Skip to main content

Brain Metabolic Adaptations to Hypoxia

  • Chapter
  • First Online:
Metabolic Encephalopathy

Abstract

The mammalian brain depends totally on a continuous supply of oxygen to maintain its function. It is well known that in the brain, adaptation to hypoxia occurs through both systemic and vascular changes, which may include metabolic changes. However, the local metabolic changes related to energy metabolism that occur within the cell are not well described (Harik et al., 1994; Harik et al., 1995; LaManna and Harik, 1997). Investigating the metabolic adaptations of the central nervous system to mild hypoxia provides an understanding of the key components responsible for regulating cell survival. This chapter concerns itself with the metabolic responses of the brain to mild hypoxia, that is, to physiological hypoxia. This is the range of hypoxia that can be compensated for with physiological mechanisms that directly or indirectly involve energy related metabolic pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • R.J.,Appelhoff, Y.M.,Tian, Raval,R.R., H.,Turley, A.L.,Harris, C.W.,Pugh, P.J., and Ratcliffe,J.M.Gleadle, 2004. Differential function of the prolyl hydroxylases PHD1, PHD2, and PHD3 in the regulation of hypoxia-inducible factor. Journal of Biological Chemistry 279:38458–38465

    Article  PubMed  CAS  Google Scholar 

  • E.O. and Balasse,F.Fery, 1989. Ketone body production and disposal: Effects of fasting, diabetes, and exercise. Diabetes Metabolic Reviews 5:247–270

    Article  CAS  Google Scholar 

  • C.E., Batista,H.T., Chugani,C., Juhasz,M.E., and Behen,S.Shankaran, 2007. Transient hypermetabolism of the basal ganglia following perinatal hypoxia. Pediatric Neurology 36:330–333

    Article  PubMed  Google Scholar 

  • T. and Beck,J.Krieglstein, 1987.Cerebral circulation, metabolism, and blood—brain barrier in rats in hypocapnic hypoxia. American Journal of Physiology 252:H504–H512

    PubMed  CAS  Google Scholar 

  • M.M., Brown,J.P.H., and Wade,J.Marshall, 1985. Fundamental importance of arterial oxygen content in the regulation of cerebral blood flow in man. Brain 108:81–93

    Article  PubMed  Google Scholar 

  • M. and Brunori,B.Vallone, 2006. A globin for the brain. FASEB Journal 20:2192–2197

    Article  PubMed  CAS  Google Scholar 

  • R., Caceda,J.L., Gamboa,J.A., Boero,C., and Monge,A.Arregui, 2001. Energetic metabolism in mouse cerebral cortex during chronic hypoxia. Neuroscience Letters 301:171–174

    Article  PubMed  CAS  Google Scholar 

  • A.S.Y. and Chang,L.G.D’Alecy, 1993. Hypoxia and beta-hydroxybutyrate acutely reduce glucose extraction by the brain in anesthetized dogs. Canadian Journal of Physiology and Pharmacology 71:465–472

    Article  PubMed  CAS  Google Scholar 

  • J.C., Chávez,P., Pichiule,J., and Boero,A.Arregui, 1995. Reduced mitochondrial respiration in mouse cerebral cortex during chronic hypoxia. Neuroscience Letters 193:169–172

    Article  PubMed  Google Scholar 

  • J.C., Chávez,F., Agani,P., and Pichiule,J.C.LaManna, 2000. Expression of hypoxic inducible factor 1α in the brain of rats during chronic hypoxia. Journal of Applied Physiology 89:1937–1942

    PubMed  Google Scholar 

  • C.L., Dalgard,H., Lu,A., and Mohyeldin,A.Verma, 2004. Endogenous 2-oxoacids differentially regulate expression of oxygen sensors. The Biochemical Journal 380:419–424

    Article  PubMed  CAS  Google Scholar 

  • M., Dallas,H.E., Boycott,L., Atkinson,A., Miller,J.P., Boyle,H.A., and Pearson,C.Peers, 2007. Hypoxia suppresses glutamate transport in Astrocytes. Journal of Neuroscience 27:3946–3955

    Article  PubMed  CAS  Google Scholar 

  • B.J., Dardzinski,S.L., Smith,J., Towfighi,G.D., Williams,R.C., and Vannucci,M.B.Smith, 2000. Increased plasma beta-hydroxybutyrate, preserved cerebral energy metabolism, and amelioration of brain damage during neonatal hypoxia ischemia with dexamethasone pretreatment. Pediatric Research 48:248–255

    Article  PubMed  CAS  Google Scholar 

  • S.C., Dennis,W., and Gevers,L.H.Opie, 1991. Protons in ischemia: Where do they come from; where do they go to? Journal of Molecular and Cellular Cardiology 23:1077–1086

    Article  PubMed  CAS  Google Scholar 

  • J.F., Dunn,O., Grinberg,M., Roche,C.I., Nwaigwe,H.G., and Hou,H.M.Swartz, 2000. Noninvasive assessment of cerebral oxygenation during acclimation to hypobaric hypoxia. Journal of Cerebral Blood Flow and Metabolism 20:1632–1635

    PubMed  CAS  Google Scholar 

  • T.Q. Duong, 2007. Cerebral blood flow and BOLD fMRI responses to hypoxia in awake and anesthetized rats. Brain Research 1135:186–194

    Article  PubMed  CAS  Google Scholar 

  • S.M., Eiger,J.R., and Kirsch,L.G.D’Alecy, 1980. Hypoxic tolerance enhanced by beta-hydroxybutyrate-glucagon in the mouse. Stroke 11:513–517

    Article  PubMed  CAS  Google Scholar 

  • A.C., Epstein,J.M., Gleadle,L.A., McNeill,K.S., Hewitson,J., O’Rourke,D.R., Mole,M., Mukherji,E., Metzen,M.I., Wilson,A., Dhanda,Y.M., Tian,N., Masson,D.L.,Hamilton,P., Jaakkola,R., Barstead,J., Hodgkin,P.H., Maxwell,C.W., Pugh,C.J., andSchofield, P.J.Ratcliffe, 2001. C. elegans EGL-9 and mammalian homologs define a family of dioxygenases that regulate HIF by prolyl hydroxylation. Cell 107:43–54

    Article  PubMed  CAS  Google Scholar 

  • R.S., Freeman,D.M., Hasbani,E.A., Lipscomb,J.A., and Straub,L.Xie, 2003. SM-20, EGL-9, and the EGLN family of hypoxia-inducible factor prolyl hydroxylases. Molecules and Cells 16:1–12

    PubMed  CAS  Google Scholar 

  • A. and Hamberger,H.Hydén, 1963. Inverse enzymatic changes in neurons and glia during increased function and hypoxia. The Journal of Cell Biology 16:521–525

    Article  PubMed  CAS  Google Scholar 

  • S.I. and Harik,J.C.LaManna, 1995. Adaptation of the brain to prolonged hypobaric hypoxia: Alterations in the microcirculation and in glucose metabolism. Queen Burlington, VT: City Printers, pp. 18–30

    Google Scholar 

  • S.I., Harik,R.A., and Behmand,J.C.LaManna, 1994. Hypoxia increases glucose transport at blood—brain barrier in rats. Journal of Applied Physiology 77:896–901

    PubMed  CAS  Google Scholar 

  • S.I., Harilk,W.D., Lust,S.C., Jones,K.L., Lauro,S., and Pundik,J.C.LaManna, 1995. Brain glucose metabolism in hypobaric hypoxia. Journal of Applied Physiology 79:136–140

    Google Scholar 

  • N., Harik,S.I., Harik,N.T., Kuo,K., Sakai,R.J., andPrzybylski, J.C.LaManna, 1996. Time course and reversibility of the hypoxia-induced alterations in cerebral vascularity and cerebral capillary glucose transporter density. Brain Research 737:335–338

    Article  PubMed  CAS  Google Scholar 

  • P.W. and Hochachka,T.P.Mommsen, 1983. Protons and anaerobiosis. Science 219:1391–1397

    Article  PubMed  CAS  Google Scholar 

  • P., Jaakkola,D.R., Mole,Y.M., Tian,M.I., Wilson,J., Gielbert,S.J., Gaskell,A.A., Kriegsheim,H.F., Hebestreit,M., Mukherji,C.J., Schofield,P.H., Maxwell,C.W., and Pugh,P.J.Ratcliffe, 2001. Targeting of HIF-alpha to the von Hippel—Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation. Science 292:468–472

    Article  PubMed  CAS  Google Scholar 

  • N.M. and Jones,M.Bergeron, 2001. Hypoxic preconditioning induces changes in hif-1 target genes in neonatal rat brain. Journal of Cerebral Blood Flow and Metabolism 21:1105–1114

    PubMed  CAS  Google Scholar 

  • J.R. and Kirsch,L.G.D’Alecy, 1979. Effect of altered availability of energy-yielding substrates upon survival from hypoxia in mice. Stroke 10:288–291

    Article  PubMed  CAS  Google Scholar 

  • J.C., Lai,B.K., White,C.R., Buerstatte,G.G.,Haddad, E.J., Novotny,Jr., and K.L.Behar, 2003. Chronic hypoxia in development selectively alters the activities of key enzymes of glucose oxidative metabolism in brain regions. Neurochemical Research 28:933–940

    Article  PubMed  CAS  Google Scholar 

  • J.C. LaManna, 2007. Hypoxia in the central nervous system. Essays in Biochemistry 43:139–152

    Article  PubMed  CAS  Google Scholar 

  • J.C. and LaManna,S.I.Harik, 1997. Brain metabolic and vascular adaptations to hypoxia in the rat. Review and update. Advances in Experimental Medicine and Biology 428:163–167

    Article  PubMed  CAS  Google Scholar 

  • J.C., LaManna,L.M., and Vendel,R.M.Farrell, 1992. Brain adaptation to chronic hypobaric hypoxia in rats. Journal of Applied Physiology 72:2238–2243

    PubMed  CAS  Google Scholar 

  • J.C., LaManna,K.L., Kutina-Nelson,M.A., Hritz,Z., and Huang,J.C., Wong-Riley, M.T.T. 1996. Decreased rat brain cytochrome oxidase activity after prolonged hypoxia. Brain Research 720:1–6

    Google Scholar 

  • LaManna,J.C., and Chavez,P.Pichiule, 1997. Genetics and gene expression of glycolysis. In: “Handbook of Neurochemistry and Molecular Neurobiology”, 3rd edn., “Brain Energetics, Integration of Molecular and Cellular Processes” (vol. eds., GE Gibson and GA Dienel) Springer, 771–788.

    Google Scholar 

  • J.C., LaManna,J.C., and Chavez,P.Pichiule, 2004. Structural and functional adaptation to hypoxia in the rat brain. Journal of Experimental Biology 207:3163–3169

    Article  PubMed  CAS  Google Scholar 

  • K.L. and Lauro,J.C.LaManna, 1997. Adequacy of cerebral vascular remodeling following three weeks of hypobaric hypoxia. Examined by an integrated composite analytical model. Advances in Experimental Medicine and Biology 411:369–376

    Article  PubMed  CAS  Google Scholar 

  • R.C., Li,S.K., Lee,F., Pouranfar,K.R., Brittian,H.B., Clair,B.W., Row,Y., and Wang,D.Gozal, 2006. Hypoxia differentially regulates the expression of neuroglobin and cytoglobin in rat brain. Brain Research 1096:173–179

    Article  PubMed  CAS  Google Scholar 

  • H., Lu,R.A., and Forbes,A.Verma, 2002. Hypoxia-inducible factor 1 activation by aerobic glycolysis implicates the Warburg effect in carcinogenesis. The Journal of Biological Chemistry 277:23111–23115

    Article  PubMed  CAS  Google Scholar 

  • S.Y., Mashina,V.V., Aleksandrin,A.V., Goryacheva,M.A., Vlasova,A.F., Vanin,I.Y., and Malyshev,E.B.Manukhina, 2006. Adaptation to hypoxia prevents disturbances in cerebral blood flow during neurodegenerative process. Bulletin of Experimental Biology and Medicine 142:169–172

    Article  PubMed  CAS  Google Scholar 

  • R., Masuda,J.W., and Monahan,Y.Kashiwaya, 2005. D-beta-hydroxybutyrate is neuroprotective against hypoxia in serum-free hippocampal primary cultures. Journal of Neuroscience Research 80:501–509

    Article  PubMed  CAS  Google Scholar 

  • O.P. and Mishra,M.Delivoria-Papadopoulos, 1999. Cellular mechanisms of hypoxic injury in the developing brain. Brain Research Bulletin 48:233–238

    Article  PubMed  CAS  Google Scholar 

  • J.P.Mortola, 1993. Hypoxic hypometabolism in mammals. News in Physiological Sciences 8:79–82

    Google Scholar 

  • W.S.Myles, 1976. Survial of fasted rats exposed to altitude. Canadian Journal of Physiology and Pharmacology 54:883–886

    Article  PubMed  CAS  Google Scholar 

  • J.A., Neubauer,J.E., and Melton,N.H.Edelman, 1990. Modulation of respiration during brain hypoxia. Journal of Applied Physiology 68:441–451

    PubMed  CAS  Google Scholar 

  • G.E. and Nilsson,P.L.Lutz, 1991. Release of inhibitory neurotransmitters in response to anoxia in turtle brain. The American Journal of Physiology (AJP) — Legacy 261:R32–R37

    CAS  Google Scholar 

  • O.E., Owen,A.P., Morgan,H.G., Kemp,J.M., Sullivan,M.G., and Herrera,G.F.Cahill,jr. 1967. Brain metabolism during fasting. Journal of Clinical Investigation 46:1589–1595

    Article  PubMed  CAS  Google Scholar 

  • P. and Pichiule,J.C.LaManna, 2002. Angiopoietin-2 and rat brain capillary remodeling during adaptation and de-adaptation to prolonged mild hypoxia. Journal of Applied Physiology 93:1131–1139

    PubMed  CAS  Google Scholar 

  • P., Pichiule,J.C., and Chavez,J.C.LaManna, 2004. Hypoxic regulation of angiopoietin-2 expression in endothelial cells. Journal of Biological Chemistry 279:12171–12180

    Article  PubMed  CAS  Google Scholar 

  • M.A., Puchowicz,D.S., Emancipator,K., Xu,D.L., Magness,O.I., Ndubuizu,W.D., and Lust,J.C.LaManna, 2005. Adaptation to chronic hypoxia during diet-induced ketosis. Advances in Experimental Medicine and Biology 566:51–57

    Article  PubMed  CAS  Google Scholar 

  • W.A. and Pulsinelli,T.E.Duffy, 1979. Local cerebral glucose metabolism during controlled hypoxemia in rats. Science 204:626–629

    Article  PubMed  CAS  Google Scholar 

  • C.L. and Rising,L.G.D’Alecy, 1989. Hypoxia-induced increases in hypoxic tolerance augmented by beta-hydroxybutyrate in mice. Stroke 20:1219–1225

    Article  PubMed  CAS  Google Scholar 

  • M.A., Selak,S.M., Armour,E.D., Mackenzie,H., Boulahbel,D.G., Watson,K.D., Mansfield,Y., Pan,M.C., Simon,C.B., and Thompson,E.Gottlieb, 2005. Succinate links TCA cycle dysfunction to oncogenesis by inhibiting HIF-alpha prolyl hydroxylase. Cancer Cell 7:77–85

    Article  PubMed  CAS  Google Scholar 

  • G.L.Semenza, 2007. Oxygen-dependent regulation of mitochondrial respiration by hypoxia-inducible factor 1. The Biochemical Journal 405:1–9

    PubMed  CAS  Google Scholar 

  • G.L., Semenza,P.H., Roth,H.M., and Fang,G.L.Wang, 1994. Transcriptional regulation of genes encoding glycolytic enzymes by hypoxia-inducible factor 1. Journal of Biological Chemistry 269:23757–23763

    PubMed  CAS  Google Scholar 

  • F.R. and Sharp,M.Bernaudin, 2004. HIF1 and oxygen sensing in the brain. Nature Reviews Neuroscience 5:437–448

    Article  PubMed  CAS  Google Scholar 

  • T., Shimizu,T., and Uehara,Y.Nomura, 2004. Possible involvement of pyruvate kinase in acquisition of tolerance to hypoxic stress in glial cells. Journal of Neurochemistry 91:167–175

    Article  PubMed  CAS  Google Scholar 

  • A., Siddiq,L.R., and Aminova,R.R.Ratan, 2007. Hypoxia inducible factor prolyl 4-hydroxylase enzymes: Center stage in the battle against hypoxia, metabolic compromise and oxidative stress. Neurochemical Research 32:931–946

    Article  PubMed  CAS  Google Scholar 

  • B.K.Siesjö, 1978. Brain Energy Metabolism. WileyChichester:

    Google Scholar 

  • P.A., Stewart,H., Isaacs,J.C., and LaManna,S.I.Harik, 1997. Ultrastructural concomitants of hypoxia-induced angiogenesis. Acta Neuropathologica 93:579–584

    Article  PubMed  CAS  Google Scholar 

  • Y., Sun,K., Jin,A., Peel,X.O., Mao,L., and Xie,D.A.Greenberg, 2003. Neuroglobin protects the brain from experimental stroke invivo. Proceedings of the National Academy of Sciences of the United States of America 100:3497–3500

    Article  PubMed  CAS  Google Scholar 

  • X., Sun,G.,He, H.,Qing, W., Zhou,F., Dobie,F., Cai,M., Staufenbiel,L.E., and Huang,W.Song, 2006. Hypoxia facilitates Alzheimer’s disease pathogenesis by up-regulating BACE1 gene expression. Proceedings of the National Academy of Sciences of the United States of America 103:18727–18732

    Article  PubMed  CAS  Google Scholar 

  • M., Suzuki,M., Suzuki,K., Sato,S., Dohi,T., Sato,A., and Matsuura,A.Hiraide, 2001. Effect of beta-hydroxybutyrate, a cerebral function improving agent, on cerebral hypoxia, anoxia and ischemia in mice and rats. Japanese Journal of Pharmacology 87:143–150

    Article  PubMed  CAS  Google Scholar 

  • R.L.Veech, 2004. The therapeutic implications of ketone bodies: the effects of ketone bodies in pathological conditions: ketosis, ketogenic diet, redox states, insulin resistance, and mitochondrial metabolism. Prostaglandins, Leukotrienes and Essential Fatty Acids 70:309–319

    Article  CAS  Google Scholar 

  • S.C. and Wood,R.Gonzales, 1996. Hypothermia in hypoxic animals: mechanisms, mediators, and functional significance. Comparative Biochemistry and Physiology 113B:37–43

    CAS  Google Scholar 

  • K. and Xu,J.C.LaManna, 2006. Chronic hypoxia and the cerebral circulation. Journal of Applied Physiology 100:725–730

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Constantinos Tsipis for his technical support in the art work and in the preparation of this review. This research has been supported by the National Institutes of Health, R01-NS38632 and P50 GM066309.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Puchowicz, M.A., Koppaka, S.S., LaManna, J.C. (2009). Brain Metabolic Adaptations to Hypoxia. In: McCandless, D. (eds) Metabolic Encephalopathy. Springer, New York, NY. https://doi.org/10.1007/978-0-387-79112-8_2

Download citation

Publish with us

Policies and ethics