Skip to main content

Involvement of Cdk5 in Synaptic Plasticity, and Learning and Memory

  • Chapter
  • First Online:

Abstract

Cdk5 has been demonstrated to be one of the most diversely functional kinases within neurons. It is unsurprising then that recent advances implicate Cdk5 in synaptic plasticity, and learning and memory. In this chapter, we summarize the data that reveal the involvement of Cdk5 in mnemonic processes on molecular as well as cellular levels and relate these findings to its emerging function in learning and memory. From amongst the impressive range of candidate mechanisms by which Cdk5 might influence mnemonic processes, we pay particular attention to mechanisms with well-established function in both, synaptic plasticity, and learning and memory, including NMDA receptor modulation, transcriptional regulation and organization of synaptic structures. We aim to show that Cdk5 is uniquely placed amongst kinases to orchestrate the multi-level processes inherent in learning and memory owing to its integral role in many neuronal functions.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Agarwal-Mawal A, Paudel HK. (2001) Neuronal Cdc2-like protein kinase (Cdk5/p25) is associated with protein phosphatase 1 and phosphorylates inhibitor-2. J. Biol. Chem. 276: 23712–23718.

    Article  PubMed  CAS  Google Scholar 

  • Anagnostaras SG, Gale GD, Fanselow MS. (2001) Hippocampus and contextual fear conditioning: recent controversies and advances. Hippocampus 11: 8–17.

    Article  PubMed  CAS  Google Scholar 

  • Angelo M, Plattner F, Irvine EE, Giese KP. (2003) Improved reversal learning and altered fear conditioning in transgenic mice with regionally restricted p25 expression. Eur. J. Neurosci. 18: 423–431.

    Article  PubMed  Google Scholar 

  • Angelo M, Plattner F, Giese KP. (2006) Cyclin-dependent kinase 5 in synaptic plasticity, learning and memory. J. Neurochem. 99: 353–370.

    Article  PubMed  CAS  Google Scholar 

  • Arimura N, Ménager C, Kawano Y, Yoshimura T, Kawabata S, Hattori A, Fukata Y, Amano M, Goshima Y, Inagaki M, Morone N, Usukura J, Kaibuchi K. (2005) Phosphorylation by Rho kinase regulates CRMP-2 activity in growth cones. Mol. Cell. Biol. 25:9973–9984.

    Article  PubMed  CAS  Google Scholar 

  • Barclay JW, Aldea M, Craig TJ, Morgan A, Burgoyne RD. (2004) Regulation of the fusion pore conductance during exocytosis by cyclin-dependent kinase 5. J. Biol. Chem. 279: 41495–41503.

    Article  PubMed  CAS  Google Scholar 

  • Beffert U, Weeber EJ, Morfini G, Ko J, Brady ST, Tsai LH, Sweatt JD, Herz J. (2004) Reelin and cyclin-dependent kinase 5-dependent signals cooperate in regulating neuronal migration and synaptic transmission. J. Neurosci. 24: 1897–1906.

    Article  PubMed  CAS  Google Scholar 

  • Bibb JA, Snyder GL, Nishi A, et al. (1999) Phosphorylation of DARPP-32 by Cdk5 modulates dopamine signalling in neurons. Nature 402: 669–671.

    Article  PubMed  CAS  Google Scholar 

  • Bibb JA, Nishi A, O'Callaghan JP, et al. (2001) Phosphorylation of protein phosphatase inhibitor-1 by Cdk5. J. Biol. Chem. 276: 14490–14497.

    PubMed  CAS  Google Scholar 

  • Brown M, Jacobs T, Eickholt B, Ferrari G, Teo M, Monfries C, Qi RZ, Leung T, Lim L, Hall C. (2004) Alpha2-chimaerin, cyclin-dependent Kinase 5/p35, and its target collapsin response mediator protein-2 are essential components in semaphorin 3A-induced growth-cone collapse. J. Neurosci. 24: 8994–9004.

    Article  PubMed  CAS  Google Scholar 

  • Buraei Z, Anghelescu M, Elmslie KS. (2005) Slowed N-type calcium channel (CaV2.2) deactivation by the cyclin-dependent kinase inhibitor roscovitine. Biophys. J. 89: 1681–1691.

    Article  PubMed  CAS  Google Scholar 

  • Buraei Z, Schofield G, Elmslie KS (2007) Roscovitine differentially affects CaV2 and Kv channels by binding to the open state. Neuropharmacology. 52: 883–894.

    Article  PubMed  CAS  Google Scholar 

  • Causeret F, Jacobs T, Terao M, Heath O, Hoshino M, Nikolic M. (2007) Neurabin-I is phosphorylated by Cdk5: implications for neuronal morphogenesis and cortical migration. Mol. Biol. Cell. 18: 4327–4342.

    Article  PubMed  CAS  Google Scholar 

  • Cheng Q, Sasaki Y, Shoji M, Sugiyama Y, Tanaka H, Nakayama T, Mizuki N, Nakamura F, Takei K, Goshima Y. (2003) Cdk5/p35 and Rho-kinase mediate ephrin-A5-induced signaling in retinal ganglion cells. Mol. Cell. Neurosci. 24: 632–645.

    Article  PubMed  CAS  Google Scholar 

  • Chergui K, Svenningsson P, Greengard P. (2004) Cyclin-dependent kinase 5 regulates dopaminergic and glutamatergic transmission in the striatum. Proc. Natl. Acad. Sci. U.S.A. 101: 2191–2196.

    Article  PubMed  CAS  Google Scholar 

  • Cheung ZH, Chin WH, Chen Y, Ng YP, Ip NY (2007) Cdk5 is involved in BDNF-stimulated dendritic growth in hippocampal neurons. PLoS Biol. 5: e63

    Article  PubMed  CAS  Google Scholar 

  • Cicero S, Herrup K. (2005) Cyclin-dependent kinase 5 is essential for neuronal cell cycle arrest and differentiation. J. Neurosci. 25: 9658–9668.

    Article  PubMed  CAS  Google Scholar 

  • Cole AR, Causeret F, Yadirgi G, Hastie CJ, McLauchlan H, McManus EJ, Hernández F, Eickholt BJ, Naikolic M, Sutherland C. (2006) Distinct priming kinases contribute to differential regulation of collapsin response mediator proteins by glycogen synthase kinase-3 in vivo. J. Biol. Chem. 281: 16591–16598.

    Article  PubMed  CAS  Google Scholar 

  • Cruz JC, Kim D, Moy LY, Dobbin MM, Sun X, Bronson RT, Tsai LH. (2006) p25/cyclin-dependent kinase 5 induces production and intraneuronal accumulation of amyloid beta in vivo. J. Neurosci. 26: 10536–10541.

    Article  PubMed  CAS  Google Scholar 

  • Dhavan R, Greer PL, Morabito MA, Orlando LR, Tsai LH. (2002) The cyclin-dependent kinase 5 activators p35 and p39 interact with the alpha-subunit of Ca2+/calmodulin-dependent protein kinase II and alpha-actinin-1 in a calcium-dependent manner. J. Neurosci. 22: 7879–7891.

    PubMed  CAS  Google Scholar 

  • D'Hooge R, De Deyn P.P. (2001) Applications of the Morris water maze in the study of learning and memory. Brain. Res. Brain. Res. Rev. 36: 60–90.

    Article  PubMed  Google Scholar 

  • Evans GJO, Cousin MA. (2007) Activity-dependent control of slow synaptic vesicle endocytosis by cyclin-dependent kinase 5. J. Neurosci. 27: 401–411.

    Article  PubMed  CAS  Google Scholar 

  • Fischer A, Sananbenesi F, Schrick C, Spiess J, Radulovic J. (2002) Cyclin-dependent kinase 5 is required for associative learning. J. Neurosci. 22: 3700–3707.

    PubMed  CAS  Google Scholar 

  • Fischer A, Sananbenesi F, Schrick C, Spiess J, Radulovic J. (2003) Regulation of contextual fear conditioning by baseline and inducible septo-hippocampal cyclin-dependent kinase 5. Neuropharmacology 44: 1089–1099.

    Article  PubMed  CAS  Google Scholar 

  • Fischer A, Sananbenesi F, Pang PT, Lu B, Tsai LH. (2005) Opposing Roles of Transient and prolonged expression of p25 in synaptic plasticity and hippocampus-dependent memory. Neuron 48: 825–838.

    Article  PubMed  CAS  Google Scholar 

  • Fischer A, Sananbenesi F, Wang X, Dobbin M, Tsai L.H. (2007) Recovery of learning and memory is associated with chromatin remodelling. Nature 447: 178–182.

    Article  PubMed  CAS  Google Scholar 

  • Fletcher AI, Shuang R, Giovannucci DR, Zhang L, Bittner MA, Stuenkel EL. (1999) Regulation of exocytosis by cyclin-dependent kinase 5 via phosphorylation of Munc18. J. Biol. Chem. 274: 4027–4035.

    Article  PubMed  CAS  Google Scholar 

  • Floyd SR, Porro EB, Slepnev VI, Ochoa GC, Tsai LH, De Camilli P. (2001) Amphiphysin 1 binds the cyclin-dependent kinase (Cdk) 5 regulatory subunit p35 and is phosphorylated by cdk5 and cdc2. J. Biol. Chem. 276: 8104–8110.

    Article  PubMed  CAS  Google Scholar 

  • Fu AKY, Fu WY, Cheung J, Tsim KW, IP FC, Wang J.H, Ip NY (2001) Cdk5 is involved in neuregulin-induced AchR expression at the neuromuscular junction. Nat Neurosci 4: 374–381.

    Article  PubMed  CAS  Google Scholar 

  • Fu AK., Fu WY, Ng AK, Chien WW, Ng YP, Wang JH, Ip NY. (2004) Cyclin-dependent kinase 5 phosphorylates signal transducer and activator of transcription 3 and regulates its transcriptional activity. Proc. Natl. Acad. Sci. U.S.A. 101: 6728–6733.

    Article  PubMed  CAS  Google Scholar 

  • Fu AK, Ip FC, Fu WY, Cheung J, Wang JH, Yung WH, Ip NY. (2005) Aberrant motor axon projection, acetylcholine receptor clustering, and neurotransmission in cyclin-dependent kinase 5 null mice. Proc. Natl. Acad. Sci. U.S.A. 102: 15224–15229.

    Article  PubMed  CAS  Google Scholar 

  • Fu X, Choi YK, Qu D, Yu Y, Cheung NS, Qi RZ. (2006) Identification of nuclear import mechanisms for the neuronal Cdk5 activator. J. Biol. Chem. 281: 39014–39021.

    Article  PubMed  CAS  Google Scholar 

  • Fu WY, Chen Y, Sahin M, Zhao XS, Shi L, Bikoff JB, Lai KO, Yung WH, Fu AK, Greenberg ME, Ip NY (2007) Cdk5 regulates EphA4-mediated dendritic spine retraction through an ephexin1-dependent mechanism. Nat. Neurosci. 10: 67–76.

    Article  PubMed  CAS  Google Scholar 

  • Futter M, Uematsu K, Bullock SA, Kim Y, Hemmings HC Jr, Nishi A, Greengard P, Nairn AC. (2005) Phosphorylation of spinophilin by ERK and cyclin-dependent PK 5 (Cdk5). Proc. Natl. Acad. Sci. U.S.A. 102: 3489–3494.

    Article  PubMed  CAS  Google Scholar 

  • Giese KP, Ris L, Plattner F. (2005) Is there a role of the cyclin-dependent kinase 5 activator p25 in Alzheimer's disease? Neuroreport 16: 1725–1730.

    Article  PubMed  CAS  Google Scholar 

  • Gong X, Tang X, Wiedmann M, Wang X, Peng J, Zheng D, Blair LA, Marshall J, Mao Z. (2003) Cdk5-mediated inhibition of the protective effects of transcription factor MEF2 in neurotoxicity-induced apoptosis. Neuron 38: 33–46.

    Article  PubMed  CAS  Google Scholar 

  • Graham ME, Anggono V, Bache N, Larsen MR, Craft GE, Robinson PJ. (2007) The in vivo phosphorylation sites of rat brain dynamin I. J. Biol. Chem. 282: 14695–14707.

    Article  PubMed  CAS  Google Scholar 

  • Harada T, Morooka T, Ogawa S, Nishida E. (2001) ERK induces p35, a neuron-specific activator of Cdk5, through induction of Egr1. Nat Cell Biol. 3: 453–459.

    Article  PubMed  CAS  Google Scholar 

  • Hawasli AH, Benavides DR, Nguyen C, Kansy JW, Hayashi K, Chambon P, Greengard P, Powell CM, Cooper DC, Bibb JA. (2007) Cyclin-dependent kinase 5 governs learning and synaptic plasticity via control of NMDAR degradation. Nat. Neurosci. 10: 880–886.

    Article  PubMed  CAS  Google Scholar 

  • Hayashi ML, Choi SY, Rao BS, Jung HY, Lee HK, Zhang D, Chattarji S, Kirkwood A, Tonegawa S. (2004) Altered cortical synaptic morphology and impaired memory consolidation in forebrain- specific dominant-negative PAK transgenic mice. Neuron 42: 773–787.

    Article  PubMed  CAS  Google Scholar 

  • Hayashi K, Pan Y, Shu H, Ohshima T, Kansy JW, White CL 3rd, Tamminga CA, Sobel A, Curmi PA, Mikoshiba K, Bibb JA. (2006) Phosphorylation of the tubulin-binding protein, stathmin, by Cdk5 and MAP kinases in the brain. J. Neurochem. 99: 237–250.

    Article  PubMed  CAS  Google Scholar 

  • Hlavanda E, Klement E, Kókai E, Kovács J, Vincze O, Tökési N, Orosz F, Medzihradszky KF, Dombrádi V, Ovádi J. (2007) Phosphorylation blocks the activity of tubulin polymerization-promoting protein (TPPP): identification of sites targeted by different kinases. J. Biol. Chem. 282: 29531–29539.

    Article  PubMed  CAS  Google Scholar 

  • Horiuchi Y, Asada A, Hisanaga S, Toh-e A, Nishizawa M. (2006) Identifying novel substrates for mouse Cdk5 kinase using the yeast Saccharomyces cerevisiae. Genes Cells. 11: 1393–1404.

    Article  PubMed  CAS  Google Scholar 

  • Hosokawa T, Saito T, Asada A, Ohshima T, Itakura M, Takahashi M, Fukunaga K, Hisanaga S. (2006) Enhanced activation of Ca2+/calmodulin-dependent protein kinase II upon downregulation of cyclin-dependent kinase 5-p35. J. Neurosci. Res. 84: 747–754.

    Article  PubMed  CAS  Google Scholar 

  • Hou Z, He L, Qi RZ. (2007) Regulation of s6 kinase 1 activation by phosphorylation at ser-411. J. Biol. Chem. 282: 6922–6928.

    Article  PubMed  CAS  Google Scholar 

  • Huang KX, Paudel HK. (2000) Ser67-phosphorylated inhibitor 1 is a potent protein phosphatase 1 inhibitor. Proc. Natl. Acad. Sci. U.S.A. 97: 5824–5829.

    Article  PubMed  CAS  Google Scholar 

  • Iijima K, Ando K, Takeda S, Satoh Y, Seki T, Itohara S, Greengard P, Kirino Y, Nairn AC, Suzuki T. (2000) Neuron-specific phosphorylation of Alzheimer's beta-amyloid precursor protein by cyclin-dependent kinase 5. J. Neurochem. 75: 1085–1091.

    Article  PubMed  CAS  Google Scholar 

  • Irvine EE, von Hertzen LSJ, Plattner F, Giese KP. (2006) αCaMKII autophosphorylation: a fast track to memory. Trends Neurosci. 29: 459–465.

    Article  PubMed  CAS  Google Scholar 

  • Kamei H, Saito T, Ozawa M, Fujita Y, Asada A, Bibb JA, Saido TC, Sorimachi H, Hisanaga S. (2007) Suppression of calpain-dependent cleavage of the CDK5 activator p35 to p25 by site-specific phosphorylation. J. Biol. Chem. 282: 1687–1694.

    Article  PubMed  CAS  Google Scholar 

  • Kansy JW, Daubner SC, Nishi A et al. (2004) Identification of tyrosine hydroxylase as a physiological substrate for Cdk5. J. Neurochem. 91: 374–384.

    Article  PubMed  CAS  Google Scholar 

  • Kato G, Maeda S. (1999) Neuron-specific Cdk5 kinase is responsible for mitosis-independent phosphorylation of c-Src at Ser75 in human Y79 retinoblastoma cells. J. Biochem. (Tokyo) 126: 957–961.

    Article  CAS  Google Scholar 

  • Kerokoski P, Suuronen T, Salminen A, Soininen H, Pirttila T. (2004) Both N-methyl-D-aspartate (NMDA) and non-NMDA receptors mediate glutamate-induced cleavage of the cyclin-dependent kinase 5 (Cdk5) activator p35 in cultured rat hippocampal neurons. Neurosci. Lett. 368: 181–185.

    Article  PubMed  CAS  Google Scholar 

  • Kesavapany S, Lau KF, McLoughlin DM, Brownlees J, Ackerley S, Leigh PN, Shaw CE, Miller CC (2001) p35/cdk5 binds and phosphorylates beta-catenin and regulates beta-catenin/presenilin-1 interaction. Eur. J. Neurosci. 13: 241–247.

    CAS  Google Scholar 

  • Kesavapany S, Amin N, Zheng YL et al. (2004) p35/cyclin-dependent kinase 5 phosphorylation of Ras guanine nucleotide releasing factor 2 (RasGRF2) mediates Rac-dependent Extracellular signal-regulated kinase 1/2 activity, altering RasGRF2 and microtubule-associated protein 1b distribution in neurons. J. Neurosci. 24: 4421–4431.

    Article  PubMed  CAS  Google Scholar 

  • Kesavapany S, Pareek TK, Zheng YL, Amin N, Gutkind JS, Ma W, Kulkarni AB, Grant P, Pant HC. (2006/7) Neuronal nuclear organization is controlled by cyclin-dependent kinase 5 phosphorylation of Ras Guanine nucleotide releasing factor-1. Neurosignals. 15: 157–173.

    Article  CAS  Google Scholar 

  • Keshvara L, Magdaleno S, Benhayon D, Curran T. (2002) Cyclin-dependent kinase 5 phosphorylates disabled 1 independently of Reelin signaling. J. Neurosci. 22: 4869–4877.

    PubMed  CAS  Google Scholar 

  • Kim Y, Sung JY, Ceglia I, Lee KW, Ahn JH, Halford JM, Kim AM, Kwak SP, Park JB, Ho Ryu S, Schenck A, Bardoni B, Scott JD, Nairn AC, Greengard P. (2006) Phosphorylation of WAVE1 regulates actin polymerization and dendritic spine morphology. Nature 442: 814–817.

    Article  PubMed  CAS  Google Scholar 

  • Kino T, Ichijo T, Amin ND, Kesavapany S, Wang Y, Kim N, RaoS, Player A, Zheng Y, Garabedian MJ, Kawasaki E, Pant HC, Chrousos GP (2007) Cyclin-dependent kinase 5 differentially regulates the transcriptional activity of the glucocorticoid receptor through phosphorylation: Clinical implications for the Nervous system response to glucocorticoids and stress. Mol. Endocrinology 21: 1552–1568.

    Article  CAS  Google Scholar 

  • Kwon YT, Gupta A, Zhou Y, Nikolic M, Tsai LH. (2000) Regulation of N-cadherin-mediated adhesion by the p35/Cdk5 kinase. Curr. Biol. 10: 363–372.

    Article  PubMed  CAS  Google Scholar 

  • Lau KF, Howlett DR, Kesavapany S, Standen CL, Dingwall C, McLoughlin DM, Miller CC (2002) Cyclin-dependent kinase-5/p35 phosphorylates Presenilin 1 to regulate carboxy-terminal fragment stability. Mol. Cell. Neurosci. 20: 13–20.

    Article  PubMed  CAS  Google Scholar 

  • Ledda F, Paratcha G, Ibanez CF. (2002) Target-derived GFRalpha1 as an attractive guidance signal for developing sensory and sympathetic axons via activation of Cdk5. Neuron 36: 387–401.

    Article  PubMed  CAS  Google Scholar 

  • Ledee DR, Tripathi BK, Zelenka PS. (2007) The CDK5 activator, p39, binds specifically to myosin essential light chain. Biochem. Biophys. Res. Commun. 354: 1034–1039.

    Article  PubMed  CAS  Google Scholar 

  • Lee SY, Wenk MR, Kim Y, Nairn AC, De Camilli P. (2004) Regulation of synaptojanin 1 by cyclin-dependent kinase 5 at synapses. Proc. Natl. Acad. Sci. U.S.A. 101: 546–551.

    Article  PubMed  CAS  Google Scholar 

  • Lee SY, Voronov S, Letinic K, Nairn AC, Di Paolo G, De Camilli P. (2005) Regulation of the interaction between PIPKI gamma and talin by proline-directed protein kinases. J. Cell. Biol. 168: 789–799.

    Article  PubMed  CAS  Google Scholar 

  • Lee JH, Kim HS, Lee SJ, Kim KT. (2007) Stabilization and activation of p53 induced by Cdk5 contributes to neuronal cell death. J. Cell. Sci. 120: 2259–2271.

    Article  PubMed  CAS  Google Scholar 

  • Li BS, Sun MK, Zhang L, Takahashi S, Ma W, Vinade L, Kulkarni AB, Brady RO, Pant HC. (2001) Regulation of NMDA receptors by cyclin-dependent kinase-5. Proc. Natl. Acad. Sci. U.S.A. 98: 12742–12747.

    Article  PubMed  CAS  Google Scholar 

  • Li BS, Zhang L, Takahashi S, Ma W, Jaffe H, Kulkarni AB, Pant HC. (2002). Cyclin-dependent kinase 5 prevents neuronal apoptosis by negative regulation of c-Jun N-terminal kinase 3. EMBO J. 21: 324–333.

    Article  PubMed  CAS  Google Scholar 

  • Li BS, Ma W, Jaffe H, Zheng Y, Takahashi S, Zhang L, Kulkarni AB, Pant HC. (2003) Cyclin-dependent kinase-5 is involved in neuregulin-dependent activation of phosphatidylinositol 3-kinase and Akt activity mediating neuronal survival. J. Biol. Chem. 278: 35702–35709.

    Article  PubMed  CAS  Google Scholar 

  • Li C, Sasaki Y, Takei K, Yamamoto H, Shouji M, Sugiyama Y, Kawakami T, Nakamura F, Yagi T, Ohshima T, Goshima Y. (2004a) Correlation between semaphorin3A-induced facilitation of axonal transport and local activation of a translation initiation factor eukaryotic translation initiation factor 4E. J. Neurosci. 24: 6161–6170.

    Article  CAS  Google Scholar 

  • Li Z, David G, Hung KW, DePinho RA, Fu AK, Ip N.Y. (2004b) Cdk5/p35 phosphorylates mSds3 and regulates mSds3-mediated repression of transcription. J. Biol. Chem. 279: 54438–54444.

    Article  CAS  Google Scholar 

  • Li S, Tian X, Hartley DM, Feig LA. (2006) Distinct roles for Ras-guanine nucleotide-releasing factor 1 (Ras-GRF1) and Ras-GRF2 in the induction of long-term potentiation and long-term depression. J. Neurosci. 26: 1721–1729.

    Article  PubMed  CAS  Google Scholar 

  • Liang S, Wei FY, Wu YM, Tanabe K, Abe T, Oda Y, Yoshida Y, Yamada H, Matsui H, Tomizawa K, Takei K. (2007) Major Cdk5-dependent phosphorylation sites of amphiphysin 1 are implicated in the regulation of the membrane binding and endocytosis. J. Neurochem. (doi:10.1111/j.1471-4159.2007.04507.x)

    Google Scholar 

  • Lilien J, Balsamo J. (2005) The regulation of cadherin-mediated adhesion by tyrosine phosphorylation/dephosphorylation of beta-catenin. Curr Opin Cell Biol. 17: 459–465.

    Article  PubMed  CAS  Google Scholar 

  • Lilja L, Johansson JU, Gromada J, Mandic SA, Fried G, Berggren PO, Bark C. (2004) Cyclin-dependent kinase 5 associated with p39 promotes Munc18-1 phosphorylation and Ca(2+)-dependent exocytosis. J. Biol. Chem. 279: 29534–29541.

    Article  PubMed  CAS  Google Scholar 

  • Lin W, Dominguez B, Yang J, Aryal P, Brandon EP, Gage FH, Lee KF. (2005) Neurotransmitter acetylcholine negatively regulates neuromuscular synapse formation by a Cdk5-dependent mechanism. Neuron 46: 569–579.

    Article  PubMed  CAS  Google Scholar 

  • Liu F, Ma XH, Ule J, Bibb JA, Nishi A, DeMaggio AJ, Yan Z, Nairn AC, Greengard P. (2001) Regulation of cyclin-dependent kinase 5 and casein kinase 1 by metabotropic glutamate receptors. Proc. Natl. Acad. Sci. U.S.A. 98: 11062–11068.

    Article  PubMed  CAS  Google Scholar 

  • Liu F, Virshup DM, Nairn AC, Greengard P. (2002) Mechanism of regulation of casein kinase I activity by group I metabotropic glutamate receptors. J. Biol. Chem. 277: 45393–45399.

    Article  PubMed  CAS  Google Scholar 

  • Liu F, Su Y, Li B, Zhou Y, Ryder J, Gonzalez-DeWhitt P, May PC, Ni B. (2003) Regulation of amyloid precursor protein (APP) phosphorylation and processing by p35/Cdk5 and p25/Cdk5. FEBS Lett. 547: 193–196.

    Article  PubMed  CAS  Google Scholar 

  • Malenka RC, Bear MF. (2004) LTP and LTD: an embarrassment of riches. Neuron 44: 5–21.

    Article  PubMed  CAS  Google Scholar 

  • Matsubara M, Kusubata M, Ishiguro K, Uchida T, Titani K, Taniguchi H. (1996) Site-specific phosphorylation of synapsin I by mitogen-activated protein kinase and Cdk5 and its effects on physiological functions. J. Biol. Chem. 271: 21108–21113.

    Article  PubMed  CAS  Google Scholar 

  • Mizuno K, Plattner F, Giese KP. (2006) Expression of p25 impairs contextual learning but not latent inhibition in mice. Neuroreport. 17: 1903–1905.

    Article  PubMed  CAS  Google Scholar 

  • Morabito MA, Sheng M, Tsai LH. (2004) Cyclin-dependent kinase 5 phosphorylates the N-terminal domain of the postsynaptic density protein PSD-95 in neurons. J. Neurosci. 24: 865–876.

    Article  PubMed  CAS  Google Scholar 

  • Morfini G, Szebenyi G, Brown H, Pant HC, Pigino G, DeBoer S, Beffert U, Brady ST. (2004) A novel CDK5-dependent pathway for regulating GSK3 activity and kinesin-driven motility in neurons. EMBO J. 23: 2235–2245.

    Article  PubMed  CAS  Google Scholar 

  • Moy LY, Tsai LH. (2004) Cyclin-dependent kinase 5 phosphorylates serine 31 of tyrosine hydroxylase and regulates its stability. J. Biol. Chem. 279: 54487–54493.

    Article  PubMed  CAS  Google Scholar 

  • Murase S, Mosser E, Schuman EM. (2002) Depolarization drives beta-Catenin into neuronal spines promoting changes in synaptic structure and function. Neuron 35: 91–105.

    Article  PubMed  CAS  Google Scholar 

  • Negash S, Wang HS, Gao C, Ledee D, Zelenka P. (2002) Cdk5 regulates cell-matrix and cell-cell adhesion in lens epithelial cells. J. Cell. Sci. 115: 2109–2117.

    PubMed  CAS  Google Scholar 

  • Nguyen C, Nishi A, Kansy JW, Fernandez J, Hayashi K, Gillardon F, Hemmings HC Jr, Nairn AC, Bibb JA. (2007) Regulation of protein phosphatase inhibitor-1 by cyclin-dependent kinase 5. J. Biol. Chem. 282: 16511–16520.

    Article  PubMed  CAS  Google Scholar 

  • Nikolic M, Chou MM, Lu W, Mayer BJ, Tsai LH. (1998) The p35/Cdk5 kinase is a neuron-specific Rac effector that inhibits Pak1 activity. Nature. 395: 194–198.

    Article  PubMed  CAS  Google Scholar 

  • Nikonenko I, Jourdain P, Alberi S, Toni N, Muller D. (2002) Activity-induced changes of spine morphology. Hippocampus 12, 585–591.

    Article  PubMed  Google Scholar 

  • Nishi A, Bibb JA, Snyder GL, Higashi H, Nairn AC, Greengard P. (2000) Amplification of dopaminergic signaling by a positive feedback loop. Proc. Natl. Acad. Sci. U.S.A. 97: 12840–12845.

    Article  PubMed  CAS  Google Scholar 

  • Norrholm SD, Bibb JA, Nestler EJ, Ouimet CC, Taylor JR, Greengard P. (2003) Cocaine-induced proliferation of dendritic spines in nucleus accumbens is dependent on the activity of cyclin-dependent kinase-5. Neuroscience 116: 19–22.

    Article  PubMed  CAS  Google Scholar 

  • O'Hare MJ, Kushwaha N, Zhang Y, Aleyasin H, Callaghan SM, Slack RS, Albert PR, Vincent I, Park D.S. (2005) Differential roles of nuclear and cytoplasmic cyclin-dependent kinase 5 in apoptotic and excitotoxic neuronal death. J. Neurosci. 25: 8954–8966.

    Article  PubMed  CAS  Google Scholar 

  • Ohshima T, Ogura H, Tomizawa K et al. (2005) Impairment of hippocampal long-term depression and defective spatial learning and memory in p35 mice. J. Neurochem. 94: 917–925.

    Article  PubMed  CAS  Google Scholar 

  • Ohshima T, Suzuki H, Morimura T, Ogawa M, Mikoshiba K (2007) Modulation of reelin signaling by cyclin-dependent kinase 5. Brain Res. 1140: 84–95.

    Article  PubMed  CAS  Google Scholar 

  • Orellana DI, Quintanilla RA, Maccioni RB. (2007) Neuroprotective effect of TNFalpha against the beta-amyloid neurotoxicity mediated by CDK5 kinase. Biochim Biophys Acta. 1773: 254–263.

    Article  PubMed  CAS  Google Scholar 

  • Paratcha G, Ibanez CF, Ledda F. (2006) GDNF is a chemoattractant factor for neuronal precursor cells in the rostral migratory stream. Mol Cell Neurosci. 31: 505–514.

    Article  PubMed  CAS  Google Scholar 

  • Patel LS, Wenzel HJ, Schwartzkroin PA. (2004) Physiological and morphological characterization of dentate granule cells in the p35 knock-out mouse hippocampus: evidence for an epileptic circuit. J. Neurosci. 24: 9005–9014.

    Article  PubMed  CAS  Google Scholar 

  • Patrick GN, Zukerberg L, Nikolic M, de la Monte S, Dikkes P, Tsai LH. (1999) Conversion of p35 to p25 deregulates Cdk5 activity and promotes neurodegeneration. Nature 402: 615–622.

    Article  PubMed  CAS  Google Scholar 

  • Patzke H, Maddineni U, Ayala R, Morabito M, Volker J, Dikkes P, Ahlijanian MK, Tsai LH. (2003) Partial rescue of the p35–/– brain phenotype by low expression of a neuronal-specific enolase p25 transgene. J Neurosci 23: 2769–2778.

    PubMed  CAS  Google Scholar 

  • Plattner F, Angelo M, Giese KP. (2006). The roles of Cdk5 and GSK3 in tau hyperphosphorylation. J. Biol. Chem. 281: 25457–25466.

    Article  PubMed  CAS  Google Scholar 

  • Rashid T, Banerjee M, Nikolic M. (2001) Phosphorylation of Pak1 by the p35/Cdk5 kinase affects neuronal morphology. J. Biol. Chem. 276: 49043–49052.

    Article  PubMed  CAS  Google Scholar 

  • Ris L, Angelo M, Plattner F, Capron B, Errington ML, Bliss TV, Godaux E, Giese KP. (2005) Sexual dimorphisms in the effect of low-level p25 expression on synaptic plasticity and memory. Eur. J. Neurosci. 21: 3023–3033.

    Article  CAS  Google Scholar 

  • Roselli F, Tirard M, Lu J, Hutzler P, Lamberti P, Livrea P, Morabito M, Almeida OF. (2005) Soluble beta-amyloid1-40 induces NMDA-dependent degradation of postsynaptic density-95 at glutamatergic synapses. J. Neurosci. 25: 11061–11070.

    Article  PubMed  CAS  Google Scholar 

  • Saito T, Onuki R, Fujita Y, Kusakawa G, Ishiguro K, Bibb JA, Kishimoto T, Hisanaga S. (2003) Developmental regulation of the proteolysis of the p35 cyclin-dependent kinase 5 activator by phosphorylation. J. Neurosci. 23: 1189–1197.

    PubMed  CAS  Google Scholar 

  • Samuels BA, Hsueh YP, Shu T, Liang H, Tseng HC, Hong CJ, Su SC, Volker J, Neve RL, Yue DT, Tsai LH. (2007) Cdk5 Promotes Synaptogenesis by Regulating the Subcellular Distribution of the MAGUK Family Member CASK. Neuron 56: 823–837.

    Article  PubMed  CAS  Google Scholar 

  • Sananbenesi F, Fischer A, Wang X, Schrick C, Neve R, Radulovic J, Tsai LH. (2007) A hippocampal Cdk5 pathway regulates extinction of contextual fear. Nat. Neurosci. 10: 1012–1019.

    Article  PubMed  CAS  Google Scholar 

  • Sarker KP, Lee KY. (2004) L6 myoblast differentiation is modulated by Cdk5 via the PI3 K-AKT-p70S6 K signaling pathway. Oncogene 23: 6064–6070.

    Article  PubMed  CAS  Google Scholar 

  • Sato Y, Taoka M, Sugiyama N, Kubo K, Fuchigami T, Asada A, Saito T, Nakajima K, Isobe T, Hisanaga S. (2007) Regulation of the interaction of Disabled-1 with CIN85 by phosphorylation with Cyclin-dependent kinase 5. Genes Cells. 12: 1315–1327.

    Article  PubMed  CAS  Google Scholar 

  • Schuman EM, Murase S. (2003) Cadherins and synaptic plasticity: activity-dependent cyclin-dependent kinase 5 regulation of synaptic beta-catenin-cadherin interactions. Philos. Trans. R. Soc. Lond. B Biol. Sci. 358: 749–756.

    Article  PubMed  CAS  Google Scholar 

  • Segal M. (2005) Dendritic spines and long-term plasticity. Nat. Rev. Neurosci. 6: 277–284.

    Article  PubMed  CAS  Google Scholar 

  • Sengupta A, Novak M, Grundke-Iqbal I, Iqbal K. (2006) Regulation of phosphorylation of tau by cyclin-dependent kinase 5 and glycogen synthase kinase-3 at substrate level. FEBS Lett. 580: 5925–5933.

    Article  PubMed  CAS  Google Scholar 

  • Sharma P, Veeranna, Sharma M, Amin ND, Sihag RK, Grant P, Ahn N, Kulkarni AB, Pant HC. (2002) Phosphorylation of MEK1 by cdk5/p35 down-regulates the mitogen-activated protein kinase pathway. J. Biol. Chem. 277: 528–534.

    Article  PubMed  CAS  Google Scholar 

  • Sharma M, Hanchate NK, Tyagi RK, Sharma P. (2007) Cyclin dependent kinase 5 (Cdk5) mediated inhibition of the MAP kinase pathway results in CREB down regulation and apoptosis in PC12 cells. Biochem. Biophys. Res. Commun. 358: 379–384.

    Article  PubMed  CAS  Google Scholar 

  • Takahashi S, Ohshima T, Cho A, et al. (2005) Increased activity of cyclin-dependent kinase 5 leads to attenuation of cocaine-mediated dopamine signaling. Proc. Natl. Acad. Sci. U.S.A. 102: 1737–1742.

    Article  PubMed  CAS  Google Scholar 

  • Tan TC, Valova VA, Malladi CS, et al. (2003) Cdk5 is essential for synaptic vesicle endocytosis. Nat. Cell. Biol. 5: 701–710.

    Article  PubMed  CAS  Google Scholar 

  • Tang YP, Shimizu E, Dube GR, Rampon C, Kerchner GA, Zhuo M, Liu G, Tsien JZ. (1999). Genetic enhancement of learning and memory in mice. Nature 401: 63–69.

    Article  PubMed  CAS  Google Scholar 

  • Taniguchi M, Taoka M, Itakura M, Asada A, Saito T, Kinoshita M, Takahashi M, Isobe T, Hisanaga S. (2007) Phosphorylation of adult type Sept5 (CDCrel-1) by cyclin-dependent kinase 5 inhibits interaction with syntaxin-1. J. Biol. Chem. 282: 7869–7876.

    Article  PubMed  CAS  Google Scholar 

  • Tomizawa K, Ohta J, Matsushita M, Moriwaki A, Li ST, Takei K, Matsui H. (2002) Cdk5/p35 regulates neurotransmitter release through phosphorylation and downregulation of P/Q-type voltage-dependent calcium channel activity. J. Neurosci. 22: 2590–2597.

    PubMed  CAS  Google Scholar 

  • Tomizawa K, Sunada S, Lu YF, et al. (2003) Cophosphorylation of amphiphysin I and dynamin I by Cdk5 regulates clathrin-mediated endocytosis of synaptic vesicles. J. Cell. Biol. 163: 813–824.

    Article  PubMed  CAS  Google Scholar 

  • Venturin M, Moncini S, Villa V, Russo S, Bonati MT, Larizza L, Riva P. (2006) Mutations and novel polymorphisms in coding regions and UTRs of CDK5R1 and OMG genes in patients with non-syndromic mental retardation. Neurogenetics 7: 59–66.

    Article  PubMed  CAS  Google Scholar 

  • Wang J, Liu S, Fu Y, Wang JH, Lu Y. (2003) Cdk5 activation induces hippocampal CA1 cell death by directly phosphorylating NMDA receptors. Nat. Neurosci. 6: 1039–1047.

    Article  PubMed  CAS  Google Scholar 

  • Wang Q, Walsh DM, Rowan MJ, Selkoe DJ, Anwyl R. (2004) Block of long-term potentiation by naturally secreted and synthetic amyloid beta-peptide in hippocampal slices is mediated via activation of the kinases c-Jun N-terminal kinase, cyclin-dependent kinase 5, and p38 mitogen-activated protein kinase as well as metabotropic glutamate receptor type 5. J. Neurosci. 24: 3370–3378.

    Article  PubMed  CAS  Google Scholar 

  • Wei FY, Nagashima K, Ohshima T et al. (2005a) Cdk5-dependent regulation of glucose-stimulated insulin secretion. Nat. Med. 11: 1104–1108.

    Article  CAS  Google Scholar 

  • Wei FY, Tomizawa K, Ohshima T, et al. (2005b). Control of cyclin-dependent kinase 5 (Cdk5) activity by glutamatergic regulation of p35 stability. J. Neurochem. 93: 502–512.

    Article  CAS  Google Scholar 

  • Wenzel HJ, Robbins CA, Tsai LH, Schwartzkroin PA. (2001) Abnormal morphological and functional organization of the hippocampus in a p35 mutant model of cortical dysplasia associated with spontaneous seizures. J Neurosci 21: 983–998.

    PubMed  CAS  Google Scholar 

  • Xin X, Ferraro F, Back N, Eipper BA, Mains RE. (2004) Cdk5 and Trio modulate endocrine cell exocytosis. J. Cell. Sci. 117: 4739–4748.

    Article  PubMed  CAS  Google Scholar 

  • Yan Z, Chi P, Bibb JA, Ryan TA, Greengard P. (2002) Roscovitine: a novel regulator of P/Q-type calcium channels and transmitter release in central neurons. J. Physiol. 540: 761–770.

    Article  PubMed  CAS  Google Scholar 

  • Yamashita N, Morita A, Uchida Y, Nakamura F, Usui H, Ohshima T, Taniguchi M, Honnorat J, Thomasset N, Takei K, Takahashi T, Kolattukudy P, Goshima Y. (2007) Regulation of spine development by semaphorin3A through cyclin-dependent kinase 5 phosphorylation of collapsin response mediator protein 1. J. Neurosci. 27: 12546–12554.

    Article  PubMed  CAS  Google Scholar 

  • Zhang J, Krishnamurthy PK, Johnson GV. (2002) Cdk5 phosphorylates p53 and regulates its activity. J. Neurochem. 81: 307–313.

    Article  PubMed  CAS  Google Scholar 

  • Zhen X, Goswami S, Abdali SA, Gil M, Bakshi K, Friedman E. (2004) Regulation of cyclin-dependent kinase 5 and calcium/calmodulin-dependent protein kinase II by phosphatidylinositol-linked dopamine receptor in rat brain Mol. Pharmacol. 66: 1500–1507.

    CAS  Google Scholar 

  • Zheng YL, Li BS, Kanungo J, Kesavapany S, Amin N, Grant P, Pant HC. (2007) Cdk5 Modulation of mitogen-activated protein kinase signaling regulates neuronal survival. Mol. Biol. Cell. 18: 404–413.

    Article  PubMed  CAS  Google Scholar 

  • Zucker RS, Regehr WG. (2002) Short-term synaptic plasticity. Annu. Rev. Physiol. 64: 355–405.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Florian Plattner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Plattner, F., Giese, K.P., Angelo, M. (2008). Involvement of Cdk5 in Synaptic Plasticity, and Learning and Memory. In: Ip, N.Y., Tsai, LH. (eds) Cyclin Dependent Kinase 5 (Cdk5). Springer, Boston, MA. https://doi.org/10.1007/978-0-387-78887-6_16

Download citation

Publish with us

Policies and ethics