Skip to main content

Part of the book series: Statistics for Biology and Health ((SBH))

  • 1083 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    A Markov process, named after the Russian mathematician Andrey Markov (1856–1922), is a mathematical model for the random evolution characterized by having a “lack-of-memory” property, i.e., the conditional distribution of what happens in the future given everything up to now and depends only on the present state, so, the future and past are independent. This work founded a completely new branch of probability theory and launched the theory of stochastic processes. Markov also made some studies of poetry and poetic styles, applying the ideas of his theory to analysis of vowels and consonants in literary texts.

References

  • Aalen O.O., 1988. Heterogeneity in survival analysis. Stat Med 7:1121–1137.

    Article  Google Scholar 

  • Aalen O.O., 1992. Modeling heterogeneity in survival analysis by the compound Poisson distribution. Ann Appl Probab 2:951–972.

    Article  MATH  MathSciNet  Google Scholar 

  • Agur Z., Arakelyan L. et al., 2004. HOPF point analysis for angiogenesis models. Discrete Cont Dyn Syst B 4(1):29–38.

    Article  MATH  MathSciNet  Google Scholar 

  • Akushevich I., Veremeeva G., Kulminski A., Ukraitseva S., Arbeev K., Akleev A.V., Yashin A.I., 2007. New perspectives in modeling of carcinogenesis induced by ionizing radiation. “The 13th International Congress of Radiation Research, San Francisco, California, July 08–12, 2007. Abstract PS4175. In abstract book, p. 246.

    Google Scholar 

  • Alber M., Chen N. et al., 2006. Multiscale dynamics of biological cells with chemotactic interactions: from a discrete stochastic model to a continuous description. Phys Rev E 73:051901-1–051901-11.

    Article  MathSciNet  Google Scholar 

  • Andersen M.H., Becker J.C., Straten P., 2005. Regulators of apoptosis: suitable targets for immune therapy of cancer. Nat Rev Drug Discov 4:399–409.

    Article  Google Scholar 

  • Arbeev K.G., Ukraintseva S.V., Arbeeva L.S. et al., 2005. Mathematical models for human cancer incidence rates. Demogr Res 12:237–272.

    Article  Google Scholar 

  • Armitage P., Doll R., 1954. The age distribution of cancer and a multi-stage theory of carcinogenesis. Br J Cancer 8(1):1–12.

    Article  Google Scholar 

  • Armitage P., Doll R., 1961. Stochastic models for carcinogenesis. In Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and Probability, University of California Press.

    Google Scholar 

  • Artandi S.E., 2003. Complex roles for telomeres and telomerase in breast carcinogenesis. Breast Cancer Res 5:37–41.

    Article  Google Scholar 

  • Bateman H., 1910. Solutions of a system of differential equations occurring in the theory of radioactive transformation. Proc Camb Philol Soc 15:423–427.

    Google Scholar 

  • Barrett J.C., 1979. The progressive nature of neoplastic transformation of Syrian hamster embryo cells in culture. Prog Exp Tumor Res 24:17–27.

    Google Scholar 

  • Barrett J.C., Fletcher W.F., 1987. Cellular and molecular mechanisms of multistep carcinogenesis in cell culture models. In: Barrett J.C. (ed.). Mechanisms of Environmental Carcinogenesis, Vol. 2. Boca Raton, FL: CRC Press, pp. 73–116.

    Google Scholar 

  • Beckman R.A., Loeb L.A., 2005. Genetic instability in cancer: theory and experiment. Semin Cancer Biol 15:423–435.

    Article  Google Scholar 

  • Bergers G., Javaherian K. et al., 1999. Effects of angiogenesis inhibitors on multistage carcinogenesis in mice. Science 284(5415):808–812.

    Article  Google Scholar 

  • Bijwaard H., Brugmans M.J., Rispens S.M., 2005. Comment on “Studies of radon-exposed miner cohorts using a biologically based model: comparison of current Czech and French data with historic data from China and Colorado” by Heidenreich W.F., Tomasek L., Rogel A., Laurier D., Tirmarche M., 2004, Radiat Environ Biophys 43:247–256. Radiat Environ Biophys 149–151; author reply 153–154.

    Google Scholar 

  • Bisacchi D., Benelli R., Vanzetto C. et al., 2003. Antiangiogenesis and angioprevention: mechanisms, problems and perspectives. Cancer Detect Prev 27:229–238.

    Article  Google Scholar 

  • Bogenhagen D.F., 1999. Repair of mtDNA in vertebrates. Am J Hum Genet 64:1276–1281.

    Article  Google Scholar 

  • Bogenrieder T., Herlyn M., 2003. Axis of evil: molecular mechanisms of cancer metastasis. Oncigene 22:6524–6536.

    Article  Google Scholar 

  • Boland C.R., 2002. Heredity nonpolyposis colorectal cancer (HNPCC). In: Vogelstein B., Kinzler K.W. (eds.). The Genetic Basis of Human Cancer. 2nd edition. New York: McGraw-Hill, pp. 307–321.

    Google Scholar 

  • Boveri T., 1929. The Origin of Malignant Tumors. Baltimore, MD: Williams & Wilkins.

    Google Scholar 

  • Breckenridge D.G., Germain M., Mathai J.P. et al., 2003. Regulation of apoptosis by endoplasmic reticulum pathways. Oncogene 22:8608–8618.

    Article  Google Scholar 

  • Brissette J.L., Kumar N.M., Gilula N.B., Dotto G.P., 1991. The tumor promoter 12-o-tetradecanoylphorbol-13-acetate and the ras oncogene modulate expression and phosphorylation of gap junction proteins. Mol Vellul Biol 11:5364–5371.

    Google Scholar 

  • Brouland J-P., Gelebart P., Kovasc T. et al., 2005. The loss of sarco/endoplasmium reticulum calcium transport APTase 3 expression is an early event during the multistep process of colon carcinogenesis. Am J Pathol 167:233–242.

    Google Scholar 

  • Brugmans M.J., Rispens S.M., Bijwaard H., Laurier D., Rogel A., Tomasek L., Tirmarche M., 2004. Radon-induced lung cancer in French and Czech miner cohorts described with a two-mutation cancer model. Radiat Environ Biophys, 43(3):153–163.

    Article  Google Scholar 

  • Burch P.R., 1976a. Letter: application of the Weibull distribution. Br J Radiol 49(582):564.

    Google Scholar 

  • Burch P.R., 1976b. Lung cancer and smoking: is there proof. Br Med J 2(6036):640.

    Google Scholar 

  • Chambers A.F., Matrisian L.M., 1997. Changing views of the role of matrix metalloproteinases in metastasis. J Natl Cancer Inst 89:1260–1270.

    Article  Google Scholar 

  • Chu K.C., 1985. Multievent model of carcinogenesis: a mathematical model for cancer causation and prevention. In Carcinogenesis: A Comprehensive Survey. Vol. 8, New York: Raven Press, pp. 411–421.

    Google Scholar 

  • Cifone M.A., Fidler I.J., 1980. Correlation of patterns of anchorage-independent growth with in vivo behavior of cells from a murine fibrosarcoma. Proc Natl Acad Sci USA 77:1039–1043.

    Article  Google Scholar 

  • Cook P.J., Doll R., Fellingham S.A., 1969. A mathematical model for the age distribution of cancer in man. Int J Cancer 4:93–112.

    Article  Google Scholar 

  • Cristofalo V., Allen R. et al., 1998. Relationship between donor age and the replicative lifespan of human cells in culture: a reevaluation. Proc Natl Acad Sci USA 95:10614–10619.

    Article  Google Scholar 

  • Cutler R., Semsei I., 1989. Development, cancer and aging: possible common mechanisms of action and regulation. J Gerontol 44(6):25–34.

    Google Scholar 

  • Delfino A.B.M., Barreto E.C., da Silva E.T. et al., 1997. The involvement of genes and proteins in apoptosis – Carcinogenesis regulation. Rev Bras Cancerol 43(3). At: http://www.inca.gov.br/rbc/n_43/v03/english/article.html

  • Denmeade S.R., Jakobsen C.M., Janssen S. et al., 2003. Prostate-specific antigen-activated thapsigargin prodrug as targeted therapy for prostate cancer. J Natl Cancer Inst 95:990–1000.

    Article  Google Scholar 

  • Denning C., Pitts J.D., 1997. Bystander effects of different enzyme-prodrug systems for cancer gene therapy depend on different pathways for intercellular transfer of toxic metabolites, a factor that will govern clinical choice of appropriate regimens. Hum Gene Ther 8:1825–1835.

    Article  Google Scholar 

  • DiMauro S., Schon E.A., 2003. Mitochondrial respiratory-chain diseases. N Engl J Med 348:2656–2668.

    Article  Google Scholar 

  • Dix D., 1989. The role of aging in cancer incidence: an epidemiological study. J Gerontol 44(6):10–18.

    Google Scholar 

  • Doege K., Heine S., Jensen I. et al., 2005. Inhibition of mitochondrial respiration elevates oxygen concentration but leaves regulation of hypoxia-inducible factor (HIF) intact. Blood 106:2311–2317.

    Article  Google Scholar 

  • Duensing S., Munger K., 2002. Human papillomaviruses and centrosome duplication errors: modeling the origins of genomic instability. Oncogene 21:6241–6248.

    Article  Google Scholar 

  • Duffy M.J., Maguire T.M., Hill A. et al., 2000. Metalloproteinases: role in breast carcinogenesis, invasion and metastasis. Breast Cancer Res 2:252–257.

    Article  Google Scholar 

  • Economos A., 1982. Rate of aging, rate of dying, and the mechanisms of mortality. Arch Gerontol Geriatr 1(1):3–27.

    Article  MathSciNet  Google Scholar 

  • El-Omar E.M., Rabkin C.S., Gammon M.D. et al., 2003. Increased risk of non-cardia gastric cancer associated with proinflammatory cytokine gene polymorphisms. Gastroenterology 124(5):1193–1201.

    Article  Google Scholar 

  • Eng C., Kiuru M., Fernandez M.J., Aaltonen L.A., 2003. A role for mitochondrial enzymes in inherited neoplasia and beyond. Nat Rev Cancer 3:193–202.

    Article  Google Scholar 

  • Ershler W.B., Keller E.T., 2000. Age-associated increased interleukin-6 gene expression, late-life diseases, and frailty. Annu Rev Med 51:245–70.

    Article  Google Scholar 

  • Fearon E.R., Jones P.A., 1992. Progressing toward a molecular description of colorectal cancer development. FASEB J 6:2783–2790.

    Google Scholar 

  • Fearon E.R., Vogelstein B., 1990. A genetic model for colorectal tumorogenesis. Cell 61(5):759–767.

    Article  Google Scholar 

  • Fesik S.W., 2005. Promoting apoptosis as a strategy for cancer drug discovery. Nat Rev Cancer 5:876–885.

    Article  Google Scholar 

  • Fisher J.C., Hollomon J.H., 1951. A hypothesis for the origin of cancer foci. Cancer 4:916–918.

    Article  Google Scholar 

  • Fliss M.S., Usadel H., Caballero O.L. et al., 2000. Facile detection of mitochondrial DNA mutations in tumors and bodily fluids. Science 287:2017–2019.

    Article  Google Scholar 

  • Folkman J., 1971. Tumor angiogenesis: therapeutic implications. N Engl J Med 285:1182–1186.

    Article  Google Scholar 

  • Folkman J., 1995. Angiogenesis in cancer, vascular, rheumatoid and other disease. Nat Med 1:27–30.

    Article  Google Scholar 

  • Frank S.A., 2004. Commentary: Mathematical models of cancer progression and epidemiology in the age of high throughput genomics. Int J Epidemiol 33:1179–1181.

    Article  Google Scholar 

  • Frank S.A., 2007. Dynamics of cancer. incidence, inheritance and evolution. In: Orr H.A. (ed.). Princeton Series in Evolutionary Biology. Princeton and Oxford: Princeton University Press, p. 378.

    Google Scholar 

  • Garte S., 2006. Theory in carcinogenesis and epidemiology. J Epidemiol Community Health 57:85.

    Article  Google Scholar 

  • Gerl R., Vaux D.L., 2005. Apoptosis in the development and treatment of cancer. Carcinogenesis 26:263–270.

    Article  Google Scholar 

  • Girald-Rosa W., Vleugels R.A., Musiek A.C. et al., 2005. High-throughput mitochondrial genome screening method for nonmelanoma skin cancer using multiplexed temperature gradient capillary electrophoresis. Clin Chem 51:305–311.

    Article  Google Scholar 

  • Gjessing H.K, Aalen O.O., Hjort N.L., 2003. Frailty models based on Lévy processes. Adv Appl Probab 35:532–550.

    Article  MATH  MathSciNet  Google Scholar 

  • Gregori G., Hanin L., Luebeck G., Moolgavkar S., Yakovlev A., 2002. Testing goodness of fit for stochastic models of carcinogenesis. Math Biosci 175:13–29.

    Article  MATH  MathSciNet  Google Scholar 

  • Hanahan D., Weinberg R.A., 2000. The hallmarks of cancer. Cell 100:57–70.

    Google Scholar 

  • Harding H.P., Calfon M., Urano F. et al., 2002. Transcriptional and translational control in the Mammalian unfolded protein response. Annu Rev Cell Dev Biol 18(575–599).

    Article  Google Scholar 

  • Harris C.C., 1987. Human tissues and cells in carcinogenesis research. Cancer Res 47:1–10.

    Google Scholar 

  • Hart R.W., Setlow R.B., 1976. DNA repair in late-passage human cells. Mech Ageing Dev 5(1):67–77.

    Article  Google Scholar 

  • Hasty P., 2005. The impact of DNA damage, genetic mutation and cellular responses on cancer prevention, longevity and aging: observations in humans and mice. Mech Aging Dev 126(1):71–77.

    Article  Google Scholar 

  • Hazelton W., Clements M. et al., 2005. Multistage carcinogenesis and lung cancer mortality in three cohorts. Cancer Epidemiol Biomarkers Prev 14(5):1171–1181.

    Article  Google Scholar 

  • He Q., Huang Y., Sheikh M.S., 2004. Proteasome inhibitor MG132 upregulates death receptor 5 and cooperates with Apo2L/TRAIL to induce apoptosis in Bax-proficient and -deficient cells. Oncogene 23:2554–2558.

    Article  Google Scholar 

  • He Q., Lee D.I., Rong R. et al., 2002a. Endoplasmic reticulum calcium pool depletion-induced apoptosis is coupled with activation of the death receptor 5 pathway. Oncogene 21:2623–2633.

    Google Scholar 

  • He Q., Luo X., Huang Y. et al., 2002b. Apo2L/TRAIL differentially modulates the apoptotic effects of sulindac and a COX-2 selective non-steroidal anti-inflammatory agent inBax-deficient cells. Oncogene 21:6032–6040.

    Google Scholar 

  • He T.C., Sparks A.B., Rago C. et al., 1998. Identification of c-MYC as a target of the APC pathway. Science 281(5382):1509–1512.

    Article  Google Scholar 

  • Heffelfinger S.C., Gear R.B., Schneider J. et al., 2003. TNP-470 inhibits 7,12-dimethylbenz[α]anthracene-induced mammary tumor formation when administered before the formation of carcinoma in situ but is not additive with tamozifen. Lab Invest 83:1001–1011.

    Article  Google Scholar 

  • Heidenreich W.F., 2005a. Response to the comment on “Studies of radon-exposed miner cohorts using a biologically based model: comparison of current Czech and French data with historic data from China and Colorado” by Heidenreich W.F., Tomasek L., Rogel A., Laurier D., Tirmarche M., 2004. Radiat Environ Biophys 43:247–256. Radiat Environ Biophys, 44(2):153–154.

    Google Scholar 

  • Heidenreich W., 2005b. Heterogeneity of cancer risk due to stochastic effects. Risk Anal 25:1589–1594.

    Google Scholar 

  • Heidenreich W.F., 2006. Heterogeneity of cancer risk due to stochastic effects. Risk Anal 25(6):1589–1594.

    Article  MathSciNet  Google Scholar 

  • Heidenreich W.F., Atkinson M., Paretzke H.G., 2001 Radiation-induced cell inactivation can increase the cancer risk. Radiat Res 155:870–872.

    Article  Google Scholar 

  • Heidenreich W., Paretzke H., 2001. The two-stage clonal expansion model as an example of a biologically based model of radiation-induced cancer. Radiat Res 156:678–81.

    Article  Google Scholar 

  • Heidenreich W.F., Tomasek L., Rogel A., Laurier D., Tirmarche M., 2004. Studies of radon-exposed miner cohorts using a biologically based model: comparison of current Czech and French data with historic data from China and Colorado. Radiat Environ Biophys 43(4):247–256.

    Article  Google Scholar 

  • Heselmeyer K., Hellstrom A.C., Blegen H., Schrock E., Silversward C., Shah K., Auer G., Ried T., 1998. Primary carcinoma of the fallopian tube: comparative genomic hybridization reveals high genetic instability and a specific, recurring pattern of chromosomal aberrations. Int J Gynecol Pathol 17:245–254.

    Article  Google Scholar 

  • Heslin M.J., Jieming Y., Jonson M.R. et al., 2001. Role of matrix metalloproteinases in colorectal carcinogenesis. Ann Surg 233:786–792.

    Article  Google Scholar 

  • Hibi K., Nakayama H., Yamazaki T et al., 2001a. Detection of mitochondrial DNA alterations in primary tumors and corresponding serum of colorectal cancer patients. Int J Cancer 94:429–431.

    Google Scholar 

  • Hibi K., Nakayama H., Yamazaki T. et al., 2001b. Mitochondrial DNA alteration in esophageal cancer. Int J Cancer 92:319–321.

    Google Scholar 

  • Hiyama K., Hiyama E., Ishioka S. et al., 1995a. Telomerase activity in small-cell and non-small-cell lung cancers. J Natl Cancer Inst 87:895–902.

    Google Scholar 

  • Hiyama E., Yokoyama T., Tatsumoto N. et al., 1995b. Telomerase activity in gastric cancer. Cancer Res 55:3258–3262.

    Google Scholar 

  • Hopkin K., 1996. Tumor evolution: survival of the fittest cells. J NIH Res 8:37–41.

    Google Scholar 

  • Hougaard P., 1984. Life table methods for heterogeneous populations: distributions describing the heterogeneity. Biometrika 71:75–83.

    Article  MATH  MathSciNet  Google Scholar 

  • Huang H., Patel D.D., Manton K.G., 2005. The immune system aging: roles of cytokines, T cells and NKcells. Front Biosci 10:192–215.

    Article  Google Scholar 

  • Hunter T., 1986. Cell growth control mechanisms. Nature 322:14–15.

    Article  Google Scholar 

  • Issa J.P., 2004. Opinion: CpG island methylator phenotype in cancer. Nat Rev Cancer 4:988–993.

    Article  Google Scholar 

  • Jagat N., Kolodgie F., Virmani R., 2000. Apoptosis and cardiomyopathy. Molecular genetics. Curr Opin Cardiol 15(3):183–188.

    Article  Google Scholar 

  • Jakupciak J.P., Wang W., Markowitz M.E. et al., 2005. Mitochondrial DNA as a cancer biomarker. J Mol Diagn 7(2):258–267.

    Google Scholar 

  • Jass J.R., Barker M., Fraser L. et al., 2003. APC mutation and tumor budding in colorectal cancer. J Clin Pathol 56:69–73.

    Article  Google Scholar 

  • Jass J.R., Whitehall V.L., Young J. et al., 2002a. Emerging concepts in colorectal neoplasia. Gastroenterology 123:862–876.

    Google Scholar 

  • Jass J.R., Young J., Leggett B.A., 2002b. Evolution of colorectal cancer: change of pace and change of direction. J Gastroenterol Hepatol 17:17–26.

    Google Scholar 

  • Jeronimo C., Nomoto S., Caballero O.L. et al., 2001. Mitochondrial mitations in early stage prostate cancer and bodily fluids. Oncogene 20:5195–5198.

    Article  Google Scholar 

  • Jewell N., 1982. Mixtures of exponential distributions. Ann Stat 10:479–484.

    Article  MATH  MathSciNet  Google Scholar 

  • Jillella A.P., Day D.S., Severson K. et al., 2000. Non-Hodgkin's lymphoma presenting as anasarca: probably mediated by tumor necrosis factor alpha (TNF-alpha). Leuk Lymphoma 38(3–4):419–422.

    Google Scholar 

  • Jones J.B., Song J.J., Hempen P.M. et al., 2001. Detection of mitochondrial DNA mutations in pancreatic cancer offers a ‘mass’-ive advantage over detection of nuclear DNA mutations. Cancer Res 61:1299–1304.

    Google Scholar 

  • Kagan J., Srivastava S., 2005. Mitochondria as a target for early detection and diagnosis of cancer. Crit Rev Clin Lab Sci 42(5–6):453–472.

    Article  Google Scholar 

  • Kalashnikov V.V., 1994. Mathematical Methods in Queuing Theory. Dordrecht, The Netherlands: Kluwer.

    Google Scholar 

  • Kamat A.A., Fletcher M., Gruman L.M. et al., 2006. The clinical relevance of stromal matrix metalloproteinase expression in ovarian cancer. Clin Cancer Res 12:1707–1714.

    Article  Google Scholar 

  • Kerr J.F., Wyllie A.H., Currie A.R., 1972. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer 26:239–257.

    Article  Google Scholar 

  • Khuder S., Herial N. et al., 2005. Non-sterodial anti-inflammatory drug use and lung cancer: a meta-analysis. Chest 127:748–754.

    Article  Google Scholar 

  • Kim S., Kaminker P., Campisi J., 1999. TIN2, a new regulator of telomere length in human cells. Nat Genet 23:405–412.

    Article  Google Scholar 

  • Kim H.C., Lee H.J., Roh S.A. et al., 2008. CpG island methylation in familial colorectal cancer patients not fulfilling the Amsterdam criteria. J Korean Med Sci 23:270–277.

    Article  Google Scholar 

  • Kinzler K.W., Vogelstein B., 1997. Gatekeepers and caretakers. Nature 386:761–763.

    Article  Google Scholar 

  • Kinzler K.W., Vogelstein B., 1998. Landscaping the cancer terrain. Science 280(5366):1036–1037.

    Article  Google Scholar 

  • Kinzler K.W., Vogelstein B., 2002. Colorectal tumors. In: Vogelstein B., Kinzler K.W. (eds.). The Genetic Basis of Human Cancer. 2nd edition. New-York: McGraw-Hill, pp. 583–612.

    Google Scholar 

  • Klebanov L.V., Yakovlev A.Yu., Rachev S.T., 1993. A stochastic model of radiation carcinogenesis: latent time distributions and their properties. Math Biosci 113(1):51–75.

    Article  MATH  Google Scholar 

  • Klein G., Klein E., 1984. Oncogene activiation and tumor progression. Carcinogenesis 5:429–435.

    Article  Google Scholar 

  • Klein S., McCormick F., Levitzki A., 2005. Killing time for cancer cells. Nat Rev Cancer 5:573–580.

    Article  Google Scholar 

  • Knudson A.G., 1971. Mutation and cancer: statistical study of retinoblastoma. Proc Natl Acad Sci 68:820–823.

    Article  Google Scholar 

  • Kodama S., Ariyoshi K., Watanabe S. et al., 2006. Telomere biology: implications for radiation carcinogenesis. Radiation Risk Perspectives: Proceedings of the Second Nagasaki Symposium of International Consortium for Medical Care of Hibakusha and Radiation Life Science, Nagasaki, Japan, 2006. Int Congr Ser 1299:242–247.

    Article  Google Scholar 

  • Kondo S., 1983. Carcinogenesis in relation to the stem cell mutation hypothesis. Differentiation 24:1–8.

    Article  MathSciNet  Google Scholar 

  • Krestinina L.Y., Preston D.L., Ostroumova E.V., Degteva M.O., Ron E., Vyushkova O.V. et al., 2005. Protracted radiation exposure and cancer mortality in the Techa River Cohort. Radiat Res 164(5):602–611.

    Article  Google Scholar 

  • Krtolica A., Campisi J., 2002. Cancer and aging: a model for the cancer promoting effects of the aging stroma. Int J Biochem Cell Biol 34(11):1401.

    Article  Google Scholar 

  • Kumimoto H., Yamane Y., Nishimoto Y. et al., 2004. Frequent somatic mutations of mitochondrial DNA in esophageal squamous cell carcinoma. Int J Cancer 108:228–231.

    Article  Google Scholar 

  • Kuramoto K., Matsushita S., Esaki Y. et al., 1993. Prevalence, rate of correct clinical diagnosis and mortality of cancer in 4,894 elderly autopsy cases. Nippon Ronen Igakkai Zasshi 30(1):35–40.

    Google Scholar 

  • Land C., 1995. Studies of cancer and radiation dose among atomic bomb survivors. The example of breast cancer. J Am Med Assoc 274(5):402–407.

    Article  Google Scholar 

  • Land H., Parada L.F., Weinberg R.A., 1983. Tumorogenic conversion of primary embryo fibroblasts requires at least two cooperating oncogenes. Nature 304:596–602.

    Article  Google Scholar 

  • Laurier D., Rogel A., Tomasek L., Tirmarche M., 2005. Comment on “Studies of radon-exposed miner cohorts using a biologically based model: comparison of current Czech and French data with historic data from China and Colorado” by Heidenreich W.F., Tomasek L., Rogel A., Laurier D., Tirmarche M., 2004. Radiat Environ Biophys 43:247–256, and “Radon-induced lung cancer in French and Czech miner cohorts described with a two-mutation cancer model” by Brugmans M.J.P., Rispens S.M., Bijwaard H., Laurier D., Rogel A., Tomasek L., Tirmarche M., 2004. Radiat Environ Biophys 43:153–163. Radiat Environ Biophys, 44(2):155–156.

    Google Scholar 

  • Lengauer C., Kinzler K.W., Vogelstein B., 1998. Genetic instabilities in human cancers. Nature 396:643–649.

    Article  Google Scholar 

  • Liang J., Bennett J., Krause N. et al., 2002. Old age mortality in Japan. J Gerontol Ser B: Psychol Sci Social Sci 57:S294–S307.

    Google Scholar 

  • Lievre A., Chapusot C., Bouvier A.M. et al., 2005. Clinical value of mitochondrial mutations in colorectal cancer. J Clin Oncol 23:3517–3525.

    Article  Google Scholar 

  • Lightowlers R.N., Chinnery P.F., Turnbull D.M., Howell N., 1997. Mammalian mitochondrial genetics: heredity, heteroplasmy and disease. TIG 13:450–455.

    Article  Google Scholar 

  • Ling V., Chambers A.F., Harris J.F., Hill R.P., 1985. Quantitative genetic analysis of tumor progression. Cancer Metast Rev 4:173–194.

    Article  Google Scholar 

  • Little M.P., 1995. Are two mutations sufficient to cause cancer? Some generalizations of the two-mutation model of carcinogenesis of Moolgavkar, Venzon, and Knudson, and of the multistage model of Armitage and Doll. Biometrics 51:1278–1291.

    Article  MATH  Google Scholar 

  • Little M., 1996. Generalizations of the two-mutation and classical multi-stage models of carcinogenesis fitted to the Japanese atomic bomb survivor data. J Radiol Prot 16(7):7–24.

    Article  Google Scholar 

  • Little M., 2004. Risks associated with ionizing radiation. Br Med Bull 2003;68:259–275.

    Article  Google Scholar 

  • Little M.P., Haylock R.G., Muirhead C.R., 2002. Modelling lung tumour risk in radon-exposed uranium miners using generalizations of the two-mutation model of Moolgavkar, Venzon and Knudson. Int J Radiat Biol, 78(1):49–68.

    Article  Google Scholar 

  • Little M.P., Heidenreich W.F., Moolgavkar S.H., Schöllnberger H., Thomas D.C., 2008. Systems biological and mechanistic modelling of radiation-induced cancer. Radiat Environ Biophys 47(1):39–47.

    Article  Google Scholar 

  • Little M.P., Li G., 2007. Stochastic modelling of colon cancer: is there a role for genomic instability? Carcinogenesis 28(2):479–87.

    Article  Google Scholar 

  • Little M.P., Wright E.G., 2003. A stochastic carcinogenesis model incorporating genomic instability fitted to colon cancer data. Math Biosci 183(2):111–34.

    Article  MATH  MathSciNet  Google Scholar 

  • Loewenstein W.R., 1966. Permeability of membrane junctions. Ann NY Acad Sci 137:441–472.

    Article  Google Scholar 

  • Lotka A.J., 1925. Elements of Physical Biology. Baltimore, MD: Williams & Wilkins Co.

    MATH  Google Scholar 

  • Manton K.G., Lowrimore G., Yashin A.I., 1993. Methods for combining ancillary data in stochastic compartment models of cancer mortality: generalization of heterogeneity models. Math Popul Stud 4(2):133–147.

    Article  Google Scholar 

  • Manton K.G., Stallard E., 1979. Maximum likelihood estimation of a stochastic compartment model of cancer latency: lung cancer mortality among white females in the U.S. Comput Biomed Res 12:313–325.

    Article  Google Scholar 

  • Manton K.G., Stallard E., 1982. A population-based model of respiratory cancer incidence, progression, diagnosis, treatment and mortality. Comput Biomed Res 15:342–360.

    Article  Google Scholar 

  • Manton K.G., Stallard E., 1988. Chronic disease risk modeling: measurement and evaluation of the risks of chronic disease processes. In the Griffin Series of the Biomathematics of Diseases. London, England: Charles Griffin Limited.

    Google Scholar 

  • Manton K.G., Stallard E., Singer B.H., 1992. Projecting the future size and health status of the U.S. elderly population. Int J Forecast 8:433–458.

    Article  Google Scholar 

  • Manton K.G., Volovyk S., Kulminski A., 2004. ROS effects on neurodegeneration in Alzheimer’s disease and related disorders: on environmental stresses of ionizing radiation. Curr Alzhei Res (Lahiri D.K., ed.) 1(4): 277–293.

    Article  Google Scholar 

  • Manton K.G., Woodbury M.A., Stallard E., Riggan W.B., Creason J.P., Pellom A.C., 1989. Empirical Bayes procedures for stabilizing maps of U.S. cancer mortality rates. J Am Stat Assoc 84(407):637–650.

    Article  Google Scholar 

  • Manton K.G., Woodbury M.A., Tolley H.D., 1994. Statistical Applications Using Fuzzy Sets. New York: Wiley-Interscience Publication, John Wiley & Sons, p. 312.

    MATH  Google Scholar 

  • Manton K.G., Yashin A.I., 2000. Mechanisms of aging and mortality: searches for new paradigms. Monographs on Population Aging, 7. Odense, Denmark: Odense University Press.

    Google Scholar 

  • Markert C., 1968. Neoplasia: a disease of cell differentiation. Cancer Res 28:1908–1914.

    Google Scholar 

  • Maruyama Y., Hanai H., Fujita M. et al., 1997. Telomere length and telomerase activity in carcinogenesis of the stomach. Jpn J Clin Oncol 27(4):216–220.

    Article  Google Scholar 

  • Maximo V., Soares P., Seruca R. et al., 2001. Microsatellite instability, mitochondrial DNA large deletions, and mitochondrial DNA mutations in gastric carcinoma. Genes Chromosomes Cancer 32:136–143.

    Article  Google Scholar 

  • Medina D., 1988. The preneoplastic state in mouse mammary tumorogenesis. Carcinogenesis 9:1113–1119.

    Article  Google Scholar 

  • Medrano M.J., Lopez-Abente G., Barrado M.J. et al., 1997. Effect of age, birth cohort, and period of death on cerebrovascular mortality in Spain, 1952 through 1991. Stroke 28:40–44.

    Google Scholar 

  • Meeker A.K., Hicks J.L., Iacobuzio-Donahue C.A. et al., 2004. Telomere length abnormalities occur early in the initiation of epithelial carcinogenesis. Clin Cancer Res 10:3317–3326.

    Article  Google Scholar 

  • Meierhofer D., Mayr J.A., Fink K. et al., 2006. Mitochondrial DNA mutations in renal cell carcinomas revealed no general impact on energy metabolism. Br J Cancer 94:268–274.

    Article  Google Scholar 

  • Michor F., Nowak M. et al., 2006. Stochastic dynamics of metastasis formation. J Theor Biol 240:521–530.

    Article  MathSciNet  Google Scholar 

  • Mihara M., Erster S., Zaika A., Petrenko O., Chittenden T., Pancoska P., Moll U.M., 2003. p53 has a direct apoptogenic role at the mitochondria. Mol Cell 11:577–590.

    Article  Google Scholar 

  • Minna J.D., Gazdar A.E., 1996. Translational research comes of age. Nat Med 2(9):974–975.

    Article  Google Scholar 

  • Miura N., Horikawa I., Nishimoto A. et al., 1997. Progressive telomere shortening and telomerase reactivation during hepatocellular carcinogenesis. Cancer Genet Cytogenet 93(1):56–62.

    Article  Google Scholar 

  • Moolgavkar S.H., Knudson A.G., 1981. Mutation and cancer: a model for human carcinogenesis. J Natl Cancer Inst 66(6):1037–52.

    Google Scholar 

  • Moolgavkar S., Krewski D., Schwarz M., 1999. Mechanisms of carcinogenesis and biologically based models for estimation and prediction of risk. In: Moolgavkar S., Krewski D., Zeise L., Cardis E., Møller H. (eds.). Quantitative Estimation and Prediction of Human Cancer Risks. Scientific publications No. 131, Lyon: International Agency for Research on Cancer, pp. 179–237.

    Google Scholar 

  • Moolgavkar S.H., Luebeck E.G., 1992. Multistage carcinogenesis: population-based model for colon cancer. J Natl Cancer Inst 84:610–618.

    Article  Google Scholar 

  • Moolgavkar S.H., Venzon D.J., 1979. Two event model for carcinogenesis: incidence curves for childhood and adult cancer. Math Biosci 47:55–77.

    Article  MATH  Google Scholar 

  • Nagy A., Wilhelm M., Sukosd F. et al., 2002. Somatic mitochondrial DNA mutations in human chromophobe renal cell carcinomas. Genes Chromosomes Cancer 35:256–260.

    Article  Google Scholar 

  • Neckelmann N., Li K., Wade R.P. et al., 1987. cDNA sequence of a human skeletal muscle ADP/ATP translocator: lack of a leader peptide, divergence from a fibroblast translocator cDNA, and coevolution with mitochondrial DNA genes. Proc Natl Acad Sci USA 84:7580–7584.

    Article  Google Scholar 

  • Nelson W.G., Carter H.B., DeWeese T.L. et al., 2004. Prostate cancer. In: Abeloff M.D., Armitage J.O., Niederhuber J.E., Kastan M.B., McKenna W.G. (eds.). Clinical Oncology. 3rd edition. London: Elsevier, Churchill Livingstone, pp. 1877–1942, 3205.

    Google Scholar 

  • Nettesheim P., Barrett J.C., 1984. Tracheal epithelial cell transformation: a model system for studies on neoplastic progression. Crit Rev Toxicol 12(3):215–239.

    Article  Google Scholar 

  • Niederhuber J.E., Cole C.E., Grochow L. et al., 2004. Colon cancer. In: Abeloff M.D., Armitage J.O., Niederhuber J.E., Kastan M.B., McKenna W.G. (eds.). Clinical Oncology. 3rd edition. London: Elsevier, Churchill Livingstone, pp. 1877–1942, 3205.

    Google Scholar 

  • Nishikawa M., Nishiguchi S., Shiomi S. et al., 2001. Somatic mutations of mitochondrial DNA in cancerous and noncancerous liver tissue in individuals with hepatocellular carcinoma. Cancer Res 61:1843–1845.

    Google Scholar 

  • Nishitoh H., Matsuzawa A., Tobiume K. et al., 2002. ASK1 is essential for endoplasmic reticulum stress-induced neuronal cell death triggered by expanded polyglutamine repeats. Genes Dev 16:1345–1355.

    Article  Google Scholar 

  • Nordling C.O., 1953. A new theory on the cancer-inducing mechanism. Br J Cancer 7:68–72.

    Article  Google Scholar 

  • Nowak M.A., Komarova N.L., Sengupta A. et al., 2002. The role of chromosomal instability in tumor initiation. Proc Natl Acad Sci USA 99:16226–16231.

    Article  Google Scholar 

  • Nowell P.C., 1976. The clonal evolution of tumor cell populations. Science 194:23–28.

    Article  Google Scholar 

  • Nowell P.C., 1986. Mechanism of tumor progression. Cancer Res 46:2203–2207.

    Google Scholar 

  • Olkin I., Gleser L.J., Derman C., 1978. Probability Models and Applications. New York: MacMillan Publishing, pp. 289–298.

    Google Scholar 

  • Oyadomari S., Mori M., 2004. Roles of CHOP/GADD153 in endoplasmic reticulum stress. Cell Death Differ 11:381–389.

    Article  Google Scholar 

  • Paillard F., 1997. Bystander effects in enzymes/prodrug gene therapy – Commentary. Hum Gene Ther 8:1733–1735.

    Article  Google Scholar 

  • Pardoll D.W., 2004. Immunology and cancer. In: Abeloff M.D., Armitage J.O., Niederhuber J.E., Kastan M.B., McKenna W.G. (eds.). Clinical Oncology. 3rd edition. London: Elsevier, Churchill Livingstone, 2004.

    Google Scholar 

  • Parr R.L., Dakubo G.D., Thayer R.E. et al., 2006. Mitochondrial DNA as a potential tool for early cancer detection. Hum Genomics 2(4):252–257.

    Google Scholar 

  • Pejovic T., Ladner D., Intengan M. et al., 2004. Somatic D-loop mitochondrial DNA mutations are frequent in uterine serous carcinoma. Eur J Cancer 40:2519–2524.

    Article  Google Scholar 

  • Peto R., Parish S.E., Gray R.G., 1985. There is no such thing as adeing, and cancer is not related to it. IARC Sci Publ 58:43–53.

    Google Scholar 

  • Peto R., Roe F.J., Lee P.N. et al., 1975. Cancer and ageing in mice and men. Br J Cancer 32(4):411–426.

    Article  Google Scholar 

  • Petros J.A., Baumann A.K., Ruiz-Pesini E. et al., 2005. myDNA mutations increase tumorogenicity in prostate cancer. Proc Natl Acad Sci USA 102:719–724.

    Article  Google Scholar 

  • Pettepher C.C., LeDoux S.P., Bohr V.A. et al., 1991. Repair of alkalilabile sites within the mitochondrial DNA of RINr 38 cells after exposure to the nitrosourea streptozotocin. J Biol Chem 266:3113–3117.

    Google Scholar 

  • Pfeffer U., Ferrari N., Morini M. et al., 2003. Antiangiogenic activity of chemopreventive drugs. Int J Biol Markers 18:70–74.

    Google Scholar 

  • Pike M.C., 1966. A method of analysis of a certain class of experiments in carcinogenesis. Biometrics 22:142–161.

    Article  Google Scholar 

  • Pitot H.C., Goldsworthy T., Moran S., 1981. The natural history of carcinogenesis: implications of experimental carcinogenesis in the genesis of human cancer. J Supramol Struct Cellul Biochem 17:133–146.

    Article  Google Scholar 

  • Polyak K., Li Y., Zhu H. et al., 1998. Somatic mutations of the mitochondrial genome in human colorectal tumours. Nat Genet 20:291–293.

    Article  Google Scholar 

  • Pompei F., Plkanov M., Wilson R., 2001. Age distribution of cancer in mice: the incidence turnover at old age. Toxicol Ind Health 17(1):7–16.

    Article  Google Scholar 

  • Pompei F., Wilson R., 2001. Age distribution of cancer: the incidence turnover at old age. Hum Ecol Risk Assess 7(6):1619–1650.

    Article  Google Scholar 

  • Pompei F., Wilson R., 2002. A quantitative model of cellular senescence influence on cancer and longevity. Toxicol Ind Health 18:365–376.

    Article  Google Scholar 

  • Potter V.R., 1973. Biochemistry of cancer. In: Holland J., Frei E. (eds.). Cancer Medicine. Philadelphia: Lea and Febiger Publishers, pp. 178–192.

    Google Scholar 

  • Potter V.R., 1978. Phenotypic diversity in experimental hepatomas: the concept of partially blocked ontogeny. Br J Cancer 38:1–23.

    Article  Google Scholar 

  • Prasad K.N., Cole W.C., Hasse G.M., 2004. Health risks of low-dose ionizing radiation in humans: a review. Exp Biol Med 229:378–382.

    Google Scholar 

  • Ramaswamy S., Ross K.N., Lander E.S. et al., 2003. A molecular signature of metastasis in primary solid tumors. Nat Genet 33:49–54.

    Google Scholar 

  • Rainsford J., Cohen P., Dix D., 1985. On the role of aging in cancer incidence: analysis of the lung cancer data. Anticancer Res 5(4):427–430.

    Google Scholar 

  • Rajagopalan H., Bardelli A., Lengauer C. et al., 2002. Tumorigenesis: RAF/RAS oncogenes and mismatch-repair status. Nature 418:934.

    Article  Google Scholar 

  • Rajagopalan H., Nowak M.A., Vogelstein B. et al., 2003. The significance of unstable chromosomes in colorectal cancer. Nat Rev Cancer 3:695–701.

    Article  Google Scholar 

  • Rao R.V., Ellerby H.M., Bredesen D.E., 2004. Coupling endoplasmic reticulum stress to the cell death program. Cell Death Differ 11:372–380.

    Article  Google Scholar 

  • Reddel R.R., 2000. The role of senescence and immortalization in carcinogenesis. Carcinogenesis 21:477–484.

    Article  Google Scholar 

  • Reed J.C., Pellecchia M., 2005. Apoptosis-based therapies for hematologic malignancies. Blood 106:408–418.

    Article  Google Scholar 

  • Rhim J.S., 2001. Molecular and genetic mechanism of prostate cancer. Radiat Res 155:128–132.

    Article  Google Scholar 

  • Richard S.M., Bailliet G., Paez G.L. et al., 2000. Nuclear and mitochondrial genome instability in human breast cancer. Cancer Res 60:4231–4237.

    Google Scholar 

  • Risken H., 1996. The Fokker-Planck Equation: Methods of Solution and Application. 2nd edition. Amsterdam: Elsevier.

    Google Scholar 

  • Risken H., 1999. The Fokker-Planck Equation. 2nd edition. New York: Springer.

    Google Scholar 

  • Ritter G., Wilson R., Pompei F. et al., 2003. The multistage model of cancer development: some implications. Toxicol Ind Health 19:125–145.

    Article  Google Scholar 

  • Rudolph K.L., Chang S., Lee H.W. et al., 1999. Longevity, stress response, and cancer in aging telomerase-deficient mice. Cell 96:701–712.

    Article  Google Scholar 

  • Rutkowski D.T., Kaufman R.J., 2004. A trip to the ER: coping with stress. Trends Cell Biol 14:20–28.

    Article  Google Scholar 

  • Schmitt H., Blin N., Zankl H. et al., 1994. Telomere length variation in normal and malignant human tissues. Gene Chromosomes Cancer 11:171–177.

    Article  Google Scholar 

  • Schwartz H.S., Juliao S.F., Sciadini M.F. et al., 1995. Telomerase activity and oncogenesis in giant cell tumor of bone. Cancer 75:1094–1099.

    Article  Google Scholar 

  • Sell S., 1993. Cellular origin of cancer: de-differentiation or stem cell maturation arrest. Environ Health Perspect 101:15–26.

    Article  Google Scholar 

  • Sell S. (ed.), 2003. Stem Cells. Handbook. Totowa, NJ: Humana Press. p. 509.

    Google Scholar 

  • Shen Z., Xu L. et al., 2001. A comparative study of telomerase activity and malignant phenotype in multistage carcinogenesis of esophageal epithelial cells induced by human papillomavirus. Int J Mol Med 8:633–639.

    Google Scholar 

  • Shen Z., Xu L. et al., 2004. The multistage process of carcinogenesis in human esophageal epithelial cells induced by human papillomavirus. Oncol Rep 11:647–654.

    Google Scholar 

  • Shiino M., 2003. Stability analysis of mean-field-type nonlinear Fokker-Planck equations associated with a generalized entropy and its application to the self-gravitating system. Phys Rev E 67:056118-1–056118-16.

    Article  Google Scholar 

  • Sommerfield H.J., Meeker A.K., Piatyszek M.A. et al., 1996. Telomerase activity: a prevalent marker of malignant human prostate tissue. Cancer Res 56:218–222.

    Google Scholar 

  • Sonnenschein C., Soto A.M., 2000. Somatic mutation theory of carcinogenesis: why it should be dropped and replaced. Mol Carcinog 29:205–211.

    Article  Google Scholar 

  • Soto A.M., Sonnenschein C., 2004. The somatic mutation theory of cancer: growing problems with the paradigm? Bioessays 26:1097–1107.

    Article  Google Scholar 

  • Spencer S.L., Gerety R.A., Pienta K.J. et al., 2006. Modeling somatic evolution in tumorogenesis. PLoS Computational Biology 2:e108.

    Google Scholar 

  • Stanta G., Campagner L., Cavallieri F. et al., 1997. Cancer of the oldest old. What we have learned from autopsy studies. Clin Geriatr Med 13(1):55–68.

    Google Scholar 

  • Stoler D.L., Chen N., Basik M. et al., 1999. The onset and extent of genomic instability in sporadic colorectal tumor progression. Proc Natl Acad Sci 96:15121–15126.

    Article  Google Scholar 

  • Storm S.M., Rapp U.R., 1993. Oncogene activation: c-raf-1 gene mutations in experimental and naturally occurring tumors. Toxicol Lett 67:210–210.

    Article  Google Scholar 

  • Strachan T., Read A.P., 1999. Human Molecular Genetics. 2nd edition. New York: John Willey & Sons, Publishers, p. 576.

    Google Scholar 

  • Sui G., Zhou S., Wang J. et al., 2006. Mitochondrial DNA mutations in preneoplastic lesions of the gastrointestinal tract: a biomarker for the early detection of cancer. Mol Cancer 5:73, doi:10.1186/1476-4598-5-73. At: www.molecular-cancer.com/content/5/73.

  • Tagore K.S., Lawson M.J., Yucaitis J.A. et al., 2003. Sensitivity and specificity of a stool DNA multitarget assay panel for the detection of advanced colorectal neoplasia. Clin Colorectal Cancer 3:47–53.

    Article  Google Scholar 

  • Tan W.-Y., 1991. Stochastic Models of Carcinogenesis. New York: Markel Dekker.

    Google Scholar 

  • Tan D.J., Bai R.K., Wong L.J., 2002. Comprehensive scanning of somatic mitochondrial DNA mutations in breast cancer. Cancer Res 62:972–989.

    Google Scholar 

  • Tan W.-Y., Chen C.W., 1991. A multiple pathway model of carcinogenesis involving one stage models and two-stage models. In: Arino O., Axelrod D.E., Kimmel M. (eds.). Mathematical Population Dynamics, Chapter 31. New York: Marcel Dekker, Inc., pp. 469–482.

    Google Scholar 

  • Tan W., Chen C., 1998. Stochastic modeling of carcinogenesis: some new insights. Math Comput Model 28(11):49–71.

    Article  MATH  MathSciNet  Google Scholar 

  • Tan W., Zhang L., Chen C., 2004. Stochastic modeling of carcinogenesis: state space models and estimation of parameters. Discrete Cont Dyn Syst Ser B 4(1):297–322.

    MATH  MathSciNet  Google Scholar 

  • Thompson H.J., McGinley J.N., Wolfe P. et al., 2004. Targeting angiogenesis for mammary cancer prevention: factors to consider in experimental design and analysis. Cancer Epidemiol, Biomarkers Prev 13(7):1173–1184.

    Google Scholar 

  • Till J.E., 1982. Stem cells in differentiation and neoplasia. J Cell Physiol 1:3–11.

    Article  Google Scholar 

  • Trosko J.E., Chang C.C., 1979. Genes, pollutants and human diseases. Quart Rev Biophys 11:603–627.

    Article  Google Scholar 

  • Trosko J.E., Chang C.C., Madhukar B.V., Dupont E., 1993. Oncogenes, tumor suppressor genes and intercellular communication in the “oncogeny as partially blocked ontogeny” hypothesis. In: Iversen O.H. (ed.). New Frontiers in Cancer Causation. Washington, DC: Taylor and Francis Publishers, pp. 181–197.

    Google Scholar 

  • Trosko J.E., Chang C.C., Medcalf A., 1983. Mechanisms of tumor potential role of intercellular communication. Cancer Invest 1:511–526.

    Article  Google Scholar 

  • Trosko J.E., Ruch R.J., 1998. Cell-cell communication in carcinogenesis. Front Biosci, 3, d208–d236.

    Google Scholar 

  • Trosko J.E., Tai M.-H., 2006. Adult stem cell theory of the multi-stage, multi-mechanism theory of carcinogenesis: role of inflammation on the promotion of initiated stem cells. In: Zaenker D.T., Schmidt A. (eds.). Infection and Inflammation: Impacts on Oncogenesis. Contrib Microbio; Basel: Karger, 13:45–65.

    Chapter  Google Scholar 

  • Tsutsumi S., Gotoh T., Tomisato W. et al., 2004. Endoplasmic reticulum stress response is involved in nonsteroidal anti-inflammatory drug-induced apoptosis. Cell Death Differ 11:1009–1016.

    Article  Google Scholar 

  • Tubiana M., Aurengo A., Averbeck D., Bonnin A., Le Guen B., Masse R., Monier R., Valleron A.J., de Vathaire F., 2005. Dose-effect relationship and estimation of the carcinogenic effects of low doses of ionizing radiation: the joint report of the Academie Des Sciences (Paris) and of the Academie Nationale De Medicine. Int J Radiat Oncol Biol Phys 63(2):317–319.

    Google Scholar 

  • Ukraintseva S.V., Yashin A.I., 2003. Individual aging and cancer risk: how are they related? Demogr Res 9(8):1163–196.

    Google Scholar 

  • UNSCEAR, 2000. United Nations Scientific Committee on the Effects of Atomic Radiation Report to the General Assembly, with scientific annexes. At: www.unscear.org/unscear/en/publications/2000_1.html.

  • van’t Veer L.J., Dai H., van de Vijver M.J. et al., 2002. Gene expression profiling predicts clinical outcome of breast cancer. Nature 415:530–536.

    Google Scholar 

  • Vaupel J., Manton K. et al., 1979. The impact of heterogeneity in individual frailty on the dynamics of mortality. Demography 16:439–454.

    Article  Google Scholar 

  • Vaupel J.W., Yashin A.I., 1988. Cancer rates over age, time and place: insights from stochastic models of heterogeneous populations. WP#88-01-1 of the Center for Population Analysis and Policy, University of Minnesota, and MPIDR Working Paper WP1999-006.

    Google Scholar 

  • Volpe E.W., Dix D., 1986. On the role of aging in cancer incidence: cohort analyses of the lung cancer data. Anticancer Res 6(6):1417–1420.

    Google Scholar 

  • Volterra V., 1926. Variazioni e fluttuazionin del numero d’individui in specie animali conviventi. Mem R Accad Naz dei Lincei Ser VI, 2:31–113.

    Google Scholar 

  • von Zglinicki T., 1996. Are the ends of chromosomes the beginning of tumor genesis? On the role of telomeres in cancer development. Fortschr Med 114:12–14.

    Google Scholar 

  • Wagener C., 2001. Molecular oncology: prospects for cancer diagnosis and therapy. Oncology. www.roche.com/pages/downloads/company/pdf/rtpenzberg01e.pdf.

  • Wallace D.C., 1995. Mitochondrial DNA variation in human evolution, degenerative disease and aging. Am J Hum Genet 57(2):201–223.

    MathSciNet  Google Scholar 

  • Wallace D.C., Brown M.D., Lott M.T., 1997. Mitochondrial genetics. In: Rimoin D.L., Connor J.M., Pyeritz R.E., Emery A.E.H. (eds.). Emory and Rimoin’s Principles and Practice of Medical Genetics. London: Churchill Livingstone, pp. 277–332.

    Google Scholar 

  • Wallace D.C., Shoffner J.M., Watts R.L. et al., 1992. Mitochondrial oxidative phosphorylation defects in Parkinson’s disease. Ann Neurol 32:113–114.

    Article  Google Scholar 

  • Warburg O., 1956. On the origin of cancer cells. Science 123:309–314.

    Article  Google Scholar 

  • Watson G., 1977. Age incidence curves for cancer. Proc Natl Acad Sci 74:1341–1342.

    Article  MATH  Google Scholar 

  • Whittemore A., 1977. The age distribution of human cancer for carcinogenic exposures of varying intensity. Am J Epidemiol 106:418–432.

    Google Scholar 

  • Wrutniak-Cabello C., Casas F., Cabello G., 2001. Thyroid hormone action in mitochondria. J Mol Endocrinol 26:67–77.

    Article  Google Scholar 

  • Wu C.W., Yin P.H., Hung W.Y. et al., 2005. Mitochondrial DNA mutations and mitochondrial DNA depletion in gastric cancer. Genes Chromosomes Cancer 44:19–28.

    Article  Google Scholar 

  • Yakovlev A.Y., Polig E., 1996. A diversity of responses displayed by a stochastic model of radiation carcinogenesis allowing for cell death. Math Biosci 132:1–33.

    Article  MATH  Google Scholar 

  • Yakovlev A., Tsodikov A., 1996. Stochastic Models of Tumor Latency and Their Biostatistical Applications. New Jersey: World Scientific.

    Book  MATH  Google Scholar 

  • Yamada O., Oshimi K., Mizoguchi H., 1993. Telomere reduction in hematologic cells. Int J Hematol 57:181–186.

    Google Scholar 

  • Yamaguchi H., Wang H-G., 2004. CHOP is involved in endoplasmic reticulum stress-induced apoptosis by enhancing DR5 expression in human carcinoma cells. J Biol Chem 279(44):45495–45502.

    Article  Google Scholar 

  • Yang X.Y., Kimura M., Jeanclos E., Aviv A., 2000. Cellular proliferation and telomerase activity in CHRF-288-11 cells. Life Sci 66:1545–1555.

    Article  Google Scholar 

  • Yeh J.J., Lunetta K.L., van Orsouw N.J. et al., 2000. Somatic mitochondrial DNA (mtDNA) mutations in papillary thyroid carcinomas and differential mtDNA sequence variants in cases with thyroid tumours. Oncogene 19:2060–2066.

    Article  Google Scholar 

  • Yu C., Pan K., Xing D. et al., 2002. Correlation between a single nucleotide polymorphism in the matrix metalloproteinase-2 promoter and risk of lung cancer. Cancer Res 62:6430–6433.

    Google Scholar 

  • Zanssen S., Gunawan B., Fuzesi L. et al., 2004. Renal oncocytomas with rearrangements involving 11q13 contain breakpoints near CCND1. Cancer Genet Cytogenet 149:120–124.

    Article  Google Scholar 

  • Zanssen S., Schon E.A., 2005. Mitochondrial DNA mutations in cancer. PLoS Med 2(11):e401. DOI: 10.1371/journal.pmed.0020401.

    Google Scholar 

  • Zeviani M., Tiranti V., Piantadosi C., 1998. Reviews in molecular medicine. Mitochondrial disorders. Medicine 77:59–72.

    Article  Google Scholar 

  • Zhang N., Wunsch D. II., 2003. An extended Kalman filter (EKF) approach on fuzzy system optimization problem. IEEE Int Conf Fuzzy Syst 2:1465–1470.

    Google Scholar 

  • Zhivotovsky B., Orrenius S., 2006. Carcinogenesis and apoptosis: paradigms and paradoxes. Carcinogenesis Advance Access. New York: Oxford University Press.

    Google Scholar 

  • Zhu W., Qin W., Bradley P. et al., 2005. Mitochondrial DNA mutations in breast cancer tissue and in matched nipple aspirate fluid. Carcinogenesis 26:145–152.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K.G. Manton .

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Manton, K., Akushevich, I., Kravchenko, J. (2009). Cancer Modeling: How Far Can We Go?. In: Cancer Mortality and Morbidity Patterns in the U.S. Population. Statistics for Biology and Health. Springer, New York, NY. https://doi.org/10.1007/978-0-387-78193-8_2

Download citation

Publish with us

Policies and ethics