Skip to main content

Plant Water Relations

  • Chapter
Plant Physiological Ecology

Abstract

Although water is the most abundant molecule on the Earth’s surface, the availability of water is the factor that most strongly restricts terrestrial plant production on a global scale. Low water availability limits the productivity of many natural ecosystems, particularly in dry climates (Fig. 3.1). In addition, losses in crop yield due to water stress exceed losses due to all other biotic and environmental factors combined (Boyer 1985). Regions where rainfall is abundant and fairly evenly distributed over the growing season, such as in the wet tropics, have lush vegetation. Where summer droughts are frequent and severe, forests are replaced by grasslands, as in the Asian steppes and North American prairies. Further decrease in rainfall results in semidesert, with scattered shrubs, and finally deserts. Even the effects of temperature are partly exerted through water relations because rates of evaporation and transpiration are correlated with temperature. Thus, if we want to explain natural patterns of productivity or to increase productivity of agriculture or forestry, it is crucial that we understand the controls over plant water relations and the consequences for plant growth of an inadequate water supply.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alamillo, J.M. & Bartels, D. 1996. Light and stage of development influence the expression of desiccation-induced genes in the resurrection plant Craterostigma plantagineum. Plant Cell Environ. 19: 300–310.

    CAS  Google Scholar 

  • Alder, N.N., Sperry, J.S., & Pockman, W.T. 1996. Root and stem xylem embolism, stomatal condctance, and leaf turgor in Acer grandidentatum populations along soil moisture gradient. Oecologia 105: 293–301.

    Google Scholar 

  • Arber, A. 1923. Leaves of the Gramineae. Bot. Gaz., 76: 374–388.

    Google Scholar 

  • Assmann, S.M. 1999. The cellular basis of guard cell sensing of rising CO2. Plant Cell Environ. 22: 629–637.

    CAS  Google Scholar 

  • Assmann, S.M. & Shimazaki, K. 1999. The multisensory guard cell. Stomatal responses to blue light and abscisic acid. Plant Physiol. 119: 809–815.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Assmann, S.M., Snyder, J.A., & Lee, Y.H. J. 2000. ABA-deficient (aba1) and ABA-insensitive (abi1-1, abi2-1) mutants of Arabidopsis have a wild-type stomatal response to humidity. Plant Cell Environ. 23: 387–395.

    CAS  Google Scholar 

  • Baas, P. 1986. Ecological patterns in xylem anatomy. In: On the economy of plant form and function, T.J. Givnish (ed.). Cambridge University Press, Cambridge, pp. 327–352.

    Google Scholar 

  • Bartels, D. & Salamini, F. 2001. Desiccation tolerance in the resurrection plant Craterostigma plantagineum. A contribution to the study of drought tolerance at the molecular level. Plant Physiol. 127: 1346–1353.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bartels, D. & Sunkar, R. 2005. Drought and salt tolerance in plants. Crit. Rev. Plant Sci. 24: 23–58.

    CAS  Google Scholar 

  • Beal,W.J. 1886. The bulliform or hygroscopic cells of grasses and sedges compared. Bot. Gaz. 11: 321–326.

    Google Scholar 

  • Blatt, M.R. 2000. Cellular signaling and volume control in stomatal movements in plants. Annu. Rev. Cell Dev. Biol. 16: 221–241.

    CAS  PubMed  Google Scholar 

  • Blatt, M.R. & Grabov, A. 1997. Signalling gates in abscisic acid-mediated control of gueard cell ion channels. Physiol. Plant. 100: 481–490.

    CAS  Google Scholar 

  • Bleby, T.M., Burgess, S.S.O., & Adams, M.A. 2004. A validation, comparison and error analysis of two heat-pulse methods for measuring sap flow in Eucalyptus marginata saplings. Funct. Plant Biol. 31: 645–658.

    Google Scholar 

  • Böhm, J. 1893. Capillarität und Saftsteigen. Ber. Dtsch. Bot. Ges. 11: 203–212.

    Google Scholar 

  • Boyer, J.S. 1985. Water transport. Annu. Rev. Plant Physiol. 36: 473–516.

    Google Scholar 

  • Borchert, R. 1994. Soil and stem water storage determine phenology and distribution of tropical dry forest trees. Ecology 75: 1437–1449.

    Google Scholar 

  • Boutton, T.W., Archer, S.R., & Midwood, A.J. 1999. Stable isotopes in ecosystem science: Structure, function and dynamics of a subtropical savanna. Rapid Comm. Mass Spectrom. 13: 1263–1277.

    CAS  Google Scholar 

  • Bray, E.A. 1993. Molecular responses to water deficit. Plant Physiol. 103: 1035–1040.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bray, E.A. 2004. Genes commonly regulated by water-deficit stress in Arabidopsis thaliana. J. Exp. Bot. 55: 2331–2341.

    CAS  PubMed  Google Scholar 

  • Bréda, N., Granier, A., Barataud, F., & Moyne, C. 1995. Soil water dynamics in an oak stand. I. Soil moisture, water potential and water uptake by roots. Plant Soil 172: 17–27.

    Google Scholar 

  • Burgess, S. & Bleby, T. 2006. Redistribution of soil water by lateral roots mediated by stem tissues. J. Exp. Bot. 57: 3283– 3291.

    CAS  PubMed  Google Scholar 

  • Burgess, S.S.O., Adams, M.A., Turner, N.C., & Ong, C.K. 1998. The redistribution of soil water by tree root systems. Oecologia 115: 306–311.

    Google Scholar 

  • Burgess, S.S.O., Adams, M.A., Turner, N.C., White, D.A., & Ong, C.K. 2001a. Tree roots: Conduits for deep recharge of soil water. Oecologia 126: 158–165.

    Google Scholar 

  • Burgess, S.S.O., Adams, M.A., Turner, N.C., Beverly, C.R., Ong C.K., Khan, A.A.H., & Bleby, T.M. 2001b. An improved heat pulse method to measure low and reverse rates of sap flow in woody plants. Tree Physiol. 21: 589–598.

    CAS  Google Scholar 

  • Caldwell, M.M. & Richards, J.H. 1989. Hydraulic lift: Water efflux from upper roots improves effectiveness of water uptake by deep roots. Oecologia 79: 1–5.

    Google Scholar 

  • Canadell, J., Jackson, R.B., Ehleringer, J.R., Mooney, H.A., Sala, O.E., & Schulze, E-D. 1996. Maximum rooting depth of vegetation types at the global scale. Oecologia 108: 583–595.

    Google Scholar 

  • Canny, M.J. 1997. Vessel contents during transpiration – Embolism and refilling. Am. J. Bot. 84: 1223–1230.

    CAS  PubMed  Google Scholar 

  • Canny, M.J. 1998. Applications of the compensating pressure theory of water transport. Am. J. Bot. 85: 897–909.

    CAS  PubMed  Google Scholar 

  • Čermák, J., Demi, M., & Penka M. 1973. A new method of sap flow rate determination in trees. Biol. Plant. 15: 171–178.

    Google Scholar 

  • Čermák, J., Kučera, J., & Nadezhdina. N. 2004. Sap flow measurements with some thermodynamic methods, flow integration within trees and scaling up from sample trees to entire forest stands. Trees - Struc. Funct. 18: 529–546.

    Google Scholar 

  • Chaumont, F., Moshelion, M., & Daniels, M.J. 2005. Regulation of plant aquaporin activity. Biol. Cell. 97: 749–764.

    CAS  PubMed  Google Scholar 

  • Chiariello, N.R., Field, C.B., & Mooney, H.A. 1987. Midday wilting in a tropical pioneer tree. Funct. Ecol. 1: 3–11.

    Google Scholar 

  • Cochard, H., Lemoine, D., & Dreyer, E. 1999. The effects of acclimation to sunlight on the xylem vulnerability to embolism in Fagus sylvatica . Plant Cell Environ. 22: 101–108.

    Google Scholar 

  • Comstock, J., & Ehleringer, J. 1992. Correlating genetic variation in carbon isotopic composition with complex climatic gradients. Proc. Natl. Acad. Sci. USA 89: 7747–7751.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Corbin, J.D., Thomsen, M.A., Dawson, T.E., & D’Antonia, C.M. 2005. Summer water use by California coastal prairie grasses: Fog, drought, and community composition. Oecologia 145: 511–521.

    PubMed  Google Scholar 

  • Correia, M.J., Pereira, J.S., Chaves, M.M., Rodrigues, M.L., & Pacheo, C.A. 1995. ABA xylem concentrations determine maximum daily leaf conductance of field-grown Vitis vinifera L. plants. Plant Cell Environ. 18: 511–521.

    CAS  Google Scholar 

  • Cowan, I.R. 1977. Water use in higher plants. In: Water. Planets, plants and people, A.K. McIntyre (ed.). Australian Academy of Science, Canberra, pp. 71–107.

    Google Scholar 

  • Crews, L.J., McCully, M.E., Canny, M.J., Huang, C.X., & Ling, L.E. 1998. Xylem feeding by spittlebug nymphs: Some observations by optical and cryo-scanning electron microscopy. Am. J. Bot. 85: 449–460.

    CAS  PubMed  Google Scholar 

  • Dace, H., Sherwin, H.W., Illing, N., & Farrant, J.M. 1998. Use of metabolic inhibitors to elucidate mechanisms of recovery from desiccation stress in the resurrection plant Xerophyta humilis. Plant Growth Regul. 24: 171–177.

    CAS  Google Scholar 

  • Daniels, M.J., Mirkov, T.E., & Chrispeels, M.J. 1994. The plasma membrane of Arabidopsis thaliana contains a mercurey-insensitive aquaporin that is a homolog of the tonoplast water channel protein TIP. Plant Physiol. 106: 1325–1333.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Darwin, C. 1880. The power of movement in plants. John Murray, London.

    Google Scholar 

  • Darwin, F. 1898. Observations on stomata. Phil Trans. Royal Soc., Ser. B 190: 531–621.

    Google Scholar 

  • Davies, W.J., Tardieu, F., & Trejo, C.L. 1994. How do chemical signals work in plants that grow in drying soil? Plant Physiol. 104: 309–314.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dawson, T.E. 1993. Hydraulic lift and water use by plants: Implications for water balance, performance and plant–plant interactions. Oecologia 95: 565–574.

    Google Scholar 

  • Dawson, T.E. 1998. Fog in the California redwood forest: Ecosystem inputs and use by plants. Oecologia 117: 476–485.

    Google Scholar 

  • Dawson, T.E., Mambelli, S., Plamboeck, A.H., Templer, P.H., & Tu, K.P. 2002. Stable isotopes in plant ecology. Annu. Rev. Ecol. Syst. 33: 507–559.

    Google Scholar 

  • Dixon, H.H. 1914. Transpiration and the ascent of sap in plants. Macmillan, London.

    Google Scholar 

  • Dixon, H.H. & Joly, J. 1894. On the ascent of sap. Ann. Bot. 8: 468–470.

    Google Scholar 

  • Dodd, I.C. 2005. Root-to-shoot signalling: Assessing the roles “up” in the up and down world of long-distance signalling in planta. Plant Soil 274: 251–270.

    CAS  Google Scholar 

  • Eamus D. & Shanahan S.T. 2002. A rate equation model of stomatal responses to vapour pressure deficit and drought. BMC Ecology 2: 1–14.

    Google Scholar 

  • Ehleringer, J.R. & Cooper, T.A. 1988. Correlations between carbon isotope ratio and microhabitat in desert plants. Oecologia 76: 562–566.

    Google Scholar 

  • Ehleringer, J.R., Phillips, S.L., Schuster, W.S.F., & Sandquist, D.R. 1991. Differential utilization of summer rains by desert plants Oecologia 75: 1–7.

    Google Scholar 

  • Enns, L.C., McCully, M.E., & Canny, M.J. 1998. Solute concentrations in xylem sap along vessels of maize primary roots at high root pressure. J. Exp. Bot. 49: 1539–1544.

    CAS  Google Scholar 

  • Enstone, D.E., Peterson, C.A., & Ma, F. 1989. Root endodermis and exodermis: Structure, function, and responses to the environment. J. Plant Growth Regul. 21: 335–351.

    Google Scholar 

  • Ewers, F.W. & Fisher, J.B. 1991. Why vines have narrow stems: Histological trends in Bauhinia fassoglensis (Fabaceae). Oecologia 88: 233–237.

    Google Scholar 

  • Ewers, F.W., Fisher, J.B., & Chiu, S.T. 1990. A survey of vessel dimensions in stems of tropical lianas and other growth forms. Oecologia 84: 544–552.

    Google Scholar 

  • Farquhar, G.D., Barbour, M.M., & Henny, B.K. 1998. Interpretation of oxygen isotope composition of leaf material. In: Stable isotopes, H. Griffiths (ed.). BIOS Scientific Publishers, Oxford, pp. 27–62.

    Google Scholar 

  • Fichtner, K. & Schulze, E.-D. 1990. Xylem water flow in tropical vines as measured by a steady state heating method. Oecologia 82: 355–361.

    Google Scholar 

  • Floto, F. 1999. Stephen Hales and the cohesion theory. Trends Plant Sci. 6: 209.

    Google Scholar 

  • Franks, P.J., Cowan, I.R., Tyerman, S.D., Cleary, A.L., Lloyd, J., & Farquhar, G.D. 1995. Guard cell pressure/aperture characteristics measured with the pressure probe. Plant Cell Environ. 18: 795–800.

    Google Scholar 

  • Franks, P.J., Cowan, I.R., & Farquhar, G.D. 1997. The apparent feedforward response of stomata to air vapour pressure deficit: Information revealed by different experimental procedures with two rainforest species. Plant Cell Environ. 20: 142–145.

    Google Scholar 

  • Franks, P.J. & Farquhar, G.D. 2007. The mechanical diversity of stomata and its significance in gas-exchange control. Plant Physiol. 143: 78–87.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fu, Q.A. & Ehleringer, J.R. 1989. Heliotropic leaf movements in common beans controlled by air temperature. Plant Physiol. 91: 1162– 1167.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fuchs, E.E. & Livingston, N.J. 1996. Hydraulic control of stomatal conductance in Douglas fir [Pseudotsuga menziesii (Mirb.) Franco] and alder [Alnus rubra (Bong)] seedlings. Plant Cell Environ. 19: 1091–1098.

    Google Scholar 

  • Gaff, D.F. 1981. The biology of resurrection plants. In: The Biology of Australian plants, J.S. Pate & A.J. McComb (eds.). University of Western Australia Press, Nedlands, pp. 115–146.

    Google Scholar 

  • Gamon, J.A. & Pearcy, R.W. 1989. Leaf movement, stress avoidance and photosynthesis in Vitis californica. Oecologia 79: 475–481.

    Google Scholar 

  • Gartner, B.L. 1995. Patterns of xylem variation within a tree and their hydraulic and mechanical consequences. In: Plant stems. Physiology and functional morphology, B.L. Gartner (ed.), Academic Press, San Diego, pp. 125–149.

    Google Scholar 

  • Gessler, A., Peuke, A.D., Keitel, C., & Farquhar G.D. 2007. Oxygen isotope enrichment of organic matter in Ricinus communis during the diel course and as affected by assimilate transport. New Phytol. 174: 600–613.

    CAS  PubMed  Google Scholar 

  • Gollan, T., Schurr, U., & Schulze, E.-D. 1992. Stomatal response to drying soil in relation to changes in the xylem sap composition of Helianthus annuus. I. The concentrations of cations, anions, amino acids in, and pH of, the xylem sap. Plant Cell Environ. 15: 551–559.

    CAS  Google Scholar 

  • Green, S., Clothier, B., & Jardine, B. 2003. Theory and practical application of heat pulse to measure sap flow. Agron. J. 95: 1371–1379.

    Google Scholar 

  • Grieve, B.J. & Hellmuth, E.O. 1970. Eco-physiology of Western Australian plants. Oecol. Plant. 5: 34–67.

    Google Scholar 

  • Griffith, M., Lumb, C., Wiseman, S.B., Wisniewski, M., Johnson, R.W., & Marangoni, A.G. 2005. Antifreeze proteins modify the freezing process in planta. Plant Physiol. 138: 330–340.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Harten, J.B. & Eickmeier, W.G. 1986. Enzyme dynamics of the resurrection plant Selaginella lepidophylla (Hook. & Grev.) spring during rehydration. Plant Physiol. 82: 61–64.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hartung, W., Sauter, A., Turner, N.C., Fillery, I., & Heilmeier, H. 1996. Abscisic acid in soils: What is its function and which mechanisms influence its concentration? Plant Soil 184: 105–110.

    CAS  Google Scholar 

  • Hedrich, R. & Schroeder, J.I. 1989. The physiology of ion channels and electrogenic pumps in higher plants. Annu. Rev.Plant Physiol. 40: 539–569.

    Google Scholar 

  • Hellmers, H., Horton, J.S., Juhren, G., & O’Keefe, J. 1955. Root systems of some chaparral plants in southern California. Ecology 36: 667–678.

    Google Scholar 

  • Hendrey, G.A.F. 1993. Evolutionary origins and natural functions of fructans - a climatological, biogeographic and mechanistic appraisal. New Phytol. 123: 3–14.

    Google Scholar 

  • Hirasawa, T., Takahashi, H., Suge, H., & Ishihara, K. 1997. Water potential, turgor and cell wall properties in elongating tissues of the hydrotropically bending roots of pea (Pisum sativum L.). Plant Cell Environ. 20: 381–386.

    Google Scholar 

  • Holbrook, N.M. & Putz, F.E. 1996. From epiphyte to tree: Differences in leaf structure and leaf water relations associated with the transition in growth form in eight species of hemiepiphytes. Plant Cell Environ. 19: 631–642.

    Google Scholar 

  • Holbrook, N.M. & Zwieniecki, M.A. 1999. Embolism repair and xylem tension: Do we need a miracle? Plant Physiol. 120: 7–10.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Holbrook, N.M., Burns, M.J., & Field, C.B. 1995. Negative xylem pressures in plants: A test of the balancing-pressure technique. Science 270: 1193–1194.

    CAS  Google Scholar 

  • Huang, B., North, G.B., & Nobel, P.S. 1993. Soil sheath, photosynthate distribution to roots, and rhizosphere water relations of Opuntia ficus-indica. Int. J. Plant Sci. 154: 425–431.

    Google Scholar 

  • Jackson, R.B., Moore, L.A., Hoffmann, W.A., Pockman, W.T., & Linder, C.R. 1999. Ecosystem rooting depth determined with caves and DNA. Proc. Natl. Acad. Sci. USA 96: 11387–11392.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jia, W. & Davies, W.J. 2007. Modification of leaf apoplastic pH in relation to stomatal sensitivity to root-sourced abscisic acid signals. Plant Physiol. 143: 68–77.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kalapos, T., Van den Boogaard, R., & Lambers, H. 1996. Effect of soil drying on growth, biomass allocation and leaf gas exchange of two annual grass species. Plant Soil 185: 137–149.

    CAS  Google Scholar 

  • Kao, W.-Y. & Forseth, I.N. 1992. Diurnal leaf movement, chlorophyll fluorescence and carbon assimilation in soybean grown under different nitrogen and water availabilities. Plant Cell Environ. 15: 703–710.

    CAS  Google Scholar 

  • Kern, J.S. 1995. Evaluation of soil water retention models based on basic soil physical properties. Soil Sci. Soc. Am. J. 59: 1134–1141.

    CAS  Google Scholar 

  • Kerstiens, G. 1996. Signalling across the divide: A wider perspective of cuticular structure-function relationships. Trends Plant Sci. 1: 125–129.

    Google Scholar 

  • Kinoshita T. & Shimazaki K. 1999. Blue light activates the plasma membrane H+-ATPase by phosphorylation of the C-terminus in stomatal guard cells. EMBO J. 18: 5548–5558.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kluge, M. & Ting, I.P. 1978 Crassulacean acid metabolisms. Analysis of an ecological adaptation. Ecological studies, Vol. 30. Springer-Verlag, New York.

    Google Scholar 

  • Körner, C., Neumayer M., Pelaez Menendez-Riedl, S., & Smeets-Scheel, A. 1989. Functional morphology of mountain plants. Flora 182: 353–383.

    Google Scholar 

  • Korolev, A.V., Tomos, A.D., Bowtell, R., & Farrar, J.F. 2000. Spatial and temporal distribution of solutes in the developing carrot taproot measured at single-cell resolution. J. Exp. Bot. 51: 567–577.

    CAS  PubMed  Google Scholar 

  • Kramer, P.J. 1969. Plant & soil water relationships. McGraw-Hill, New York.

    Google Scholar 

  • Lange, O.L., Lösch, R., Schulze, E.-D., & Kappen, L. 1971. Responses of stomata to changes in humidity. Planta 100: 76–86.

    CAS  PubMed  Google Scholar 

  • Lee, J.-E., Oliveira, R.S., Dawson, T.E., & Fung, I. 2005. Root functioning modifies seasonal climate. Proc. Natl. Acad. Sci. USA 102: 17576–17581.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lo Gullo, M.A. & Salleo, S. 1988. Different strategies of drought resistance in three Mediterranean sclerophyllous trees growing in the same environmental conditions. New Phytol. 108: 267–276.

    Google Scholar 

  • Lo Gullo, M.A., Salleo, S. Piaceri, E.C., & Rosso, R. 1995. Relations between vulnerability to xylem embolism and xylem conduit dimensions in young trees of Quercus cerris. Plant Cell Environ. 18: 661–669.

    Google Scholar 

  • Longstreth, D.J., Bolanos, J.A., Goddard, R.H. 1985. Photosynthetic rate and mesophyll surface area in expanding leaves of Alternanthera philoxeroides grown at two light intensities. Am. J. Bot. 72: 14–19.

    Google Scholar 

  • Loveless, A.R. 1961. A nutritional interpretation of sclerophyllous and mesophytic leaves. Ann. Bot. 25: 169–184.

    Google Scholar 

  • Loveless, A.R. 1962. Further evidence to support a nutritional interpretation of sclerophylly. Ann. Bot. 26: 551–561.

    Google Scholar 

  • Ma, F. & Peterson, C.A. 2003. Current insights into the development, structure, and chemistry of the endodermis and exodermis of roots. Can. J. Bot. 81: 405–421.

    CAS  Google Scholar 

  • Maggio, A. & Joly, R.J. 1995. Effects of mercuric chloride on the hydraulic conductivity of tomato root systems. Evidence for a channel-mediated water pathway. Plant Physiol. 109: 331–335.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Magnani, F. & Borghetti, M. 1995. Interpretation of seasonal changes of xylem embolism and plant hydraulic resistance in Fagus sylvatica. Plant Cell Environ. 18: 689–696.

    Google Scholar 

  • Mansfield, T.A. & McAinsh, M.R. 1995. Hormones as regulators of water balance. In: Plant hormones, P.J. Davies (ed.). Kluwer Academic Publishers, Dordrecht.

    Google Scholar 

  • Margolis, H., Oren, R., Whitehead, D., & Kaufmann, M.R. 1995. Leaf area dynamics of conifer forests. In: Ecophysiology of coniferous forests, W.K. Smith & T.M. Hinckley (eds.). Academic Press, San Diego, pp. 181–223.

    Google Scholar 

  • Marshall, D.C. 1958. Measurement of sap flow in conifers by heat transport. Plant Physiol. 33: 385–396.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Marshall, J.D. & Zhang, J. 1994. Carbon isotope discrimination and water use efficiency in native plants of the north-central Rockies. Ecology 75: 1887–1895.

    Google Scholar 

  • Marshall, J.K., Morgan, A.L., Akilan, K., Farrell, R.C.C., & Bell. D.T. 1997. Water uptake by two river red gum (Eucalyptus camaldulensis) clones in a discharge site plantation in the Western Australian wheatbelt.J. Hydrol. 200: 136–148.

    Google Scholar 

  • Martin, C.E. & Von Willert, D.J. 2000. Leaf epidermal hydathodes and the ecophysiological consequences of foliar water uptake in species of Crassula from the Namib desert in Southern Africa. Plant Biol. 2: 229–242.

    Google Scholar 

  • Maxwell, C., Griffiths, H., Borland, A.M., Broadmeadow, M.S.J., & McDavid, C.R. 1992. Photoinhibitory responses of the epiphytic bromeliad Guzmania monostachia during the dry season in Trinidad maintain photochemical integrity under adverse conditions. Plant Cell Environ. 15: 37–47.

    Google Scholar 

  • McCain, D.C., Croxdale, J., & Markley, J.L. 1993. The spatial distribution of chloroplast water in Acer platanoides sun and shade leaves. Plant Cell Environ. 16: 727–733.

    Google Scholar 

  • McCully, M.E. & Canny, M.J. 1988. Pathways and processes of water and nutrient movement in roots. Plant Soil 111: 159–170.

    CAS  Google Scholar 

  • McCully, M.E., Huang, C.X., & Ling, L.E.C. 1998. Daily embolism and refilling of xylem vessels in the roots of field-grown maize. New Phytol. 138: 327–342.

    Google Scholar 

  • Meidner, H. 1987. Three hundred years of research into stomata. In: Stomatal function, E. Zeiger, G.D. Farquhar, & I.R. Cowan (eds.). Stanford University Press, Stanford, pp. 7–27.

    Google Scholar 

  • Midwood, A.J., Boutton, T.W., Archer, S.R., & Watts, S.E. 1998. Water use by woody plants on contrasting soils in a savanna parkland: Assessment with δ2H and δ18O. Plant Soil 205: 13–24.

    CAS  Google Scholar 

  • Milburn, J.A. 1979. Water flow in plants. Longman, London.

    Google Scholar 

  • Mitchell, P., Veneklaas, E.J., Lambers, H., & Burgess. S.S.O. 2008. Maintaining leaf water balance during summer water deficit: Differential responses in turgor maintenance and variation in leaf structure among plant functional types in southern-western Australia.

    Google Scholar 

  • Mooney, H.A. & Dunn, E.L. 1970. Photosynthetic systems of Mediterranean climate shrubs and trees of California and Chile. Am. Nat. 194: 447–453.

    Google Scholar 

  • Mooney, H.A., Ehleringer, J., & Berry, J.A. 1976. High photosynthetic capacity of a winter annual in Death Valley. Science 194: 322–324.

    CAS  PubMed  Google Scholar 

  • Morison, J.I.L. 1987. Intercellular CO2 concentration and stomatal response to CO2. In: Stomatal function, E. Zeiger, G.D. Farquhar, & I.R. Cowan (eds.). Stanford University Press, Stanford, pp. 229–251.

    Google Scholar 

  • Mott, K.A. 1988. Do stomata respond to CO2 concentrations other than intercellular? Plant Physiol. 86: 200–203.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mott, K.A. & Parkhurst, D.F. 1991. Stomatal responses to humidity in air and helox. Plant Cell Environ. 14: 509–516.

    Google Scholar 

  • Müller, J., Sprenger, N., Bortlik, K., Boller, T., & Wiemken, A. 1997. Desiccation increases sucrose levels in Ramonda and Haberlea, two genera of resurrection plants in the Gesneriaceae. Physiol. Plant. 100: 153–158.

    Google Scholar 

  • Nabil, M. & Coudret, A. 1995. Effects of sodium chloride on growth, tissue elasticity and solute adjustments in two Acacia nilotica subspecies. Physiol. Plant. 93: 217–224.

    CAS  Google Scholar 

  • Nadezhdina, N. & Čermák, J. 2003. Instrumental methods for studies of structure and function of root systems of large trees. J. Exp. Bot. 54: 1511–1521.

    CAS  PubMed  Google Scholar 

  • Neale, A.D., Blomstedt, C.K., Bronson, P., Le, T.-N., Guthridge, K., Evans, J., Gaff, D.F., & Hamill J.D. 2000. The isolation of genes from the resurrection grass Sporobolus stapfianus which are induced during severe drought stress. Plant Cell Environ. 23: 265–277.

    CAS  Google Scholar 

  • Ngugi M., Doley D., Hunt M., Dart P., & Ryan P. 2003. Leaf water relations of Eucalyptus cloeziana and Eucalyptus argophloiain response to water deficit. Tree Physiol. 23: 335–343.

    PubMed  Google Scholar 

  • Niklas, K.J. & Paolillo, D.J., Jr. 1998. Preferential states of longitudinal tension in the outer tissues of Taraxacum officinale (Asteraceae) peduncules. Am. J. Bot. 85: 1068–1081.

    CAS  PubMed  Google Scholar 

  • Nilson, S.E. and Assmann, S.M. 2007. The control of transpiration. Insights from Arabidopsis. Plant Physiol. 143: 19–27.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nobel, P.S. 1991. Physicochemical and environmental plant physiology. Academic Press, San Diego.

    Google Scholar 

  • Nobel, P.S. 2006. Parenchyma-chlorenchyma water movement during drought for the hemiepiphytic cactus Hylocereus undatus. Ann. Bot. 97: 469–474.

    PubMed Central  PubMed  Google Scholar 

  • Nobel, P.S., Zaragoza, L.J., & Smith, W.K. 1975. Relationship between mesophyll surface area, photosynthetic rate, and illumination level during development for leaves of Plectranthus parviflorus. Plant Physiol. 55: 1067–1070.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nobel, P.S., Schulte, P.J., & North, G.B. 1990. Water influx characteristics and hydraulic conductivity for roots of Agave deserti Engelm. J. Exp. Bot. 41: 409–415.

    Google Scholar 

  • North, G.B. & Nobel, P.S. 1997. Drought-induced changes in soil contact and hydraulic conductivity for roots of Opuntia ficus-indica with and without rhizosheaths. Plant Soil 191: 249–258.

    CAS  Google Scholar 

  • Oliveira, R.S., Dawson, T.E., & Burgess, S.S.O. 2005. Evidence for direct water absorption by the shoot of the desiccation-tolerant plant Vellozia flavicans in the savannas of central Brazil. J. Trop. Ecol. 21: 585–588.

    Google Scholar 

  • Oliver, M.J. 1991. Influence of protoplastic water loss on the control of protein synthesis in the desiccation-tolerant moss Tortula ruralis. Ramifications for a repair-based mechanism of desiccation tolerance. Plant Physiol. 97: 1501–1511.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Oosterhuis, D.M., Walker, S., & Eastman, J. 1985. Soybean leaflet movement as an indicator of crop water stress. Crop Sci. 25: 1101–1106.

    Google Scholar 

  • Oren, R., Sperry, J.S., Katul, G.G., Pataki, D.E., Ewers, B.E., Phillips, N., & Schäfer, K.V.R. 1999. Survey and synthesis of intra- and interspecific variation in stomatal sensitivity to vapour pressure deficit. Plant Cell Environ. 22: 1515–1526.

    Google Scholar 

  • Osmond, C.B., Winter, K., & Ziegler, H. 1982. Functional significance of different pathways of CO2 fixation in photosynthesis. In: Encyclopedia of plant physiology, N.S. Vol. 12B, O.L. Lange, P.S. Nobel, C.B. Osmond, & H. Ziegler (eds.). Springer-Verlag, Berlin, pp. 479–547.

    Google Scholar 

  • Outlaw, W.H., Jr. 2003. Integration of cellular and physiological functions of guard cells. Crit. Rev. Plant Sci. 22: 503–529.

    Google Scholar 

  • Passioura, J.B. 1988. Root signals control leaf expansion in wheat seedlings growing in drying soil. Aust. J. Plant Physiol. 15: 687–693.

    Google Scholar 

  • Passioura, J.B. 1991. Soil structure and plant growth. Aust. J. Soil Res. 29: 717–728.

    Google Scholar 

  • Pate, J.S., Jeschke, W.D., & Aylward, M.J. 1995. Hydraulic architecture and xylem structure of the dimorphic root systems of south-west Australian species of Proteaceae. J. Exp. Bot. 46: 907–915.

    CAS  Google Scholar 

  • Pedersen, O. & Sand-Jensen, K. 1997. Transpiration does not control growth and nutrient supply in the amphibious plant Mentha aquatica. Plant Cell Environ. 20: 117–123.

    CAS  Google Scholar 

  • Pelah, D., Wang, W., Altman, A., Shoseyov, O., & Bartels, D. 1997. Differential accumulation of water stress-related proteins, sucrose synthase and soluble sugars in Populus species that differ in their water stress response. Physiol. Plant. 99: 153–159.

    CAS  Google Scholar 

  • Peterson, C.A. & Enstone, D.E. 1996. Functions of passage cells in the endodermis and exodermis of roots. Physiol. Plant. 97: 592–598.

    CAS  Google Scholar 

  • Pilon-Smits, E.A.H., Ebskamp, M.J.M., Paul, M.J., Jeuken, M.J.W., Weisbeek, P.J., & Smeekens, S.J.M. 1995. Improved performance of transgenic fructan-accumulating tobacco under drought stress. Plant Physiol. 107: 125–130.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pockman, W.T., Sperry, J.S., & O’Leary, J.W. 1995. Sustained and significant negative water pressure in xylem. Nature 378: 715–716.

    CAS  Google Scholar 

  • Pollard, A. & Wyn Jones, R.G. 1979. Enzyme activities in concentrated solutions of glycinebetaine and other solutes. Planta 144: 291–298.

    CAS  PubMed  Google Scholar 

  • Pollock, C.J. & Cairns, A.J. 1991. Fructan metabolism in grasses and cereals. Annu. Rev.Plant Physiol. Plant. Mol. Biol. 42: 77–101.

    CAS  Google Scholar 

  • Pritchard, J. 1994. The control of cell expansion in roots. New Phytol. 127: 3–26.

    CAS  Google Scholar 

  • Pütz, N. 1996. Development and function of contractile roots. In: Plant roots: The hidden half, Y. Waisel, A. Eshel, & U. Kafkaki (eds.). Marcel Decker, New York, pp. 859–894.

    Google Scholar 

  • Read, D.B., Bengough, A.G., Gregory, P.J., Crawford, J.W., Robinson, D., Scrimgeour, C.M., Young, I.M., Zhang, K., & Zhang, X. 2003. Plant roots release phospholipid surfactants that modify the physical and chemical properties of soil. New Phytol. 157: 315–326.

    CAS  Google Scholar 

  • Reiser, V., Raitt, D.C., & Saito, H. 2003. Yeast osmosensor Sln1 and plant cytokinin receptor Cre1 respond to changes in turgor pressure. J. Cell Biol. 161: 1035–1040.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Richards, J.H. & Caldwell, M.M. 1987. Hydraulic lift: Substantial nocturnal water transport between soil layers by Artemisia tridentata roots. Oecologia 73: 486–489.

    Google Scholar 

  • Roden, J.S., Lin, G.G., & Ehleringer, J.R. 2000. A mechanistic model for interpretation of hydrogen and oxygen isotope ratios in tree ring cellulose. Geochim. Cosmochim. Acta 64: 21–35.

    CAS  Google Scholar 

  • Robichaux, R.H. 1984. Variation in the tissue water relations of two sympatric Hawaiian Dubautia species and their natural hybrid. Oecologia 65: 75–81.

    Google Scholar 

  • Robichaux, R.H. & Canfield, J.E. 1985. Tissue elastic properties of eight Hawaiian Dubautia species that differ in habitat and diploid chromosome number. Oecologia 66: 77–80.

    Google Scholar 

  • Rodriguez, M.L., Chaves, M.M., Wendler, R., David, M.M., Quick, W.P., Leegood, R.C., Stitt, M., & Pereira, J.S. 1993. Osmotic adjustment in water stressed grapevine leaves in relation to carbon assimilation. Aust. J. Plant Physiol. 20: 309–321.

    Google Scholar 

  • Rundel, P.W. 1995. Adaptive significance of some morphological and physiological characteristics in Mediterranean plants: Facts and fallacies. In: Timescales of biological responses to water constraints. The case of Mediterranean biota, J. Roy, J. Aronson, & F. di Castri (eds.). SPB Academic Publishing, Amsterdam, pp. 119–139.

    Google Scholar 

  • Sakuratani, T. 1981. A heat balance method for measuring water flux in the stem of intact plants. J. Agric. Meteorol. 37: 9–17.

    Google Scholar 

  • Satter, R.L. & Galston, A.W. 1981. Mechanism of control of leaf movements. Annu. Rev. Plant Physiol. 32: 83–110.

    CAS  Google Scholar 

  • Schmalstig, J.G. 1997. Light perception for sun-tracking is on the lamina in Crotalaria pallida (Fabaceae). Am. J. Bot. 84: 308–314,

    CAS  PubMed  Google Scholar 

  • Schmidt, J.E. & Kaiser, W.M. 1987. Response of the succulent leaves of Peperomia magnoliaefolia to dehydration. Plant Physiol. 83: 190–194.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Scholander, P.F., Bradstreet, E.D., & Hemmingsen, E.A. 1965. Sap pressures in vascular plants. Science 148: 339–346.

    CAS  PubMed  Google Scholar 

  • Schulze, E.-D. 1991. Water and nutrient interactions with plant water stress. In: Response of plants to multiple stresses, H.A. Mooney, W.E. Winner, & E.J. Pell (eds.). Academic Press, San Diego, pp. 89–101.

    Google Scholar 

  • Schulte P.J. & Hinckley A.R. 1985. A comparison of pressure-volume curve data analysis techniques. J. Exp. Bot. 36: 1590–1602.

    Google Scholar 

  • Schulze, E.-D., Čermák, J., Matyssek, R., Penka, M., Zimmermann, R., Vasicek, F., Gries, W., & Kucera, J. 1985. Canopy transpiration and water fluxes in the xylem of the trunk of Larix and Picea trees – A comparison of xylem flow, porometer and cuvette measurements. Oecologia 66: 475–483.

    Google Scholar 

  • Schulze, E.-D., Caldwell, M.M., Canadell, J., Mooney, H.A., Jackson, R.B., Parson, D., Scholes, R., Sala, O.E., & Trimborn, P. 1988. Downward flux of water through roots (i.e. inverse hydraulic lift) in dry Kalahari sands. Oecologia 115: 460–462.

    Google Scholar 

  • Schulze, E.D., Caldwell, M.M., Canadell, J., Mooney, H.A., Jackson, R.B., Parson, D., Scholes, R., Sala, O.E., & Trimborn, P. 1998. Downward flux of water through roots (i.e. inverse hydraulic lift) in dry Kalahari sands. Oecologia 115: 460–462.

    Google Scholar 

  • Schuur, E.A.G. 2003. Productivity and global climate revisited: The sensitivity of tropical forest growth to precipitation. Ecology 84: 1165–1170.

    Google Scholar 

  • Schurr, U., Gollan, T., & Schulze, E.-D. 1992. Stomatal response to drying soil in relation to changes in the xylem sap composition of Helianthus annuus. II. Stomatal sensitivity to abscisic acid imported from the xylem sap. Plant Cell Environ. 15: 561–567.

    CAS  Google Scholar 

  • Schwartz, A., Gilboa, S., & Koller, D. 1987. Photonastic control of leaflet orientation in Melilotus indicus (Fabaceae). Plant Physiol. 84: 318–323.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shah, N., Smirnoff, N., & Stewart, G.R. 1987. Photosynthesis and stomatal characteristics of Striga hermonthica in relation to its parasitic habit. Physiol. Plant. 69: 699–703.

    Google Scholar 

  • Sheveleva, E., Chmara, W., Bohnert, H.J., & Jensen, R.G. 1997. Increased salt and drought tolerance by D-ononitol production in transgenic Nicotiana tabacum L. Plant Physiol. 115: 1211–1219.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sherwin, H.W. & Farrant, H.W. 1996. Differences in rehydration of three desiccation-tolerant angiosperm species. Ann. Bot. 78: 703–710.

    Google Scholar 

  • Sherwin, H.W. & Farrant, H.W. 1998. Protection mechanisms against excess light in the resurrection plants Craterostigma wilmsii and Xerophyta viscosa. Plant Growth Regul. 24: 203–210.

    CAS  Google Scholar 

  • Sherwin, H.W., Pammenter, N.W., February, E., Vander Willigen, C., & Farrant, J.M. 1998. Xylem hydraulic characteristics, water relations and wood anatomy of the resurrection plant Myrothamnus flabellifolius Welw. Ann. Bot. 81: 567–575.

    Google Scholar 

  • Shen, B., Jensen, R.G., & Bohnert, H.J. 1997a. Increased resistance to oxidative stress in transgenic plants by targeting mannitol biosynthesis to chloroplasts. Plant Physiol. 113: 1177–1183.

    CAS  Google Scholar 

  • Shen, B., Jensen, R.G., & Bohnert, H.J. 1997b. Mannitol protects against oxidation by hydroxyl radicals. Plant Physiol. 115: 527–532.

    CAS  Google Scholar 

  • Shinozaki, K. & Yamaguchi-Shinozaki, K. 1997. Gene expression and signal transduction in water-stress response. Plant Physiol. 115: 327–334.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shinozaki, K. & Yamaguchi-Shinozaki, K. 2000. Molecular responses to dehydration and low temperature: Differences and cross-talk between two stress signaling pathways. Curr. Opin. Plant Biol. 3: 217–223.

    CAS  PubMed  Google Scholar 

  • Shimazaki, K.-I., Doi, M., Assmann, S.M., & Kinoshita, T. 2007. Light regulation of stomatal movement. Annu. Rev. Plant Biol. 58: 219–247.

    CAS  PubMed  Google Scholar 

  • Smirnoff, N. & Cumbes, Q.J. 1989. Hydroxyl radical scavenging activity of compatible solutes. Phytochemistry 28: 1057–1060.

    CAS  Google Scholar 

  • Smith, D.M. & Allen, S.J. 1996. Measurement of sap flow in plant stems. J. Exp. Bot. 47: 1833–1844.

    CAS  Google Scholar 

  • Sobrado, M.A. & Medina, E. 1980. General morphology, anatomical structure, and nutrient content of sclerophyllous leaves of the “bana” vegetation of amazonas. Oecologia 45: 341–345.

    Google Scholar 

  • Sowell, J.B., McNulty, S.P., & Schilling, B.K. 1996. The role of stem recharge in reducing the winter desiccation of Picea engelmannii (Pinaceae) needles at alpine timberline. Am. J. Bot. 83: 1351–1355.

    Google Scholar 

  • Sperry, J.S. 1995. Limitations on stem water transport and their consequences. In: Plant stems. Physiology and functional morphology, B.L. Gartner (ed.). Academic Press, San Diego, pp. 105–124.

    Google Scholar 

  • Sperry, J.S. & Sullivan, J.E. 1992. Xylem embolism in response to freeze-thaw cycles and water stress in ring-porous, diffuse-porous, and conifer species. Plant Physiol. 100: 605–613.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sperry, J.S. & Tyree, M.T. 1988. Mechanism of water stress-induced xylem embolism. Plant Physiol. 88: 581–587.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sperry, J.S. & Tyree, M.T. 1990. Water-stress-induced xylem embolism in three species of conifers. Plant Physiol. 88: 581–587.

    Google Scholar 

  • Sperry, J.S., Saliendra, N.Z., Pockman, W.T., Cochard, H., Cuizat, P., Davis, S.D., Ewers, F.W., & Tyree, M.T. 1996. New evidence for large negative xylem pressures and their measurement by the pressure chamber technique. Plant Cell Environ. 19: 427–436.

    Google Scholar 

  • Sprenger, N., Bortlik, K., Brandt, A., Boller, T., & Wiemken, A. 1995. Purification, cloning, and functional expression of scucrose:fructan 6-fructosyltransferase, a key enzyme of fructan synthesis in barley. Proc. Natl. Acad. Sci. USA 92: 11652–11656.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sternberg, L., Pinzon, M.C., Anderson, W.T., & Jahren, A.H. 2006. Variation in oxygen isotope fractionation during cellulose synthesis: Intramolecular and biosynthetic effects. Plant Cell Environ. 29: 1881– 1889.

    CAS  PubMed  Google Scholar 

  • Steudle, E. 1995. Trees under tension. Nature 378: 663–664.

    CAS  Google Scholar 

  • Steudle, E. 2001. The cohesion-tension mechanism and the acquisition of water in plant roots. Annu. Rev. Plant Physiol. Plant Mol. Biol. 52: 847–875.

    CAS  PubMed  Google Scholar 

  • Stirzaker, R.J. & Passioura, J.B. 1996. The water relations of the root–soil interface. Plant Cell Environ. 19: 201–208.

    Google Scholar 

  • Stirzaker, R.J., Passioura, J.B., & Wilms, Y. 1996. Soil structure and plant growth: Impact of bulk density and biopores. Plant Soil 185: 151–162.

    CAS  Google Scholar 

  • Swanson, R.H. & Whitfield, D.A.W. 1981. A numerical analysis of heat pulse velocity theory.J. Exp. Bot. 32: 221–239.

    Google Scholar 

  • Takahashi, H. 1994. Hydrotropism and its interaction with gravitropism in roots. Plant Soil 165: 301–308.

    CAS  Google Scholar 

  • Takahashi, H. & Scott, T.K. 1993. Intensity of hydrostimulation for the induction of root hydrotropism and its sensing by the root cap. Plant Cell Environ. 16: 99–103.

    CAS  PubMed  Google Scholar 

  • Tardieu, F., Zhang, J., Katerji, N., Bethenod, O., Palmer, S., & Davies, W.J. 1992. Xylem ABA controls the stomatal conductance of field-grown maize subjected to soil compaction or soil drying. Plant Cell Environ. 15: 193–197.

    CAS  Google Scholar 

  • Tardieu, F., Lafarge, T., & Simonneau, T. 1996. Stomatal control by fed or endogenous xylem ABA in sunflower: Interpretation of correlations between leaf water potential and stomatal conductance in anisohydric species. Plant Cell Environ. 19: 75–84.

    CAS  Google Scholar 

  • Thomashow, M.F. 1999. Plant cold acclimation: Freezing tolerance genes and regulatory mechanisms. Annu. Rev. Plant Physiol. Plant Mol. Biol. 50: 571–599.

    CAS  PubMed  Google Scholar 

  • Thorburn, P.J. & Ehleringer, J.R. 1995. Root water uptake of field-growing plants indicated by measurements of natural-abundance deuterium. Plant Soil 177: 225–233.

    CAS  Google Scholar 

  • Tomos, A.D. & Leigh, R.A. 1999. The pressure probe: A versatile tool in plant cell physiology. Annu. Rev. Plant Physiol. Plant Mol. Biol. 50: 447–472.

    CAS  Google Scholar 

  • Tournaire-Roux, C., Sutka, M., Javot, H., Gout, E., Gerbeau, P., Luu, D.-T., Bligny, R., & Maurel, C. 2003. Cytosolic pH regulates root water transport during anoxic stress through gating of aquaporins. Nature 425: 393–397.

    CAS  PubMed  Google Scholar 

  • Tranquillini, W. 1982. Frost-drought and its ecological significance. In: Encyclopedia of plant physiology, N.S. Vol 12B, O.L. Lange, P.S. Nobel, C.B. Osmond, & H. Ziegler (eds.). Springer-Verlag, Berlin, pp. 379–400.

    Google Scholar 

  • Tsuda, S., Mmiyamoto, N., Takahashi, H., Ishihara, K., & Hirasawa, T. 2003. Roots of Pisum sativum L. exhibit hydrotropism in response to a water potential gradient in vermiculite. Ann. Bot. 92: 767–770.

    PubMed  Google Scholar 

  • Tüffers, A.V., Martin, C.E., & Von Willert, D.J. 1996. Possible water movement from older to younger leaves and photosynthesis during drought stress in two succulent species from South Africa, Delosperma tradescantioides Bgr. and Prenia sladeniana L. Bol. (Mesembryanthemaceae). J. Plant Physiol. 146: 177–182.

    Google Scholar 

  • Turrel, F.M. 1936. The area of the internal exposed surface of dicotyledon leaves. Am. J. Bot. 23: 255–264.

    Google Scholar 

  • Tyerman, S.D., Niemietz, C.M., & Bramley, H. 2002. Plant aquaporins: Multifunctional water and solute channels with expanding roles. Plant Cell Environ. 25: 173–194.

    CAS  PubMed  Google Scholar 

  • Tyree, M.T. & Sperry, J.S. 1989. Vulnerability of xylem to cavitation and embolism. Annu. Rev. Plant Physiol. Mol. Biol. 40: 19–38.

    Google Scholar 

  • Tyree, M.T., Salleo, S., Nardini, A., Lo Gullo, M.A., & Mosca, R. 1999. Refilling of embolized vessels in young stems of laurel. Do we need a new paradigm. Plant Physiol. 120: 11–21.

    CAS  PubMed Central  Google Scholar 

  • Uhlein, N. & Kaldenhoff, R. 2008. Aquaporins and plant leaf movements. Ann. Bot. 101: 1–4.

    Google Scholar 

  • Van Hylckama, T.E.A. 1974. Water use by salt cedar as measured by the water budget method. U.S. geological survey papers, 491-E.

    Google Scholar 

  • Van Ieperen, W. 2007. Ion-mediated changes of xylem hydraulic resistance in planta: Fact or fiction? Trends Plant Sci. 12: 137–142.

    PubMed  Google Scholar 

  • Vijn, I., Van Dijken, A., Sprenger, N., Van Dun, K., Weisbeek, P., Wiemken, A., & Smeekens, S. 1997. Fructan of the inulin neoseries is synthesized in transgenic chicory plants (Cichorium intybus L.) harbouring onion (Allium cepa L.) fructan:fructan 6G-fructosyltransferase. Plant J. 11: 387–398.

    CAS  PubMed  Google Scholar 

  • Vogelmann, T.C. 1984. Site of light perception and motor cells in a sun-tracking lupine (Lupinus succulentus). Physiol. Plant. 62: 335–340.

    Google Scholar 

  • Vogt, K.A., Vogt, D.A., Palmiotto, P.A., Boon, P., O’Hara, J., & Asbjornson, H. 1996. Review of root dynamics in forest ecosystems grouped by climate, climatic forest type and species. Plant Soil 187: 159–219.

    CAS  Google Scholar 

  • Wang, X.-L., Canny, M.J., & McCully, M.E. 1991. The water status of the roots of soil-grown maize in relation to the maturity of their xylem. Physiol. Plant. 82: 157–162.

    Google Scholar 

  • Wei, C., Steudle, E., & Tyree, M.Y. 1999. Water ascent in plants: Do ongoing controversies have a sound basis? Trend Plant Sci. 4: 372–375.

    Google Scholar 

  • White D.A., Turner N.C., & Galbraith J.H. 2000. Leaf water relations and stomatal behaviour of four allopatric Eucalyptus species planted in Mediterranean southwestern Australia. Tree Physiol. 20: 1157–1165.

    PubMed  Google Scholar 

  • Wilkinson, S. & Davies, W.J. 1997. Xylem sap pH increase: A drought signal received at the apoplastic face of the guard cell that involves the suppression of a saturable abscisic acid uptake by the epidermal symplast. Plant Physiol. 113: 559–573.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wilkinson, S., Corlett, J.E., Oger, L., & Davies, W.J. 1998. Effects of xylem pH on transpiration from wild-type and flacca tomato leaves. Plant Physiol. 117: 703–709.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wisniewski, M., Davis, G., & Arora, R. 1991. Effect of macerase, oxalic acid, and EGTA on deep supercooling and pit membrane structure of xylem parenchyma of peach. Plant Physiol. 96: 1354–1359.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wullschleger, S.D., Meinzer, F.C., & Vertessy, R.A. 1998. A review of whole-plant water use studies in trees. Tree Physiol. 18: 499–512.

    PubMed  Google Scholar 

  • Xiong, L., Schumaker, K.S., & Zhu, J.-K. 2002. Cell signaling during cold, drought, and salt stress. Plant Cell 14: S165–S183.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yamaguchi-Shinozaki, K. & Shinozaki, K. 2006. Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses. Annu. Rev. Plant Biol. 57: 781–803.

    CAS  PubMed  Google Scholar 

  • Yang, S. & Tyree, M.T. 1992. A theoretical model of hydraulic conductivity recovery from embolism with comparison to experimental data on Acer saccharum. Plant Cell Environ. 15: 633–643.

    Google Scholar 

  • Yoder, C.K. & Nowak, R.S. 1999. Hydraulic lift among native plant species in the Mojave Desert. Plant Soil 215: 93–102.

    CAS  Google Scholar 

  • Yu, M., Xie, Y. Zhang, X. 2005. Quantification of intrinsic water use efficiency along a moisture gradient in northeastern China. J. Environ. Qual. 34: 1311–1318.

    CAS  PubMed  Google Scholar 

  • Zeier, J., Goll, A., Yokoyama, M., Karahara, I., & Schreiber, L. 1999. Structure and chemical composition of endodermal and rhizodermal/hypodermal walls of several species. Plant Cell Environ. 22: 271–279.

    CAS  Google Scholar 

  • Zhang, W.-H. & Tyerman, S.D. 1999. Inhibition of water channels by HgCl2 in intact wheat root cells. Plant Physiol. 120: 849–857.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhu, J.-K. 2002. Salt and drought stress signal transduction in plants. Annu. Rev. Plant Biol. 53: 247–273.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zimmermann, M.H. 1983. Xylem structure and the ascent of sap. Springer-Verlag, Berlin.

    Google Scholar 

  • Zimmermann, M.H. & Milburn, J.A. 1982. Transport and storage of water. In: Encyclopedia of plant physiology, N.S. Vol. 12B, O.L. Lange, P.S. Nobel, C.B. Osmond, & H. Ziegler (eds.). Springer-Verlag, Berlin, pp. 135–151.

    Google Scholar 

  • Zwieniecki, M.A. & Holbrook, N. M. 1998. Diurnal variation in xylem hydraulic conductivity in white ash (Fraxinus americana L.), red maple (Acer rubrum L.) and red spruce (Picea rubens Sarg.). Plant Cell Environ. 21: 1173–1180.

    Google Scholar 

  • Zwieniecki, M.A. & Newton, M. 1995. Roots growing in rock fissures: Their morphological adaptation. Plant Soil 1 72: 181–187.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Lambers, H., Chapin, F.S., Pons, T.L. (2008). Plant Water Relations. In: Plant Physiological Ecology. Springer, New York, NY. https://doi.org/10.1007/978-0-387-78341-3_5

Download citation

Publish with us

Policies and ethics