Skip to main content

The Plant’s Energy Balance

  • Chapter

Abstract

Temperature is a major environmental factor that determines plant distribution. Temperature affects virtually all plant processes, ranging from enzymatically catalyzed reactions and membrane transport to physical processes such as transpiration and the volatilization of specific compounds. Species differ in the activation energy of particular reactions and, consequently, in the temperature responses of most physiological process (e.g., photosynthesis, respiration, biosynthesis). Given the pivotal role of temperature in the ecophysiology of plants, it is critical to understand the factors that determine plant temperature. Air temperature in the habitat provides a gross approximation of plant temperature. Air temperature in a plant’s microclimate, however, may differ substantially from air temperature measured by standard meteorological methods. The actual temperature of a plant organ often deviates substantially from that of the surrounding air. We can only understand the temperature regime of plants and, therefore, the physiological responses of plants to their thermal environment through study of microclimate and the plant’s energy balance.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Campbell, G.S. 1981. Fundamentals of radiation and temperature relations. In: Encyclopedia of plant physiology, Vol 12A, O.L. Lange, P.S. Nobel, C.B. Osmond, & H. Ziegler (eds.). Springer-Verlag, Berlin, pp. 11–40.

    Google Scholar 

  • Campbell, G.S. & Norman, J.M. 1998. An introduction to environmental biophysics. 2nd ed. Springer-Verlag, New York.

    Book  Google Scholar 

  • Chien, J.C. & Sussex, I.M. 1996. Differential regulation of trichome formation on the adaxial and abaxial leaf surfaces by gibberellins and photoperiod in Arabidopsis thaliana (L.) Heynh. Plant Physiol. 111: 1321–1328.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ehleringer, J. 1983. Characterization of a glabrate Encelia farinosa mutant: Morphology, ecophysiology, and field observations. Oecologia 57: 303–310.

    Article  Google Scholar 

  • Ehleringer, J. 1984. Ecology and ecophysiology of leaf pubescence in North American desert plants. In: Biology and chemistry of plant trichomes, E. Rodrigues, P.L. Healy, & I. Mehta (eds.). Plenum Press, New York, pp. 113–132.

    Chapter  Google Scholar 

  • Ehleringer, J.R. 1988. Changes in leaf characteristics of species along elevational gradients on the wasatch front, Utah. Am. J. Bot. 75: 680–689.

    Article  Google Scholar 

  • Ehleringer, J.R. & Björkman, O. 1978. Pubescence and leaf spectral characteristics in a desert shrub, Encelia farinosa. Oecologia 36: 151–162.

    Article  Google Scholar 

  • Ehleringer, J.R. & Cook, C.S. 1990. Characteristics of Encelia species differing in leaf reflectance and transpiration rate under common garden conditions. Oecologia 82: 484–489.

    Article  Google Scholar 

  • Ehleringer, J.R. & Forseth, I. 1980. Solar tracking by plants. Science 210: 1094– 1098.

    Article  CAS  PubMed  Google Scholar 

  • Ehleringer, J.R. & Mooney, H.A. 1978. Leaf hairs: Effects on physiological activity and adaptive value to a desert shrub. Oecologia 37: 183–200.

    Article  Google Scholar 

  • Ehleringer, J. Mooney, H.A. Gulmon, S.L., & Rundel, P. 1980. Orientation and its consequences for Copiapoa (Cactaceae) in the Atacama desert. Oecologia 46: 63–67.

    Article  Google Scholar 

  • Gamon, J.A. & Pearcy, R.W. 1989. Leaf movement, stress avoidance and photosynthesis in Vitis californica. Oecologia 79: 475–481.

    Article  Google Scholar 

  • Jurik, T.W., Zhang, H., & Pleasants, J.M. 1990. Ecophysiological consequences of non-random leaf orientation in the prairie compass plant, Silphium laciniatum. Oecologia 82: 180–186.

    Article  Google Scholar 

  • Kao, W.-Y. & Forseth, I.N. 1992. Diurnal leaf movement, chlorophyll fluorescence and carbon assimilation in soybean grown under different nitrogen and water availabilities. Plant Cell Environ. 15: 703–710.

    Article  CAS  Google Scholar 

  • Kao, W.-Y. & Tsai, T.-T. 1998. Tropic leaf movements, photosynthetic gas exchange, δ13C and chlorophyll a fluorescence of three soybean species in response to water availability. Plant Cell Environ. 21: 1055–1062.

    Article  CAS  Google Scholar 

  • Kjellberg, B., Karlsson, S., & Kerstensson, I. 1982. Effects of heliotropic movements of flowers of Dryas octopetala L. on gynoecium temperature and seed development. Oecologia 54: 10–13.

    Article  Google Scholar 

  • Körner, C. 1983. Influence of plant physiognomie on leaf temperature on clear midsummer days in the Snowy Mountains, south-eastern Australia. Acta Oecol. 4: 117–124.

    Google Scholar 

  • Meinzer, F. & Goldstein, G. 1985. Some consequences of leaf pubescence in the Andean giant rosette plant Espeletia timotensis. Ecology 66: 512–520.

    Article  Google Scholar 

  • Mooney, H.A., Ehleringer, J.R., & Björkman, O. 1977. The energy balance of leaves of the evergreen shrub Atriplex hymenelytra. Oecologia 29: 301–310.

    Article  Google Scholar 

  • Nobel, P.S. 1983. Biophysical plant physiology and ecology. W.H. Freeman and Co., San Francisco.

    Google Scholar 

  • Schulze, E.-D., Eller, B.M., Thomas, D.A., Von Willert, D.J., & Brinckmann, E. 1980. Leaf temperatures and energy balance of Welwitschia mirabilis in its natural habitat. Oecologia 44: 258–262.

    Article  Google Scholar 

  • Smith, W.K., Bell, D.T., & Shepherd, K.A. 1998. Associations between leaf structure, orientation, and sunlight exposure in five Western Australian communities. Am. J. Bot. 85: 56–63.

    Article  PubMed  Google Scholar 

  • Stoutjesdijk, P. & Barkman, J.J. 1987. Microclimate, vegetation and fauna. Opulus Press, Upsala.

    Google Scholar 

  • Sherry, R.A. & Galen, C. 1998. The mechanism of floral heliotropism in the snow buttercup, Ranunculus adoneus. Plant Cell Environ. 21: 983–993.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Lambers, H., Chapin, F.S., Pons, T.L. (2008). The Plant’s Energy Balance. In: Plant Physiological Ecology. Springer, New York, NY. https://doi.org/10.1007/978-0-387-78341-3_6

Download citation

Publish with us

Policies and ethics