Skip to main content

Kinetic Properties of Metabolic Networks

  • Chapter
  • First Online:

As seen in Chapters 8–10, models of cell metabolism based on steady-state stoichiometric network simulation have been applied successfully to study plant metabolism. However, such models deliver static views of metabolism and do, therefore, not capture the dynamic behavior of metabolic networks. In addition to reaction stoichiometry, kinetic simulation of metabolic networks considers the concentration of metabolites and enzymes, as well as the kinetic properties of enzymes. Kinetic models can be characterized and interrogated, for example, to predict the effect of changes in enzyme activities, in order to identify possible targets for the re-design of metabolism, which is of central importance for biotechnology.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    As opposed to linear pathways, in networks, FCCs can also be negative.

References

  1. Brown GC, Hafner RP, Brand, MD (1990) A “top-down” approach to the determination of control coefficients by metabolic control theory. Eur J Biochem 188:321–325.

    Article  PubMed  CAS  Google Scholar 

  2. Farquhar, GD, von Caemmerer, C, Berry, JA (1980) A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta 149:78–90.

    Article  CAS  Google Scholar 

  3. Farre EM, Tiessen A, Roessner U, Geigenberger P, Trethewey RN, Willmitzer L (2001) Analysis of the compartmentation of glycolytic intermediates, nucleotides, sugars, organic acids, amino acids, and sugar alcohols in potato tubers using a nonaqueous fractionation method. Plant Physiol 127:685–700.

    Article  PubMed  CAS  Google Scholar 

  4. Fell DA (1997) Understanding the Control of Metabolism. Portland Press, London.

    Google Scholar 

  5. Fischer E, Sauer U (2005) Large-scale in vivo flux analysis shows rigidity and suboptimal performance of Bacillus subtilis metabolism. Nat Genet 37:636–640.

    Article  PubMed  CAS  Google Scholar 

  6. Fridlyand LE, Scheibe R (2000) Regulation in metabolic systems under homeostatic flux control. Arch Biochem Biophys 374:198–206.

    Article  PubMed  CAS  Google Scholar 

  7. Geigenberger P, Stitt M, Fernie AR (2004) Metabolic control analysis and regulation of the conversion of sucrose to starch in growing potato tubers. Plant Cell Environ 27: 655–673.

    Article  CAS  Google Scholar 

  8. Gerhardt R, Stitt M, Heldt HW (1987) Subcellular metabolite levels in spinach leaves. Plant Physiol 83:399–407.

    Article  PubMed  CAS  Google Scholar 

  9. Heijnen JJ, van Gulik WM, Shimizu H, Stephanopoulos G (2004) Metabolic flux control analysis of branch points: an improved approach to obtain flux control coefficients from large perturbation data. Metabol Eng 6:391–400.

    Article  CAS  Google Scholar 

  10. Heijnen JJ (2005) Approximative kinetic formats used in metabolic network modeling. Biotechnol Bioeng 91:534–545.

    Article  PubMed  CAS  Google Scholar 

  11. Heinrich R, Rapoport RA (1974) A linear steady-state treatment of enzymatic chains. general properties, control and effector strength. Eur. J. Biochem. 42:89–95.

    Article  PubMed  CAS  Google Scholar 

  12. Heinrich R, Schuster S (1996) The Regulation of Cellular Systems. Chapman & Hall, New York.

    Google Scholar 

  13. Hoops S, Sahle S, Gauges R, Lee C, Pahle J, Simus N, Singhal M, Xu L, Mendes P, Kummer U (2006) COPASI – a COmplex PAthway SImulator. Bioinformatics 22:3067–3074.

    Article  PubMed  CAS  Google Scholar 

  14. Kacser H, Burns JA (1973) The control of flux. Symp Soc Exp Biol 27:65–104.

    PubMed  CAS  Google Scholar 

  15. King EL, Altman C (1956) A schematic method of deriving the rate laws for enzyme-catalyzed reactions. J Phys Chem 60:1375–1378.

    Article  CAS  Google Scholar 

  16. Mendes P, Kell D (1998) Non-linear optimization of biochemical pathways: applications to metabolic engineering and parameter estimation. Bioinformatics 14:869–883.

    Article  PubMed  CAS  Google Scholar 

  17. Morandini P, Salamini F (2003) Plant biotechnology and breeding: allied for years to come. Trends Plant Sci 8:70–75.

    Article  PubMed  CAS  Google Scholar 

  18. Moritz B, Striegel K, de Graaf AA, Sahm H (2000) Kinetic properties of the glucose-6-phosphate and 6-phosphogluconate dehydrogenases from Corynebacterium glutamicum and their application for predicting pentose phosphate pathway flux in vivo. Eur J Biochem 267:3442–3452.

    Article  PubMed  CAS  Google Scholar 

  19. Morgan JA, Rhodes D (2002) Mathematical modeling of plant metabolic pathways. Metab Eng 4:80–89.

    Article  PubMed  CAS  Google Scholar 

  20. Olivier BG, Snoep JL (2004) Web-based kinetic modelling using JWS Online. Bioinformatics 20:2143–2144.

    Article  PubMed  CAS  Google Scholar 

  21. Olivier BG, Rohwer JM, Hofmeyr JHS (2005) Modelling cellular systems with PySCeS. Bioinformatics 21:560–561.

    Article  PubMed  CAS  Google Scholar 

  22. Pettersson G, Ryde-Pettersson U (1988) A mathematical model of the Calvin photosynthesis cycle. Eur J Biochem 175:661–672.

    Article  PubMed  CAS  Google Scholar 

  23. Pettersson G, Ryde-Pettersson U (1989) On the regulatory significance of inhibitors acting on non-equilibrium enzymes in the Calvin photosynthesis cycle. Eur J Biochem 182:373–377.

    Article  PubMed  CAS  Google Scholar 

  24. Poolman MG, Fell DA, Thomas S (2000) Modelling photosynthesis and its control. J Exp Bot 51:319–328.

    Article  PubMed  CAS  Google Scholar 

  25. Poolman MG, Olçer H, Lloyd JC, Raines CA, Fell DA (2001) Computer modelling and experimental evidence for two steady states in the photosynthetic Calvin cycle. Eur J Biochem 268:2810–2816.

    Article  PubMed  CAS  Google Scholar 

  26. Raines CA (2003) The Calvin cycle revisited. Photosynth Res 75: 1–10.

    Article  PubMed  CAS  Google Scholar 

  27. Ramli US, Salas JJ, Quant PA, Harwood JL (2002) Control analysis of lipid biosynthesis in tissue cultures from oil crops shows that flux control is shared between fatty acid synthesis and lipid assembly. Biochem J 364:393–401.

    Article  PubMed  CAS  Google Scholar 

  28. Ramli US, Salas JJ, Quant PA, Harwood JL (2005) Metabolic control analysis reveals an important role for diacylglycerol acyltransferase in olive but not in oil palm lipid accumulation. FEBS J 272:5764–5770.

    Article  PubMed  CAS  Google Scholar 

  29. ap Rees T, Hill SA (1994) Metabolic control analysis of plant metabolism. Plant Cell Environ 17:587–599.

    Article  Google Scholar 

  30. Rios-Estepa R, Lange BM (2007) Experimental and mathematical approaches to modeling plant metabolic networks. Phytochemistry 68:2351–2374.

    Article  PubMed  CAS  Google Scholar 

  31. Rohwer JM, Botha FC (2001) Analysis of sucrose accumulation in the sugar cane culm on the basis of in vitro kinetic data. Biochem J 358:437–445.

    Article  PubMed  CAS  Google Scholar 

  32. Savageau MA. 1976. Biochemical system analysis. Addison- Wesley Publishing Company, Reading, MA.

    Google Scholar 

  33. Schuster S, Dandekar T, Fell DA (1999) Detection of elementary flux modes in biochemical networks: a promising tool for pathway analysis and metabolic engineering. Trends Biotechnol 17: 53–60.

    Article  PubMed  CAS  Google Scholar 

  34. Small JR, Kacser H (1993) Responses of metabolic systems to large changes in enzyme activities and effectors. 1. The linear treatment of unbranched chains. Eur J Biochem 213: 613–624.

    Article  PubMed  CAS  Google Scholar 

  35. Small JR, Kacser H (1993) Responses of metabolic systems to large changes in enzyme activities and effectors. 2. The linear treatment of branched pathways and metabolite concentrations. Assessment of the general non-linear case. Eur J Biochem 213:625–640.

    Article  PubMed  CAS  Google Scholar 

  36. Stark DM, Timmerman KP, Barry GF, Preiss J, Kishore GM (1992) Regulation of the amount of starch in plant-tissues by ADP glucose pyrophosphorylase. Science 258:287–292.

    Article  PubMed  CAS  Google Scholar 

  37. Simpson TW, Shimizu H, Stephanopoulos G (1998) Experimental determination of group flux control coefficients in metabolic networks. Biotechnol Bioeng 58:149–153.

    Article  PubMed  CAS  Google Scholar 

  38. Stephanopoulos G, Vallino JJ (1991) Network rigidity and metabolic engineering in metabolite overproduction. Science 252:1675–1681.

    Article  PubMed  CAS  Google Scholar 

  39. Stephanopoulos G, Simpson TW (1997) Flux amplification in complex metabolic networks. Chem Eng Sci 52:2607–2627.

    Article  CAS  Google Scholar 

  40. Stephanopoulos GN, Aristidou AA, Nielsen J (1998) Metabolic Engineering: Principles and Methodologies. Academic Press, San Diego, CA 1998.

    Google Scholar 

  41. Teusink B, Passarge J, Reijenga CA, Esgalhado E, van der Weijden CC, Schepper M, Walsh MC, Bakker BM, van Dam K, Westerhoff HV, Snoep JL (2000) Can yeast glycolysis be understood in terms of in vitro kinetics of the constituent enzymes? Testing biochemistry. Eur J Biochem 267:5313–5329.

    Article  PubMed  CAS  Google Scholar 

  42. Theobald U, Mailinger W, Baltes M, Rizzi M, Reuss M (1997) In vivo analysis of metabolic dynamics in Saccharomyces cerevisiae : I. Experimental observations. Biotechnol Bioeng 55:305–16.

    Article  PubMed  CAS  Google Scholar 

  43. Tjaden J, Möhlmann T, Kampfenkel K, Henrichs G, Neuhaus E (1998) Altered plastidic ATP/ADP-transporter activity influences potato (Solanum tuberosum L.) tuber morphology, yield and composition of tuber starch. Plant J 16:531–540.

    Article  CAS  Google Scholar 

  44. Uys L, Botha FC, Hofmeyr JH, Rohwer JM (2007) Kinetic model of sucrose accumulation in maturing sugarcane culm tissue. Phytochemistry 68:2375–2392.

    Article  PubMed  CAS  Google Scholar 

  45. Varela C, Agosin E, Baez M, Klapa M, Stephanopoulos G (2003) Metabolic flux redistribution in Corynebacterium glutamicum in response to osmotic stress. Appl Microbiol Biotechnol 60:547–555.

    PubMed  CAS  Google Scholar 

  46. Visser D, Heijnen JJ (2003) Dynamic simulation and metabolic redesign of a branched pathway using lin-log kinetics. Metabol Eng 5:164–176.

    Article  CAS  Google Scholar 

  47. Voit EO (2000) Computational analysis of biochemical systems. A Practical Guide for Biochemists and Molecular Biologists, Cambridge University Press, Cambridge.

    Google Scholar 

  48. Zhu XG, de Sturler E, Long SP (2007) Optimizing the distribution of resources between enzymes of carbon metabolism can dramatically increase photosynthetic rate: a numerical simulation using an evolutionary algorithm. Plant Physiol 145: 513–526.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Schwender, J. (2009). Kinetic Properties of Metabolic Networks. In: Schwender, J. (eds) Plant Metabolic Networks. Springer, New York, NY. https://doi.org/10.1007/978-0-387-78745-9_11

Download citation

Publish with us

Policies and ethics