Skip to main content

Parasitic Associations

  • Chapter
Plant Physiological Ecology

We have so far mainly dealt with autotrophic plants that assimilate CO2 from the atmosphere into complex organic molecules and acquire nutrients and water from the rhizosphere. There are also fascinating higher plant species that lack the capacity to assimilate sufficient CO2 to sustain their growth and that cannot absorb nutrients and water from the rhizosphere in sufficient quantities to reproduce successfully. These plants comprise approximately 1% of all flowering plant species; they are parasitic and rely on a host plant to provide them with the materials they cannot acquire from their abiotic environment (Kuijt 1969).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ackroyd, R.D. & Graves, J.D. 1997. The regulation of the water potential gradient in the host and parasite relationship between Sorghum bicolor and Striga hermonthica. Ann. Bot. 80: 649–656.

    Article  Google Scholar 

  • Akiyama, K., Matsuzaki, K., & Hayashi, H. 2005. Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi. Nature 435: 824–827.

    Article  CAS  PubMed  Google Scholar 

  • Albrecht, H., Yoder, J.I., & Phillips, D.A. 1999. Flavonoids promore haustoria formation in the root parasite Triphysaria versicolor. Plant Physiol. 119: 585–591.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Atsatt, P.R. 1983. Host-parasite interactions in higher plants. In: Encyclopedia of plant physiology, N.S. Vol. 12C, O.L. Lange, P.S. Nobel, C.B. Osmond, & H. Ziegler (eds). Springer-Verlag, Berlin, pp. 519–535.

    Google Scholar 

  • Ayongwa, G.C., Stomph, T.J., Emechebe, A.M., & Kuyper, T.W. 2006. Root nitrogen concentration of sorghum above 2% produces least Striga hermonthica seed stimulation. Ann. Appl. Biol. 149: 255–262.

    Article  CAS  Google Scholar 

  • Babiker, A.G.T., Ejeta, G., Butler, L.G., & Woodson, W.R. 1993. Ethylene biosynthesis and strigol-induced germination of Striga asiatica. Physiol. Plant. 88: 359–365.

    Article  CAS  Google Scholar 

  • Bannister, P. 1989. Nitrogen concentration and mimicry in some New Zealand mistletoes. Oecologia 79: 128–132.

    Article  Google Scholar 

  • Bardgett, R.D., Smith, R.S., Shiel, R.S., Peacock, S., Simkin, J.M., Quirk, H., & Hobbs, P.J. 2006. Parasitic plants indirectly regulate below-ground properties in grassland ecosystems. Nature 439: 969–972.

    Article  CAS  PubMed  Google Scholar 

  • Birschwilks, M., Haupt, S., Hofius, D., & Neumann, S. 2006. Transfer of phloem-mobile substances from the host plants to the holoparasite Cuscuta sp. J. Exp. Bot. 57: 911–921.

    Article  CAS  PubMed  Google Scholar 

  • Bouwmeester, H.J., Roux, C., Lopez-Raez, J.A., & Becard, G. 2007. Rhizosphere communication of plants, parasitic plants and AM fungi. Trends Plant Sci. 12: 224–230.

    Article  CAS  PubMed  Google Scholar 

  • Calladine, A. & Pate, J.S. 2000. Hastorial structure and functioning of the root hemiparasitic tree Nuytsia floribunda (Labill.) R.Br. and water relationships with its hosts. Ann. Bot. 85: 723–731.

    Article  Google Scholar 

  • Cameron, D.D., Coats, A.M., & Seel, W.E. 2006. Differential resistance among host and non-host species underlies the variable success of the hemi-parasitic plant Rhinanthus minor. Ann. Bot. 98: 1289–1299.

    Article  PubMed Central  PubMed  Google Scholar 

  • Cechin, I. & Press, M.C. 1993. Nitrogen relations of the sorghum-Striga hermonthica host-parasite association: growth and photosynthesis. Plant Cell Environ. 16: 237–247.

    Article  CAS  Google Scholar 

  • Davidson, N.J. & Pate, J.S. 1992. Water relations of the mistletoe Amyema fitzgeraldii and its host Acacia acuminata. J. Exp. Bot. 43: 1459–1555.

    Article  Google Scholar 

  • Davidson, N.J., True, K.C., & Pate, J.S. 1989. Water relations of the parasite: host relationship between the mistletoe Amyema linophyllum (Fenzl) Tieghem and Casuarina obesa Miq. Oecologia 80: 321–330.

    Article  Google Scholar 

  • Dawson, J.H., Musselman, L.J., Wolswinkel, P., & Dörr, I. 1994. Biology and control of Cuscuta. In: Reviews of weed science, Vol. 6, S.O. Duke (ed). Imperial Printing Company, Champaign, pp. 265–317.

    Google Scholar 

  • Ehleringer, J.R., Schulze, E.D., Ziegler, H., Lange, O.L., Farquhar, G.D., & Cowan, I.R. 1985. Xylem-tapping mistletoes: water or nutrient parasites? Science 227: 1479–1481.

    Article  CAS  PubMed  Google Scholar 

  • Ehleringer, J.R., Ullmann, I., Lange, O.L., Farquhar, G.D., Cowan, G.D., & Schulze, E.-D. 1986. Mistletoes: a hypothesis concerning morphological and chemical avoidance of herbivory. Oecologia 70: 234–237.

    Article  Google Scholar 

  • Einhellig, F.A. & Souza, I.F. 1992. Phytotoxicity of sorgoleone found in grain sorghum root exudates. J. Chem. Ecol. 18: 1–11.

    Article  CAS  PubMed  Google Scholar 

  • Estabrook, E.M. & Yoder, J.I. 1998. Plant-plant communication: Rhizosphere signaling between parasitic angiosperms and their hosts. Plant Physiol. 116: 1–7.

    Article  CAS  PubMed Central  Google Scholar 

  • Field, T.S. & Brodrib, T.J. 2005. A unique mode of parasitism in the conifer coral tree Parasitaxus ustus (Podocarpaceae). Plant Cell Environ. 28: 1316–1325.

    Article  Google Scholar 

  • Govier, R.N., Brown, J.G.S., & Pate, J.S. 1968. Hemiparasitic nutrition in angiosperms. II. Root haustoria and leaf glands of Odontites verna (Bell.) Dum. and their relevance to the abstraction of solutes from the host. New Phytol. 67: 863–972.

    Article  Google Scholar 

  • Graves, J.D., Press, M.C., Smith, S., & Stewart, G.R. 1992. The carbon canopy economy of the association between cowpea and the parasitic angiosperm Striga gesnerioides. Plant Cell Environ. 15: 283–288.

    Article  Google Scholar 

  • Gurney, A.L., Grimanelli, D., Kananpiu, F., Hoisington, D., Scholes, J.D., & Press, M.C.. 2003. Novel sources of resistance to Striga hermonthica in Tripsacum dactyloides, a wild relative of maize. New Phytol. 160: 557–568.

    Article  Google Scholar 

  • Hibberd, J.M., Quick, W.P., Press, M.C., & Scholes, J.D. 1998. Can source-sink relations explain responses of tobacco to infection by the root holoparasitic angiosperm Orobanche cernua? Plant Cell Environ. 21: 333–340.

    Article  CAS  Google Scholar 

  • Hibberd, J.M., Quick, W.P., Press, M.C., Scholes, J.D., & Jeschke, W.D. 1999. Solute flux from tobacco to the parasitic angiosperm Orobanche cernua and the influence of infection on host carbon and nitrogen relations. Plant Cell Environ. 22: 937–947.

    Article  CAS  Google Scholar 

  • Jeschke, W.D. & Hilpert, A. 1997. Sink-stimulated photosynthesis and sink-dependent increase in nitrate uptake: nitrogen and carbon relations of the parasitic association Cuscuta reflexa-Ricinus communis. Plant Cell Environ. 20: 47–56.

    Article  CAS  Google Scholar 

  • Jeschke, W.D., Bäumel, P., Räth, N., Czygan, F.-C., & Proksch, P. 1994. Modelling of the flows and partitioning of carbon and nitrogen in the holoparasite Cuscuta reflexa Roxb. and its host Lupinus albus. L. II. Flows between host and parasite and within parasitized host. J. Exp. Bot. 45: 801–812.

    Article  CAS  Google Scholar 

  • Jeschke, W.D., Bäumel, P., & Räth, N. 1995. Partitioning of nutrients in the system Cuscuta reflexa-Lupinus albus. Asp. Appl. Biol. 42: 71–79.

    Google Scholar 

  • Klaren, C.H. 1975. Physiological aspects of the hemiparasite Rhinanthus serotinus. PhD Thesis, University of Groningen, the Netherlands.

    Google Scholar 

  • Klaren, C.H. & Van de Dijk, S.J. 1976. Water relations of the hemiparasite Rhinanthus serotinus before and after attachment. Physiol. Plant. 38: 121–125.

    Article  Google Scholar 

  • Kuijt, J. 1969. The biology of parasitic flowering plants. University of California Press, Berkeley.

    Google Scholar 

  • Kuo, J., Pate, J.S., & Davidson, N.J. 1989. Ultrastructure of the haustorial interface and apoplastic continuum between host and the root hemiparasite Olax phyllanthi (Labill.) R. Br. (Olacaceae). Protoplasma 150: 27–39.

    Article  Google Scholar 

  • Lendzemo, V.W., Kuyper, T.W., Kropff, M.J., Van Ast, A. 2005. Field inoculation with arbuscular mycorrhizal fungi reduces Striga hermonthica performance on cereal crops and has the potential to contribute to integrated Striga management. Field Crops Res. 91: 51–61.

    Article  Google Scholar 

  • Lendzemo, V.W., Kuyper, T.W., Matusova, R., Bouwmeester, H.J., & Van Ast, A. 2007. Colonization by arbuscular mycorrhizal fungi of sorghum leads to reduced germination and subsequent attachment and emergence of Striga hermonthica. Plant Signal. Behav. 2: 58–62.

    Article  PubMed Central  PubMed  Google Scholar 

  • Logan, D.C. & Stewart, G.R. 1991. Role of ethylene in the germination of the hemiparasite Striga hermonthica. Plant Physiol. 97: 1435–1438.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Loveys, B.R., Tyerman, S.D., & Loveys, B.R. 2001a. Transfer of photosynthate and naturally occurring insecticidal compounds from host plants to the root hemiparasite Santalum acuminatum (Santalaceae). Aust. J. Bot. 49: 9–16.

    Article  CAS  Google Scholar 

  • Loveys, B.R., Loveys, B.R., & Tyerman, S.D. 2001b. Water relations and gas exchange of the root hemiparasite Santalum acuminatum (quandong). Aust. J. Bot. 49: 479–486.

    Article  Google Scholar 

  • Lynn, D.G., & Chang, M. 1990. Phenolic signals in cohabitation: Implications for plant development. Annu. Rev. Plant Physiol. Plant Mol. Biol. 41: 497–526.

    Article  CAS  Google Scholar 

  • Marshall, J.D. & Ehleringer, J.R. 1990. Are xylem-tapping mistletoes partially heterotrophic? Oecologia 84: 244–248.

    Google Scholar 

  • Pate, J.S. 2001. Haustoria in action: case studies of nitrogen acquisition by woody xylem-tapping hemiparasites from their hosts. Protoplasma 215: 204–217.

    Article  CAS  PubMed  Google Scholar 

  • Pate, J.S., True, K.C., & Rasins, E. 1991. Xylem transport and storage of amino acids by S.W. Australian mistletoe and their hosts. J. Exp. Bot. 42: 441–451.

    Article  CAS  Google Scholar 

  • Popp, M., Mensen, R., Richter, A., Buschmann, H., & Von Willert, D.J. 1995. Solutes and succulence in southern African mistletoes. Trees 9: 303–310.

    Article  Google Scholar 

  • Press, M.C. & Phoenix, G.K. 2005. Impacts of parasitic plants on natural communities. New Phytol. 166: 737–751.

    Article  PubMed  Google Scholar 

  • Press, M.C., Nour, J.J, Bebawi, F.F., Stewart, G.R. 1989. Antitranspirant-induced heat stress in the parasitic plant Striga hermonthica—a novel method of control. J. Exp. Bot. 40: 585–591.

    Article  CAS  Google Scholar 

  • Quested, H.M., Press, M.C., Callaghan, T.V., & Cornelissen, H.J. 2002. The hemiparasitic angiosperm Bartsia alpina has the potential to accelerate decomposition in sub-arctic communities. Oecologia 130: 88–95.

    Google Scholar 

  • Quested, H.M., Press, M.C., & Callaghan, T.V. 2003. Litter of the hemiparasite Bartsia alpina enhances plant growth: evidence for a functional role in nutrient cycling. Oecologia 135: 606–614.

    PubMed  Google Scholar 

  • Quested, H.M., Callaghan, T.V., Cornelissen, J.H.C., & Press, M.C. 2005. The impact of hemiparasitic plant litter on decomposition: direct, seasonal and litter mixing effects. J. Ecol. 93: 87–98.

    Article  CAS  Google Scholar 

  • Richter, A. & Popp, M. 1992. The physiological importance of accumulation of cyclitols in Viscum album L. New Phytol. 121: 431–438.

    Article  CAS  Google Scholar 

  • Richter, A., Popp, M., Mensen, R., Stewart, G.R., & Von Willert, D.J. 1995. Heterotrophic carbon gain of the parasitic angiosperm Tapinanthus oleifolius. Aust. J. Plant Physiol. 22: 537–544.

    Article  CAS  Google Scholar 

  • Rispail, N., Dita, M.-A., Gonzalez-Verdejo, C., Perez-de-Luque, A., Castillejo, M.-A., Prats, E., Roman, B., Jorrin, J., & Rubiales, D. 2007. Plant resistance to parasitic plants: molecular approaches to an old foe. New Phytol. 173: 703–712.

    Article  CAS  PubMed  Google Scholar 

  • Rothe, K., Diettrich, B., Rahfeld, B., & Luckner, M. 1999. Uptake of phloem-specific cardenolides by Cuscuta sp. growing on Digitalis lanata and Digitalis purpurea. Phytochemistry 51: 357–361.

    Article  CAS  Google Scholar 

  • Runyon, J.B., Mescher, M.C., De Moraes, C..M. 2006. Volatile chemical cues guide host location and host selection by parasitic plants. Science 313: 1964–1967.

    Article  CAS  PubMed  Google Scholar 

  • Schulze, E.-D. & Ehleringer, J.R. 1984. The effect of nitrogen supply on growth and water-use efficiency of xylem-tapping mistletoes. Planta 162: 268–275.

    Article  CAS  PubMed  Google Scholar 

  • Schulze, E.-D., Lange, O.L., Ziegler, H. Gebauer, G. 1991. Carbon and nitrogen isotope ratios of mistletoes growing on nitrogen and non-nitrogen fixing hosts and on CAM plants in the Namib desert confirm partial heterotrophy. Oecologia 88: 457–462.

    Article  Google Scholar 

  • Shah, N., Smirnoff, N., & Stewart, G.R. 1987. Photosynthesis and stomatal characteristics of Striga hermonthica in relation to its parasitic habit. Physiol. Plant. 69: 699–703.

    Article  Google Scholar 

  • Siame, B.P., Weerasuriya, Y., Wood, K., Ejeta, G., & Butler, L.G. 1993. Isolation of strigol, a germination stimulant for Striga asiatica, from host plants. J. Agric. Food Chem. 41: 1486–1491.

    Article  CAS  Google Scholar 

  • Smith, C.E., Dudley, M.W., & Lynn, D.G. 1990. Vegetative/parasitic transition: Control and plasticity in Striga development. Plant Physiol. 93: 208–215.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Stewart, G.R. & Press, M.C. 1990. The physiology and biochemistry of parasitic angiosperms. Annu. Rev. Plant Physiol. Plant Mol. Biol. 41: 127–151.

    Article  CAS  Google Scholar 

  • Taylor, A., Martin, J., & Seel, W.E. 1996. Physiology of the parasitic association between maize and witchweed (Striga hermonthica): is ABA involved? J. Exp. Bot. 47: 1057–1065.

    Article  CAS  Google Scholar 

  • Tennakoon, K.U. & Pate, J.S. 1996a. Effects of parasitism by a mistletoe on the structure and functioning of branches of its host. Plant Cell Environ. 19: 517–528.

    Article  Google Scholar 

  • Tennakoon, K.U. & Pate, J.S. 1996b. Heterotrophic gain of carbon from hosts by the xylem-tapping root hemiparasite Olax phyllanthi (Olacaceae). Oecologia 105: 369–376.

    Article  Google Scholar 

  • Tuquet, C., Farineau, N., & Sallé, G. 1990. Biochemical composition and photosynthetic activity of chloroplasts from Striga hermonthica and Striga aspera, root parasites of field-grown cereals. Physiol. Plant. 78: 574–582.

    Article  CAS  Google Scholar 

  • Watling, J.R. & Press, M.C. 2001. Impacts of infection by parasitic angiosperms on host photosynthesis. Plant Biol. 3: 244–250.

    Article  CAS  Google Scholar 

  • Wolswinkel, P. 1978. Phloem unloading in stem parts by Cuscuta: the release of 14C and K+ to the free space at 0°C and 25°C. Physiol. Plant. 42: 167–172.

    Article  CAS  Google Scholar 

  • Wolswinkel, P., Ammerlaan, A., & Peters, H.F.C. 1984. Phloem unloading of amino acids at the site of Cuscuta europaea. Plant Physiol. 75: 13–20.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yoder, J.I. 1999. Parasitic plant responses to host plant signals: a model for subterranean plant–plant interactions. Curr. Opin. Plant Biol. 2: 65–70.

    Article  CAS  PubMed  Google Scholar 

  • Yoneyama K., Yoneyama K., Takeuchi Y., & Sekimoto, H. 2007a. Phosphorus deficiency in red clover promotes exudation of orobanchol, the signal for mycorrhizal symbionts and germination stimulant for root parasites. Planta 225: 1031–1038.

    Article  CAS  Google Scholar 

  • Yoneyama, K., Xie, X., Kusumoto, D., Sekimoto, H., Sugimoto, Y., Takeuchi, Y., Yoneyama, K. 2007b. Nitrogen deficiency as well as phosphorus deficiency in sorghum promotes the production and exudation of 5-deoxystrigol, the host recognition signal for arbuscular mycorrhizal fungi and root parasites. Planta (no further details available yet)

    Google Scholar 

  • Ziegler, H. 1975. Nature of transported substances. In: Encyclopedia of plant physiology, N.S. Vol. 1, M.H. Zimmermann & J.A. Milburn (eds). Springer-Verlag, Berlin, pp. 59–100.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Lambers, H., Chapin, F.S., Pons, T.L. (2008). Parasitic Associations. In: Plant Physiological Ecology. Springer, New York, NY. https://doi.org/10.1007/978-0-387-78341-3_15

Download citation

Publish with us

Policies and ethics