specific enolase in human statusepilepticus. Neurology 45(6):1134–1137

    Article  PubMed  CAS  Google Scholar 

  • Dennis, E.A. 1994. Diversity of group types, regulation, and function of phospholipase A2. J BiolChem 269(18):13057–13060

    CAS  Google Scholar 

  • Diehl, B., Symms, M.R., Boulby, P.A., Salmenpera, T., Wheeler-Kingshott, C.A., Barker, G.J.,and Duncan, J.S. 2005. Postictal diffusion tensor imaging. Epilepsy Res 65(3):137–146

    Article  PubMed  Google Scholar 

  • Dreifuss, S., Vingerhoets, F.J., Lazeyras, F., Andino, S.G., Spinelli, L., Delavelle, J., and Seeck, M. 2001. Volumetric measurements of subcortical nuclei in patients with temporal lobe epilepsy. Neurology 57(9):1636–1641

    Article  PubMed  CAS  Google Scholar 

  • During, M.J., and Spencer, D.D. 1993. Extracellular hippocampal glutamate and spontaneous seizurein the conscious human brain. Lancet 341(8861):1607–1610

    Article  PubMed  CAS  Google Scholar 

  • During, M.J., Fried, I., Leone, P., Katz, A., and Spencer, D.D. 1994. Direct measurement of extracellularlactate in the human hippocampus during spontaneous seizures. J Neurochem 62(6):2356–2361

    Article  PubMed  CAS  Google Scholar 

  • Ebert, U., Brandt, C., and Loscher, W. 2002. Delayed sclerosis, neuroprotection, and limbic epileptogenesisafter status epilepticus in the rat. Epilepsia 43(Suppl 5):86–95

    Article  PubMed  Google Scholar 

  • Eid, T., Thomas, M.J., Spencer, D.D., Runden-Pran, E., Lai, J.C., Malthankar, G.V., Kim, J.H.,Danbolt, N.C., Ottersen, O.P., and de Lanerolle, N.C. 2004. Loss of glutamine synthetase inthe human epileptogenic hippocampus: possible mechanism for raised extracellular glutamatein mesial temporal lobe epilepsy. Lancet 363(9402):28–37

    Article  PubMed  CAS  Google Scholar 

  • Eid, T., Lee, T.S., Thomas, M.J., Amiry-Moghaddam, M., Bjornsen, L.P., Spencer, D.D., Agre, P.,Ottersen, O.P., and de Lanerolle, N.C. 2005. Loss of perivascular aquaporin 4 may underliedeficient water and K+ homeostasis in the human epileptogenic hippocampus. Proc Natl AcadSci USA 102(4):1193–1198

    Article  CAS  Google Scholar 

  • Emerich, D.F. 1999. Intracellular events associated with cerebral ischemia. In: L.P. Miller (Ed.),Stroke therapy: basic, preclinical, and clinical directions. Wiley-Liss, New York, pp.195–218

    Google Scholar 

  • Engel, J., Jr., Henry, T.R., and Swartz, B.E. 1995. Positron emission tomography in frontal lobeepilepsy. Adv Neurol 66:223–238; discussion 238–241

    PubMed  Google Scholar 

  • Esclapez, M., Hirsch, J.C., Ben-Ari, Y., and Bernard, C. 1999. Newly formed excitatory pathwaysprovide a substrate for hyperexcitability in experimental temporal lobe epilepsy. J CompNeurol 408(4):449–460

    CAS  Google Scholar 

  • Feng, Z., and Durand, D.M. 2006. Effects of potassium concentration on firing patterns of lowcalciumepileptiform activity in anesthetized rat hippocampus: inducing of persistent spikeactivity. Epilepsia 47(4):727–736

    Article  PubMed  CAS  Google Scholar 

  • Fojtikova, D., Brazdil, M., Horky, J., Mikl, M., Kuba, R., Krupa, P., and Rektor, I. 2006. Magneticresonance spectroscopy of the thalamus in patients with typical absence epilepsy. Seizure 15(7):533–540

    Article  PubMed  Google Scholar 

  • Frantseva, M.V., Perez Velazquez, J.L., and Carlen, P.L. 1998. Changes in membrane and synapticproperties of thalamocortical circuitry caused by hydrogen peroxide. J Neurophysio l80(3):1317–1326

    Google Scholar 

  • Frantseva, M.V., Perez Velazquez, J.L., Tsoraklidis, G., Mendonca, A.J., Adamchik, Y., Mills, L.R.,Carlen, P.L., and Burnham, M.W. 2000a. Oxidative stress is involved in seizure-inducedneurodegeneration in the kindling model of epilepsy. Neuroscience 97(3):431–435

    Article  CAS  Google Scholar 

  • Frantseva, M.V., Velazquez, J.L., Hwang, P.A., and Carlen, P.L. 2000b. Free radical productioncorrelates with cell death in an in vitro model of epilepsy. Eur J Neurosci 12(4):1431–1439

    Article  CAS  Google Scholar 

  • Gabriel, S., Njunting, M., Pomper, J.K., Merschhemke, M., Sanabria, E.R., Eilers, A., Kivi, A.,Zeller, M., Meencke, H.J., Cavalheiro, E.A., Heinemann, U., and Lehmann, T.N. 2004. Stimulus and potassium-induced epileptiform activity in the human dentate gyrus frompatients with and without hippocampal sclerosis. J Neurosci 24(46):10416–10430

    Article  PubMed  CAS  Google Scholar 

  • Gaillard, W.D., Bhatia, S., Bookheimer, S.Y., Fazilat, S., Sato, S., and Theodore, W.H. 1995. FDG-PET and volumetric MRI in the evaluation of patients with partial epilepsy. Neurology 45(1):123–126

    Article  PubMed  CAS  Google Scholar 

  • Gibbs, J.W., III, Shumate, M.D., and Coulter, D.A. 1997. Differential epilepsy-associated alterationsin postsynaptic GABA(A) receptor function in dentate granule and CA1 neurons. J Neurophysiol 77(4):1924–1938

    PubMed  CAS  Google Scholar 

  • Glass, M., and Dragunow, M. 1995. Neurochemical and morphological changes associated withhuman epilepsy. Brain Res Brain Res Rev 21(1):29–41

    Article  PubMed  CAS  Google Scholar 

  • Gorter, J.A., van Vliet, E.A., Aronica, E., and Lopes da Silva, F.H. 2001. Progression of spontaneousseizures after status epilepticus is associated with mossy fibre sprouting and extensive bilateral lossof hilar parvalbumin and somatostatin-immunoreactive neurons. Eur J Neurosci 13(4):657–669

    Article  PubMed  CAS  Google Scholar 

  • Gorter, J.A., Goncalves Pereira, P.M., van Vliet, E.A., Aronica, E., Lopes da Silva, F.H., and Lucassen, P.J. 2003. Neuronal cell death in a rat model for mesial temporal lobe epilepsy isinduced by the initial status epilepticus and not by later repeated spontaneous seizures. Epilepsia 44(5):647–658

    Article  PubMed  Google Scholar 

  • Grisar, T.M. 1986. Neuron-glia relationships in human and experimental epilepsy: a biochemicalpoint of view. Adv Neurol 44:1045–1073

    PubMed  CAS  Google Scholar 

  • Hall, E.D., Kupina, N.C., and Althaus, J.S. 1999. Peroxynitrite scavengers for the acute treatmentof traumatic brain injury. Ann N Y Acad Sci 890:462–468

    Article  PubMed  CAS  Google Scholar 

  • Handforth, A., and Ackermann, R.F. 1995. Mapping of limbic seizure progressions utilizing theelectrogenic status epilepticus model and the 14 C-2-deoxyglucose method. Brain Res BrainRes Rev 20(1):1–23

    Article  CAS  Google Scholar 

  • Hansen, A., Jorgensen, O.S., Bolwig, T.G., and Barry, D.I. 1990. Hippocampal kindling alters theconcentration of glial fibrillary acidic protein and other marker proteins in rat brain. Brain Res 531(1–2):307–311

    Article  PubMed  CAS  Google Scholar 

  • Hinterkeuser, S., Schroder, W., Hager, G., Seifert, G., Blumcke, I., Elger, C.E., Schramm, J., andSteinhauser, C. 2000. Astrocytes in the hippocampus of patients with temporal lobe epilepsydisplay changes in potassium conductances. Eur J Neurosci 12(6):2087–2096

    Article  PubMed  CAS  Google Scholar 

  • Holmes, G.L. 2004. Effects of early seizures on later behavior and epileptogenicity. Ment RetardDev Disabil Res Rev 10(2):101–105

    Article  Google Scholar 

  • Huang, L., Cilio, M.R., Silveira, D.C., McCabe, B.K., Sogawa, Y., Stafstrom, C.E., and Holmes, G.L. 1999. Long-term effects of neonatal seizures: a behavioral, electrophysiological, and histologicalstudy. Brain Res Dev Brain Res 118(1–2):99–107

    Article  PubMed  CAS  Google Scholar 

  • Hughes, P.E., Alexi, T., Walton, M., Williams, C.E., Dragunow, M., Clark, R.G., and Gluckman, P.D. 1999. Activity and injury-dependent expression of inducible transcription factors, growthfactors and apoptosis-related genes within the central nervous system. Prog Neurobio l57(4):421–450

    Article  Google Scholar 

  • Isokawa, M. 1998. Remodeling dendritic spines in the rat pilocarpine model of temporal lobeepilepsy. Neurosci Lett 258(2):73–76

    Article  PubMed  CAS  Google Scholar 

  • Jiang, M., Lee, C.L., Smith, K.L., and Swann, J.W. 1998. Spine loss and other persistent alterationsof hippocampal pyramidal cell dendrites in a model of early-onset epilepsy. J Neurosci 18(20):8356–8368

    PubMed  CAS  Google Scholar 

  • Jiang, W., Duong, T.M., and de Lanerolle, N.C. 1999. The neuropathology of hyperthermic seizuresin the rat. Epilepsia 40(1):5–19

    Article  PubMed  CAS  Google Scholar 

  • Khalilov, I., Dzhala, V., Medina, I., Leinekugel, X., Melyan, Z., Lamsa, K., Khazipov, R., andBen-Ari, Y. 1999. Maturation of kainate-induced epileptiform activities in interconnectedintact neonatal limbic structures in vitro. Eur J Neurosci 11(10):3468–3480

    Article  PubMed  CAS  Google Scholar 

  • Khalilov, I., Holmes, G.L., and Ben-Ari, Y. 2003. In vitro formation of a secondary epileptogenicmirror focus by interhippocampal propagation of seizures. Nat Neurosci 6(10):1079–1085

    Article  PubMed  CAS  Google Scholar 

  • Kimiwada, T., Juhasz, C., Makki, M., Muzik, O., Chugani, D.C., Asano, E., and Chugani, H.T. 2006. Hippocampal and thalamic diffusion abnormalities in children with temporal lobeepilepsy. Epilepsia 47(1):167–175

    Article  PubMed  Google Scholar 

  • Kluck, R.M., Bossy-Wetzel, E., Green, D.R., and Newmeyer, D.D. 1997. The release of cytochromec from mitochondria: a primary site for Bcl-2 regulation of apoptosis. Science 275(5303):1132–1136

    Article  PubMed  CAS  Google Scholar 

  • Kohr, G., and Mody, I. 1994. Kindling increases N-methyl-D-aspartate potency at singleN-methyl-D-aspartate channels in dentate gyrus granule cells. Neuroscience 62(4):975–981

    Article  PubMed  CAS  Google Scholar 

  • Kotloski, R., Lynch, M., Lauersdorf, S., and Sutula, T. 2002. Repeated brief seizures induce progressivehippocampal neuron loss and memory deficits. Prog Brain Res 135:95–110

    Article  PubMed  Google Scholar 

  • Kraus, J.E., Yeh, G.C., Bonhaus, D.W., Nadler, J.V., and McNamara, J.O. 1994. Kindling inducesthe long-lasting expression of a novel population of NMDA receptors in hippocampal regionCA3. J Neurosci 14(7):4196–4205

    PubMed  CAS  Google Scholar 

  • Kudin, A.P., Kudina, T.A., Seyfried, J., Vielhaber, S., Beck, H., Elger, C.E., and Kunz, W.S. 2002. Seizure-dependent modulation of mitochondrial oxidative phosphorylation in rat hippocampus. Eur J Neurosci 15(7):1105–1114

    Article  PubMed  Google Scholar 

  • Kunz, W.S., Kudin, A.P., Vielhaber, S., Blumcke, I., Zuschratter, W., Schramm, J., Beck, H., andElger, C.E. 2000. Mitochondrial complex I deficiency in the epileptic focus of patients withtemporal lobe epilepsy. Ann Neurol 48(5):766–773

    Article  PubMed  CAS  Google Scholar 

  • Kwan, P., and Brodie, M.J. 2000. Early identification of refractory epilepsy. N Engl J Med 342(5):314–319

    Article  PubMed  CAS  Google Scholar 

  • Lee, T.S., Eid, T., Mane, S., Kim, J.H., Spencer, D.D., Ottersen, O.P., and de Lanerolle, N.C. 2004. Aquaporin-4 is increased in the sclerotic hippocampus in human temporal lobeepilepsy. ActaNeuropathol (Berl) 108(6):493–502

    Article  CAS  Google Scholar 

  • Lemieux, L., Liu, R.S., and Duncan, J.S. 2000. Hippocampal and cerebellar volumetry in seriallyacquired MRI volume scans. Magn Reson Imaging 18(8):1027–1033

    Article  PubMed  CAS  Google Scholar 

  • Lipton, S.A., Choi, Y.B., Sucher, N.J., Pan, Z.H., and Stamler, J.S. 1996. Redox state, NMDAreceptors and NO-related species. Trends Pharmacol Sci 17(5):186–187; discussion 187–189

    Article  PubMed  CAS  Google Scholar 

  • Liu, R.S., Lemieux, L., Bell, G.S., Bartlett, P.A., Sander, J.W., Sisodiya, S.M., Shorvon, S.D., andDuncan, J.S. 2001. A longitudinal quantitative MRI study of community-based patients withchronic epilepsy and newly diagnosed seizures: methodology and preliminary findings. Neuroimage 14(1 Pt 1):231–243

    Article  PubMed  CAS  Google Scholar 

  • Lombardo, A.J., Kuzniecky, R., Powers, R.E., and Brown, G.B. 1996. Altered brain sodium channeltranscript levels in human epilepsy. Brain Res Mol Brain Res 35(1–2):84–90

    Article  PubMed  CAS  Google Scholar 

  • Lopes da Silva, F.H., Pijn, J.P., and Wadman, W.J. 1994. Dynamics of local neuronal networks:control parameters and state bifurcations in epileptogenesis. Prog Brain Res 102:359–370

    Article  PubMed  CAS  Google Scholar 

  • Loup, F., Wieser, H.G., Yonekawa, Y., Aguzzi, A., and Fritschy, J.M. 2000. Selective alterationsin GABAA receptor subtypes in human temporal lobe epilepsy. J Neurosci 20(14):5401–5419

    PubMed  CAS  Google Scholar 

  • Lukasiuk, K., and Pitkanen, A. 2004. Large-scale analysis of gene expression in epilepsy research:is synthesis already possible. Neurochem Res 29(6):1169–1178

    Article  PubMed  CAS  Google Scholar 

  • Lynch, M., Sayin, U., Bownds, J., Janumpalli, S., and Sutula, T. 2000. Long-term consequencesof early postnatal seizures on hippocampal learning and plasticity. Eur J Neurosci 12(7):2252–2264

    Article  PubMed  CAS  Google Scholar 

  • Mackenzie, L., Medvedev, A., Hiscock, J.J., Pope, K.J., and Willoughby, J.O. 2002. Picrotoxininducedgeneralised convulsive seizure in rat: changes in regional distribution and frequencyof the power of electroencephalogram rhythms. Clin Neurophysiol 113(4):586–596

    Article  PubMed  CAS  Google Scholar 

  • Madsen, T.M., Treschow, A., Bengzon, J., Bolwig, T.G., Lindvall, O., and Tingstrom, A. 2000. Increased neurogenesis in a model of electroconvulsive therapy. Biol Psychiatry 47(12):1043–1049

    Article  PubMed  CAS  Google Scholar 

  • Mathern, G.W., Pretorius, J.K., Mendoza, D., Leite, J.P., Chimelli, L., Born, D.E., Fried, I.,Assirati, J.A., Ojemann, G.A., Adelson, P.D., Cahan, L.D., and Kornblum, H.I. 1999. Hippocampal N-methyl-D-aspartate receptor subunit mRNA levels in temporal lobe epilepsypatients. Ann Neurol 46(3):343–358

    Article  PubMed  CAS  Google Scholar 

  • Matthews, P.M., Andermann, F., and Arnold, D.L. 1990. A proton magnetic resonance spectroscopystudy of focal epilepsy in humans. Neurology 40(6):985–989

    Article  PubMed  CAS  Google Scholar 

  • McCabe, B.K., Silveira, D.C., Cilio, M.R., Cha, B.H., Liu, X., Sogawa, Y., and Holmes, G.L. 2001. Reduced neurogenesis after neonatal seizures. J Neurosci 21(6):2094–2103

    PubMed  CAS  Google Scholar 

  • McIntyre, D.C., Hutcheon, B., Schwabe, K., and Poulter, M.O. 2002. Divergent GABA(A) receptormediatedsynaptic transmission in genetically seizure-prone and seizure-resistant rats. J Neurosci 22(22):9922–9931

    PubMed  CAS  Google Scholar 

  • Meierkord, H., Wieshmann, U., Niehaus, L., and Lehmann, R. 1997. Structural consequences ofstatus epilepticus demonstrated with serial magnetic resonance imaging. Acta Neurol Scand 96(3):127–132

    Article  PubMed  CAS  Google Scholar 

  • Meldrum, B.S. 1983. Metabolic factors during prolonged seizures and their relation to nerve celldeath. Adv Neurol 34:261–275

    PubMed  CAS  Google Scholar 

  • Meldrum, B.S. 2002. Implications for neuroprotective treatments. Prog Brain Res 135:487–495

    Article  PubMed  CAS  Google Scholar 

  • Mellstrom, B., and Naranjo, J.R. 2001. Mechanisms of Ca(2+)-dependent transcription. Curr OpinNeurobiol 11(3):312–319

    Article  CAS  Google Scholar 

  • Meldrum, B.S., Vigouroux, R.A., and Brierley, J.B. 1973. Systemic factors and epileptic braindamage. Prolonged seizures in paralyzed, artificially ventilated baboons. Arch Neurol 29(2):82–87

    Article  CAS  Google Scholar 

  • Mody, I., and Heinemann, U. 1987. NMDA receptors of dentate gyrus granule cells participate insynaptic transmission following kindling. Nature 326(6114):701–704

    Article  PubMed  CAS  Google Scholar 

  • Monyer, H., Burnashev, N., Laurie, D.J., Sakmann, B., and Seeburg, P.H. 1994. Developmentaland regional expression in the rat brain and functional properties of four NMDA receptors. Neuron 12(3):529–540

    Article  PubMed  CAS  Google Scholar 

  • Morimoto, K., Fahnestock, M., and Racine, R.J. 2004. Kindling and status epilepticus models ofepilepsy: rewiring the brain. Prog Neurobiol 73(1):1–60

    Article  PubMed  CAS  Google Scholar 

  • Moser, M.B., Trommald, M., andAndersen,P. 1994. An increase in dendritic spine density onhippocampal CA1 pyramidal cells following spatial learning in adult rats suggests the formationof new synapses. Proc Natl Acad Sci USA 91(26):12673–12675

    Article  Google Scholar 

  • Mueller, S.G., Kollias, S.S., Trabesinger, A.H., Buck, A., Boesiger, P., and Wieser, H.G. 2001. Proton magnetic resonance spectroscopy characteristics of a focal cortical dysgenesis duringstatus epilepticus and in the interictal state. Seizure 10(7):518–524

    Article  PubMed  CAS  Google Scholar 

  • Nagelhus, E.A., Mathiisen, T.M., and Ottersen, O.P. 2004. Aquaporin-4 in the central nervoussystem: cellular and subcellular distribution and coexpression with KIR 4.1. Neuroscience 129(4):905–913

    Article  PubMed  CAS  Google Scholar 

  • Nakagawa, E., Aimi, Y., Yasuhara, O., Tooyama, I., Shimada, M., McGeer, P.L., and Kimura, H. 2000. Enhancement of progenitor cell division in the dentate gyrus triggered by initial limbicseizures in rat models of epilepsy. Epilepsia 41(1):10–18

    Article  PubMed  CAS  Google Scholar 

  • Natsume, J., Bernasconi, N., Andermann, F., and Bernasconi, A. 2003. MRI volumetry of thethalamus in temporal, extratemporal, and idiopathic generalized epilepsy. Neurology 60(8):1296–1300

    Article  PubMed  Google Scholar 

  • Nissinen, J., Halonen, T., Koivisto, E., and Pitkanen, A. 2000. A new model of chronic temporallobe epilepsy induced by electrical stimulation of the amygdala in rat. Epilepsy Res 38(2–3):177–205

    Article  PubMed  CAS  Google Scholar 

  • Nusser, Z., Hajos, N., Somogyi, P., and Mody, I. 1998. Increased number of synaptic GABA(A)receptors underlies potentiation at hippocampal inhibitory synapses. Nature 395(6698):172–177

    Article  PubMed  CAS  Google Scholar 

  • Olney, J.W., and de Gubareff, T. 1978. Glutamate neurotoxicity and Huntington’s chorea. Nature 271(5645):557–559

    Article  PubMed  CAS  Google Scholar 

  • Olney, J.W., and Sharpe, L.G. 1969. Brain lesions in an infant rhesus monkey treated with monsodiumglutamate. Science 166(903):386–388

    Article  PubMed  CAS  Google Scholar 

  • Olsen, M.L., and Sontheimer, H. 2004. Mislocalization of Kir channels in malignant glia. Glia 46(1):63–73

    Article  PubMed  CAS  Google Scholar 

  • Pal, S., Limbrick, D.D., Jr., Rafiq, A., and DeLorenzo, R.J. 2000. Induction of spontaneous recurrentepileptiform discharges causes long-term changes in intracellular calcium homeostaticmechanisms. Cell Calcium 28(3):181–193

    Article  PubMed  CAS  Google Scholar 

  • Pal, S., Sun, D., Limbrick, D., Rafiq, A., and DeLorenzo, R.J. 2001. Epileptogenesis induces longtermalterations in intracellular calcium release and sequestration mechanisms in the hippocampalneuronal culture model of epilepsy. Cell Calcium 30(4):285–296

    Article  PubMed  CAS  Google Scholar 

  • Parent, J.M., Janumpalli, S., McNamara, J.O., and Lowenstein, D.H. 1998. Increased dentategranule cell neurogenesis following amygdala kindling in the adult rat. Neurosci Lett 247(1):9–12

    Article  PubMed  CAS  Google Scholar 

  • Perez, E.R., Maeder, P., Villemure, K.M., Vischer, V.C., Villemure, J.G., and Deonna, T. 2000. Acquired hippocampal damage after temporal lobe seizures in 2 infants. Ann Neurol 48(3):384–387

    Article  PubMed  CAS  Google Scholar 

  • Petroff, O.A., Errante, L.D., Rothman, D.L., Kim, J.H., and Spencer, D.D. 2002. Glutamateglutaminecycling in the epileptic human hippocampus. Epilepsia 43(7):703–710

    Article  PubMed  CAS  Google Scholar 

  • Pickard, L., Noel, J., Henley, J.M., Collingridge, G.L., and Molnar, E. 2000. Developmentalchanges in synaptic AMPA and NMDA receptor distribution and AMPA receptor subunitcomposition in living hippocampal neurons. J Neurosci 20(21):7922–7931

    PubMed  CAS  Google Scholar 

  • Qiao, X., and Noebels, J.L. 1993. Developmental analysis of hippocampal mossy fiber outgrowthin a mutant mouse with inherited spike-wave seizures. J Neurosci 13(11):4622–4635

    PubMed  CAS  Google Scholar 

  • Ratzliff, A.H., Santhakumar, V., Howard, A., and Soltesz, I. 2002. Mossy cells in epilepsy: rigormortis or vigor mortis. Trends Neurosci 25(3):140–144

    Article  PubMed  CAS  Google Scholar 

  • Raza, M., Blair, R.E., Sombati, S., Carter, D.S., Deshpande, L.S., and DeLorenzo, R.J. 2004. Evidence that injury-induced changes in hippocampal neuronal calcium dynamicsduring epileptogenesis cause acquired epilepsy. Proc Natl Acad Sci USA 101(50):17522–17527

    Article  PubMed  CAS  Google Scholar 

  • Rugg-Gunn, F.J., Eriksson, S.H., Symms, M.R., Barker, G.J., Thom, M., Harkness, W., andDuncan, J.S. 2002. Diffusion tensor imaging in refractory epilepsy. Lancet 359(9319):1748–1751

    Article  PubMed  Google Scholar 

  • Salmenpera, T., Kalviainen, R., Partanen, K., Mervaala, E., and Pitkanen, A. 2000. MRI volumetryof the hippocampus, amygdala, entorhinal cortex, and perirhinal cortex after status epilepticus. Epilepsy Res 40(2–3):155–170

    Article  PubMed  CAS  Google Scholar 

  • Samuelsson, C., Kumlien, E., Flink, R., Lindholm, D., and Ronne-Engstrom, E. 2000. Decreasedcortical levels of astrocytic glutamate transport protein GLT-1 in a rat model of posttraumaticepilepsy. Neurosci Lett 289(3):185–188

    Article  PubMed  CAS  Google Scholar 

  • Sanchez-Carpintero, R., and Neville, B.G. 2003. Attentional ability in children with epilepsy. Epilepsia 44(10):1340–1349

    Article  PubMed  Google Scholar 

  • Sankar, R., Shin, D.H., Liu, H., Mazarati, A., Pereira de Vasconcelos, A., and Wasterlain, C.G. 1998. Patterns of status epilepticus-induced neuronal injury during development and long-termconsequences. J Neurosci 18(20):8382–8393

    PubMed  CAS  Google Scholar 

  • Sankar, R., Shin, D., Liu, H., Wasterlain, C., and Mazarati, A. 2002. Epileptogenesis during development:injury, circuit recruitment, and plasticity. Epilepsia 43(Suppl 5):47–53

    Article  PubMed  Google Scholar 

  • Sarkisian, M.R. 2001. Overview of the current animal models for human seizure and epilepticdisorders. Epilepsy Behav 2(3):201–216

    Article  PubMed  Google Scholar 

  • Schauwecker, P.E. 2002. Complications associated with genetic background effects in models ofexperimental epilepsy. Prog Brain Res 135:139–148

    Article  PubMed  CAS  Google Scholar 

  • Schwartzkroin, P.A., Baraban, S.C., and Hochman, D.W. 1998. Osmolarity, ionic flux, andchanges in brain excitability. Epilepsy Res 32(1–2):275–285

    Article  PubMed  CAS  Google Scholar 

  • Shewmon, D.A., and Erwin, R.J. 1988. The effect of focal interictal spikes on perceptionand reaction time. I. General considerations. Electroencephalogr Clin Neurophysiol 69(4):319–337

    Article  CAS  Google Scholar 

  • Sloviter, R.S. 1983. “Epileptic ” brain damage in rats induced by sustained electrical stimulationof the perforant path. I. Acute electrophysiological and light microscopic studies. Brain ResBull 10(5):675–697

    CAS  Google Scholar 

  • Sloviter, R.S., Dean, E., Sollas, A.L., and Goodman, J.H. 1996. Apoptosis and necrosis inducedin different hippocampal neuron populations by repetitive perforant path stimulation in the rat. J Comp Neurol 366(3):516–533

    Article  PubMed  CAS  Google Scholar 

  • Stanfield, B.B. 1989. Excessive intra- and supragranular mossy fibers in the dentate gyrus of tottering(tg/tg) mice. Brain Res 480(1–2):294–299

    Article  PubMed  CAS  Google Scholar 

  • Stanley, J.A., Cendes, F., Dubeau, F., Andermann, F., and Arnold, D.L. 1998. Proton magneticresonance spectroscopic imaging in patients with extratemporal epilepsy. Epilepsia 39(3):267–273

    Article  PubMed  CAS  Google Scholar 

  • Steinhauser, C., and Seifert, G. 2002. Glial membrane channels and receptors in epilepsy: impactfor generation and spread of seizure activity. Eur J Pharmacol 447(2–3):227–237

    Article  PubMed  CAS  Google Scholar 

  • Straub, H., Kohling, R., Frieler, A., Grigat, M., and Speckmann, E.J. 2000. Contribution of L-typecalcium channels to epileptiform activity in hippocampal and neocortical slices of guinea-pigs. Neuroscience 95(1):63–72

    Article  PubMed  CAS  Google Scholar 

  • Suh, M., Bahar, S., Mehta, A.D., and Schwartz, T.H. 2005. Temporal dependence in uncouplingof blood volume and oxygenation during interictal epileptiform events in rat neocortex. J Neurosci 25(1):68–77

    Article  PubMed  CAS  Google Scholar 

  • Suh, M., Bahar, S., Mehta, A.D., and Schwartz, T.H. 2006a. Blood volume and hemoglobin oxygenationresponse following electrical stimulation of human cortex. Neuroimage 31(1):66–75

    Article  Google Scholar 

  • Suh, M., Ma, H., Zhao, M., Sharif, S., and Schwartz, T.H. 2006b. Neurovascular coupling andoximetry during epileptic events. Mol Neurobiol 33(3):181–197

    Article  CAS  Google Scholar 

  • Sutula, T., Lauersdorf, S., Lynch, M., Jurgella, C., and Woodard, A. 1995. Deficits in radial armmaze performance in kindled rats: evidence for long-lasting memory dysfunction induced byrepeated brief seizures. J Neurosci 15(12):8295–8301

    PubMed  CAS  Google Scholar 

  • Swann, J.W., Al-Noori, S., Jiang, M., and Lee, C.L. 2000. Spine loss and other dendritic abnormalitiesin epilepsy. Hippocampus 10(5):617–625

    Article  PubMed  CAS  Google Scholar 

  • Taylor, E.R., Hurrell, F., Shannon, R.J., Lin, T.K., Hirst, J., and Murphy, M.P. 2003. Reversibleglutathionylation of complex I increases mitochondrial superoxide formation. J Biol Chem 278(22):19603–19610

    Article  PubMed  CAS  Google Scholar 

  • Tian, G.F., Azmi, H., Takano, T., Xu, Q., Peng, W., Lin, J., Oberheim, N., Lou, N., Wang, X.,Zielke, H.R., Kang, J., and Nedergaard, M. 2005. An astrocytic basis of epilepsy. Nat Med 11(9):973–981

    PubMed  CAS  Google Scholar 

  • Tien, R.D., and Felsberg, G.J. 1995. The hippocampus in status epilepticus: demonstration of signalintensity and morphologic changes with sequential fast spin-echo MR imaging. Radiology 194(1):249–256

    PubMed  CAS  Google Scholar 

  • Torre, E.R., Lothman, E., and Steward, O. 1993. Glial response to neuronal activity: GFAP-mRNAand protein levels are transiently increased in the hippocampus after seizures. Brain Res 631(2):256–264

    Article  PubMed  CAS  Google Scholar 

  • Ueda, Y., Yokoyama, H., Nakajima, A., Tokumaru, J., Doi, T., and Mitsuyama, Y. 2002. Glutamateexcess and free radical formation during and following kainic acid-induced status epilepticus. Exp Brain Res 147(2):219–226

    Article  PubMed  CAS  Google Scholar 

  • Volterra, A., and Meldolesi, J. 2005. Astrocytes, from brain glue to communication elements: therevolution continues. Nat Rev Neurosci 6(8):626–640

    Article  PubMed  CAS  Google Scholar 

  • Vreugdenhil, M., Faas, G.C., and Wadman, W.J. 1998. Sodium currents in isolated rat CA1 neuronsafter kindling epileptogenesis. Neuroscience 86(1):99–107

    Article  PubMed  CAS  Google Scholar 

  • Wang, Y., Majors, A., Najm, I., Xue, M., Comair, Y., Modic, M., and Ng, T.C. 1996. Postictalalteration of sodium content and apparent diffusion coefficient in epileptic rat brain inducedby kainic acid. Epilepsia 37(10):1000–1006

    Article  PubMed  CAS  Google Scholar 

  • Wilson, C.L., Maidment, N.T., Shomer, M.H., Behnke, E.J., Ackerson, L., Fried, I., and Engel, J., Jr. 1996. Comparison of seizure related amino acid release in human epileptic hippocampus versusa chronic, kainate rat model of hippocampal epilepsy. Epilepsy Res 26(1):245–254

    Article  PubMed  Google Scholar 

  • Wong, M. 2005. Modulation of dendritic spines in epilepsy: cellular mechanisms and functionalimplications. Epilepsy Behav 7(4):569–577

    Article  PubMed  Google Scholar 

  • Ye, Z.C., Rothstein, J.D., and Sontheimer, H. 1999. Compromised glutamate transport in humanglioma cells: reduction-mislocalization of sodium-dependent glutamate transporters andenhanced activity of cystine-glutamate exchange. J Neurosci 19(24):10767–10777

    PubMed  CAS  Google Scholar 

  • Yoo, S.Y., Chang, K.H., Song, I.C., Han, M.H., Kwon, B.J., Lee, S.H., Yu, I.K., and Chun, C.K. 2002. Apparent diffusion coefficient value of the hippocampus in patients with hippocampalsclerosis and in healthy volunteers. AJNR Am J Neuroradiol 23(5):809–812

    PubMed  Google Scholar 

  • Yung, A.W., Park, Y.D., Cohen, M.J., and Garrison, T.N. 2000. Cognitive and behavioral problemsin children with centrotemporal spikes. Pediatr Neurol 23(5):391–395

    Article  PubMed  CAS  Google Scholar 

  • Zhang, G., Raol, Y.H., Hsu, F.C., Coulter, D.A., and Brooks-Kayal, A.R. 2004. Effects of status epilepticuson hippocampal GABAA receptors are age-dependent. Neuroscience 125(2):299–303

    Article  PubMed  CAS  Google Scholar 

  • Zhao, M., Ma, H., Suh, M., and Schwartz, T.H. 2005. Decrease in brain tissue oxygenation in spiteof an increase in cerebral blood flow during acute focal 4-aminopyridine seizures in rat neocortex,Abstract for Society of Neuroscience Annual Conference, November 12–16

    Google Scholar 

  • Zipfel, G.J., Babcock, D.J., Lee, J.M., and Choi, D.W. 2000. Neuronal apoptosis after CNSinjury: the roles of glutamate and calcium. J Neurotrauma 17(10):857–869

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Goyal, M. (2009). Seizure-Induced Neuronal Plasticity and Metabolic Effects. In: McCandless, D. (eds) Metabolic Encephalopathy. Springer, New York, NY. https://doi.org/10.1007/978-0-387-79112-8_7

Download citation

Publish with us

Policies and ethics