Skip to main content

Migration and Movement – The Next Stage

  • Chapter

Part of the book series: Environmental and Ecological Statistics ((ENES,volume 3))

Abstract

The design and analysis of multi-state studies when the states are discrete entities is now well understood with several robust software packages (e.g. M-Surge, MARK) available. However, recent technological advances in radio and archival tags will provide very rich datasets with very fine details on movement. Current methods for the analysis of such data often discretize the data to very coarse states. This paper will review the current state of the art on the analysis of such datasets and make some (bold) forecasts of future directions for the analysis of these data.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Arnason AN (1972) Parameter estimation from mark-recapture experiments on two populations subject to migration and death. Researches in Population Ecology 13:97–113.

    Article  Google Scholar 

  • Arnason AN (1973) The estimation of population size, migration rates, and survival in a stratified population. Researches in Population Ecology 15:1–8.

    Article  Google Scholar 

  • Barker RJ (1997) Joint modeling of live-recapture, tag-resight, and tag-recovery data. Biometrics 53:657–668.

    Article  Google Scholar 

  • Barker RJ, White GC (2004) Towards the mother-of-all-models: customised construction of the mark-recapture likelihood function. Animal Biodiversity and Conservation 27:177–185.

    Google Scholar 

  • Barrowman NJ, Myers RA (2003) Raindrop plots: a new way to display collections of likelihoods and distributions. The American Statistician 57: 268–274.

    Article  MATH  MathSciNet  Google Scholar 

  • Bonner SJ, Schwarz CJ (2006) An extension of the Cormack–Jolly–Seber model for continuous covariates with application to Microtus pennsylvanicus. Biometrics 62:142–149.

    Article  MathSciNet  Google Scholar 

  • Bonner SJ, Thomson DL, Schwarz CJ (2008) Time-varying covariates and semi-parametric regression in capture–recapture: an adaptive spline approach. In: Thomson DL, Cooch EG, Conroy MJ (eds.) Modeling Demographic Processes in Marked Populations. Environmental and Ecological Statistics, Springer, New York, Vol. 3, pp. 657–675.

    Google Scholar 

  • Brillinger DR, Preisler HK, Ager AA, Kie JG (2004) An exploratory data analysis (EDA) of the paths of moving animals. Journal of Statistical Planning and Inference 122:43–63.

    Article  MATH  MathSciNet  Google Scholar 

  • Brownie C, Anderson DR, Burnham KP, Robson DS (1985) Statistical inference from band recovery data: a handbook. United States Fish and Wildlife Service Resource Publication Number 15i

    Google Scholar 

  • Brownie C, Hines JE, Nichols JD, Pollock KH, Hestbeck JB (1993) Capture–recapture studies for multiple strata including non-Markovian transition probabilities. Biometrics 49:1173–1187.

    Article  MATH  Google Scholar 

  • Buckland ST, Newman KB, Thomas L, Koesters NB (2004) State-space models for the dynamics of wild animal populations. Ecological Modeling 171:157–175.

    Article  Google Scholar 

  • Burnham KP, Anderson DR, White GC, Brownie C, Pollock KH (1987) Design and analysis methods for fish survival experiments based on release-recapture. American Fisheries Society Monograph 5.

    Google Scholar 

  • Cappé O, Moulines E, Rydén T (2007) Inference in Hidden Markov Models. Springer, New York.

    Google Scholar 

  • Chapman DG, Junge CO (1956) The estimation of the size of a stratified animal population. Annals of Mathematical Statistics 27:375–389.

    Article  MATH  MathSciNet  Google Scholar 

  • Choquet RR, Reboulet AM, Pradel R, Gimenez O, Lebreton JD (2005) M-SURGE : new software specially designed for multistate capture-recapture models. Animal Biodiversity and Conservation 27:207–215.

    Google Scholar 

  • Cormack RM (1964) Estimates of survival from the sighting of marked animals. Biometrika 51:429–438.

    MATH  Google Scholar 

  • Darroch JN (1961) The two-sample capture–recapture census when tagging and sampling are stratified. Biometrika 48:241–260.

    MATH  MathSciNet  Google Scholar 

  • Devineau O, Choquet R, Lebreton JD (2006) Planning capture–recapture studies: straightforward precision, bias, and power calculations. Wildlife Society Bulletin 34:1028–1035.

    Article  Google Scholar 

  • Dupuis JA, Schwarz CJ (2007) The stratified Jolly-Seber model. Biometrics 63:1015–1022. Published article online: 14-May-2007. doi: 10.1111/j.1541-0420.2007.00815.x

    Google Scholar 

  • Fitzmaurice G, Laird N, Ware J (2004) Applied Longitudinal Analysis. Wiley-Interscience, New York.

    MATH  Google Scholar 

  • Gelman A, Carlin JB, Stern HS, Rubin DB (2004) Bayesian Data Analysis. 2 nd edn. Chapman & Hall/CRC, Boca Raton, FL.

    Google Scholar 

  • Gimenez O, Crainiceanu C, Barbraud C, Jenouvrier S, Morgan BJT (2006) Semiparametric regression in capture–recapture modeling. Biometrics 62:691–698.

    Article  MATH  MathSciNet  Google Scholar 

  • Harvey AC (1991) Forecasting, Structural Time Series Models and the Kalman Filter. Cambridge University Press, Cambridge.

    Google Scholar 

  • Henaux V, Bregnballe T, Lebreton JD (2007) Dispersal and recruitment during population growth in a colonial bird, the great cormorant Phalacrocorax carbo sinensis. Journal of Avian Biology 38:44–57.

    Article  Google Scholar 

  • Hestbeck JB, Nichols JD, Malecki RA (1991) Estimates of movement and site-fidelity using mark-resight data of wintering Canada geese. Ecology 72:523–533.

    Article  Google Scholar 

  • Hilborn R (1990) Determination of fish movement patterns from tag-recoveries using maximum likelihood estimators. Canadian Journal of Fisheries and Aquatic Sciences 47:635–643.

    Article  Google Scholar 

  • Johnson DS, Hoeting JA (2003) Autoregressive models for capture–recapture data: a Bayesian approach. Biometrics 59:341–350.

    Article  MATH  MathSciNet  Google Scholar 

  • Jolly GM (1965) Explicit estimates from capture-recapture data with both death and immigration – Stochastic model. Biometrika 52:225–247.

    MATH  MathSciNet  Google Scholar 

  • Jonsen ID, Flemming JM, Myers RA (2005) Robust state-space modeling of animal movement data. Ecology 86:2874–2880.

    Article  Google Scholar 

  • Jonsen ID, Myers RA, James MC (2006) Robust hierarchical state-space models reveal diel variation in travel rates of migrating leatherback turtles. Journal of Animal Ecology 75: 1046–1057.

    Article  Google Scholar 

  • Kendall WL, Nichols JD (2002) Estimating state-transition probabilities for unobservable states using capture–recapture/resighting data. Ecology 83:3276–3284.

    Google Scholar 

  • Kendall WL, Nichols JD (2004) Modern statistical methods for the study of dispersal and movement of marked birds. Condor 106:720–731.

    Article  Google Scholar 

  • King R, Brooks SP, Morgan BJT, Coulson T (2006) Factors influencing Soay sheep survival: a bayesian analysis. Biometrics 62:211–220.

    Article  MATH  MathSciNet  Google Scholar 

  • Lebreton JD, Burnham KP, Clobert J, Anderson DR (1992) Modeling survival and testing biological hypotheses using marked animals. A unified approach with case studies. Ecological Monographs 62:67–118.

    Article  Google Scholar 

  • Lebreton JD, Pradel R (2002) Multi-stratum recapture models: modeling incomplete individual histories. Journal of Applied Statistics 29:353–369.

    Article  MATH  MathSciNet  Google Scholar 

  • McGarvey R, Feenstra JE (2002) Estimating rates of fish movement from tag recoveries: conditioning by recapture. Canadian Journal of Fisheries and Aquatic Sciences 59:1054–1064.

    Article  Google Scholar 

  • Muthukumarana S, Schwarz CJ, Swartz TB (2008) Bayesian analysis of mark-recapture data with travel-time-dependent survival probabilities. Canadian Journal of Statistics 36:5–28.

    Article  MATH  MathSciNet  Google Scholar 

  • Nelson CR (1973) Applied time series analysis for managerial forecasting. Holden-Day, San Francisco.

    Google Scholar 

  • Newman KB (2000) Hierarchic modeling of salmon harvest and migration. Journal of Agricultural Biological and Environmental Statistics 5:430–455

    Article  MathSciNet  Google Scholar 

  • Newman KB, Buckland ST, Lindley ST, Thomas L, Fernández C (2006) Hidden process models for animal population dynamics. Ecological Applications 16:74–86

    Article  Google Scholar 

  • Nichols JD, Sauer JR, Pollock KH, Hestbeck JB (1992) Estimating transition probabilities for stage based population projection matrices using capture recapture data. Ecology 73:306–312.

    Article  Google Scholar 

  • Plante N, Rivest LP, Tremblay G (1998) Stratified capture–recapture estimation of the size of a closed population. Biometrics 54:47–60.

    Article  MATH  MathSciNet  Google Scholar 

  • Pollock KH (1981) Capture–recapture models allowing for age-dependent survival and capture rates. Biometrics 37:521–529.

    Article  MATH  Google Scholar 

  • Pradel R (1996) Utilization of capture-mark-recapture for the study of recruitment and population growth rates. Biometrics 52:371–377.

    Article  MathSciNet  Google Scholar 

  • Pradel R (2005) Multievent: an extension of multistate capture–recapture models to uncertain states. Biometrics 61:442–447.

    Article  MATH  MathSciNet  Google Scholar 

  • Schaefer MB (1951) Estimation of the size of animal populations by marking experiments. US Fish and Wildlife Service Fisheries Bulletin 69:191–203.

    Google Scholar 

  • Schwarz CJ, Ganter B (1995) Estimating the movement among staging areas of the barnacle goose (Branta leucopsis). Journal of Applied Statistics 22:711–725.

    Article  Google Scholar 

  • Schwarz CJ, Schweigert J, Arnason AN (1993) Estimating migration rates using tag recovery data. Biometrics 49:177–194.

    Article  Google Scholar 

  • Schwarz CJ, Taylor CG (1998) The use of the stratified-Petersen estimator in fisheries management with an illustration of estimating the number of pink salmon (Oncorhynchus gorbuscha) that return to spawn in the Fraser River. Canadian Journal of Fisheries and Aquatic Sciences 55:281–296.

    Article  Google Scholar 

  • Seber GAF (1965) A note on the multiple recapture census. Biometrika 52:249–259.

    MATH  MathSciNet  Google Scholar 

  • Shaffer SA, Tremblay Y, Weimerskirch H, Scott D, Thompson DR, Sagar PM, Moller H, Taylor GA, Foley DG, Block BA, Costa DP (2006) Migratory shearwaters integrate oceanic resources across the Pacific Ocean in an endless summer. Proceedings of the National Academy of Sciences 103:12799–12802

    Google Scholar 

  • Sibert J, Fournier DA (2001) Possible Models for Combining Tracking Data with Conventional Tagging Data. In: Sibert J, Nielsen J (eds) Electronic Tagging and Tracking in Marine Fisheries Reviews: Methods and Technologies in Fish Biology and Fisheries. Kluwer Academic Press, Dordrecht, pp 443–456.

    Google Scholar 

  • Sibert JR, Hampton J, Fournier DAA, Bills PJ (1999) An advection–diffusion-reaction model for the estimation of fish movement parameters from tagging data, with application to skipjack tuna (Katsuwonus pelamis). Canadian Journal of Fisheries and Aquatic Science 56:925–938.

    Google Scholar 

  • Skalski JR, Townsend R, Lady J, Giorgi AE, Stevenson JR, McDonald RD (2002) Estimating route-specific passage and survival probabilities at a hydroelectric project from smolt radiotelemetry studies. Canadian Journal of Fisheries and Aquatic Sciences 59:1385–1393.

    Article  Google Scholar 

  • Sugden A, Pennisi E (2006) When to go, where to stop: introduction to special issue of science on migration and movement. Science 313:775–775.

    Article  Google Scholar 

  • White GC, Burnham KP (1999) Program MARK: survival estimation from populations of marked animals. Bird Study 46 (suppl):s120–s139.

    Article  Google Scholar 

  • Williams BK, Nichols JD, Conroy MJ (2002) Analysis and Management of Animal Populations. Academic Press, New York.

    Google Scholar 

  • Xiao Y (1996) A framework for evaluating experimental designs for estimating rates of fish movement from tag recoveries. Canadian Journal of Fisheries and Aquatic Sciences 53:1272–1280.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carl James Schwarz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Schwarz, C.J. (2009). Migration and Movement – The Next Stage. In: Thomson, D.L., Cooch, E.G., Conroy, M.J. (eds) Modeling Demographic Processes In Marked Populations. Environmental and Ecological Statistics, vol 3. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-78151-8_14

Download citation

Publish with us

Policies and ethics