Skip to main content

Shock

  • Chapter
  • 3366 Accesses

Abstract

Evolving knowledge of critical illness has greatly influenced our understanding of shock and how we define it. The first century Roman savant Aulus Cornelius Celsus made the following observation, “When much blood is lost, the pulse becomes feeble, the skin extremely pale, the body covered with a malodorous sweat, the extremities frigid, and death occurs speedily.” In 1737, French surgeon, Le Dran, introduced the term “choc” to describe a severe impact or jolt, which was later adapted by Clarke, an English physician who used the term “shock” to describe the rapid physiological deterioration of a badly injured trauma victim. Historic advances in medicine, specifically the ability to measure blood pressure, changed the meaning of the term “shock” to denote arterial hypotension associated with hemorrhage. Later in the first part of the twentieth century, great physiologists such as Keith, Cannon, Blalock, and Cournard introduced the notion that tissue hypoperfusion, rather than isolated arterial hypotension, was the key feature of hemorrhagic shock. The contemporary understanding of shock is generally regarded as a syndrome precipitated by a systemic derangement of perfusion (global tissue hypoperfusion) that leads to widespread cellular dysoxia and vital organ dysfunction. Furthermore, by acknowledging that acquired derangements in mitochondrial function can impair cellular energetics, shock can be even more broadly defined as an acute physiological derangement resulting from the inadequate production of adenosine triphosphate (ATP) by cells in many organs of the body.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Pinsky MR. Cardiovascular issues in respiratory care. Chest. 2005;128:592S–597S.

    Article  PubMed  Google Scholar 

  2. Beyar R, Halperin HR, Tsitlik JE, et al. Circulatory assistance by intrathoracic pressure variations: optimization and mechanisms studied by a mathematical model in relation to experimental data. Circ Res. 1989;64:703–720.

    Article  PubMed  CAS  Google Scholar 

  3. Crowell JW. Oxygen debt as the common parameter in irreversible hemorrhagic shock. Fed Proc. 1961;20:116.

    Google Scholar 

  4. Crowell JW, Smith EE. Oxygen deficit and irreversible hemorrhagic shock. Am J Physiol. 1964;206:313.

    PubMed  CAS  Google Scholar 

  5. Dunham CM, Siegel JH, Weireter L, et al. Oxygen debt and metabolic acidemia as quantitative predictors of mortality and the severity of the ischemic insult in hemorrhagic shock. Crit Care Med. 1991;19:231–243.

    Article  PubMed  CAS  Google Scholar 

  6. Rixen D, Siegel JH. Metabolic correlates of oxygen debt predict posttrauma early acute respiratory distress syndrome and the related cytokine response. J Trauma. 2000;49:392–403.

    Article  PubMed  CAS  Google Scholar 

  7. Rixen D, Raum M, Holzgraefe B, et al. A pig hemorrhagic shock model: oxygen debt and metabolic acidemia as indicators of severity. Shock. 2001;16:239–244.

    Article  PubMed  CAS  Google Scholar 

  8. Shippy CR, Appel PL, Shoemaker WC. Reliability of clinical monitoring to assess blood volume in critically ill patients. Crit Care Med. 1984;12:107–112.

    Article  PubMed  CAS  Google Scholar 

  9. Shoemaker WC, Appel PL, Kram HB. Tissue oxygen debt as a determinant of lethal and nonlethal postoperative organ failure. Crit Care Med. 1988;16:1117–1120.

    Article  PubMed  CAS  Google Scholar 

  10. Reilly PM, Wilkins KB, Fuh KC, Haglund U, Bulkley GB. The mesenteric hemodynamic response to circulatory shock: an overview. Shock. 2001;15:329–343.

    Article  PubMed  CAS  Google Scholar 

  11. Chien S. Role of the sympathetic nervous system in hemorrhage. Physiol Rev. 1967;47:214–288.

    PubMed  CAS  Google Scholar 

  12. Cumming AD, Driedger AA, McDonald JW, et al. Vasoactive hormones in the renal response to systemic sepsis. Am J Kidney Dis. 1988;11:23–32.

    PubMed  CAS  Google Scholar 

  13. Marik PE, Zaloga GP. Adrenal insufficiency in the critically ill: a new look at an old problem. Chest. 2002;122:1784–1796.

    Article  PubMed  Google Scholar 

  14. Givertz MM. Manipulation of the renin-angiotensin system. Circulation. 2001;104:E14–E18.

    Article  PubMed  CAS  Google Scholar 

  15. Jan Danser AH. Local renin-angiotensin systems: the unanswered questions. Int J Biochem Cell Biol. 2003;35:759–768.

    Article  Google Scholar 

  16. Zingg H, Bourque C, Bichet D. Vasopressin and oxytocin: molecular, cellular and clinical advances. New York: Plenum Press; 1998.

    Book  Google Scholar 

  17. Normon AW, Litwack G. Hormones. 2nd ed. San Diego: Academic Press; 1997.

    Google Scholar 

  18. Landry DW, Oliver JA. The pathogenesis of vasodilatory shock. N Engl J Med. 2001;345:588–595.

    Article  PubMed  CAS  Google Scholar 

  19. Gann DS, Carlson DE, Byrnes GJ, Pirkle JC Jr, Allen-Rowlands CF. Role of solute in the early restitution of blood volume after hemorrhage. Surgery. 1983;94:439–446.

    PubMed  CAS  Google Scholar 

  20. Bond RF, Johnson G III. Vascular adrenergic interactions during hemorrhagic shock. Fed Proc. 1985;44:281–289.

    PubMed  CAS  Google Scholar 

  21. Szabo C, Billiar TR. Novel roles of nitric oxide in hemorrhagic shock. Shock. 1999;12:1–9.

    Article  PubMed  CAS  Google Scholar 

  22. Patel JP, Beck LD, Briglia FA, Hock CE. Beneficial effects of combined thromboxane and leukotriene receptor antagonism in hemorrhagic shock. Crit Care Med. 1995;23:231–237.

    Article  PubMed  CAS  Google Scholar 

  23. Salzman AL, Vromen A, Denenberg A, Szabo C. K(ATP)-channel inhibition improves hemodynamics and cellular energetics in hemorrhagic shock. Am J Physiol. 1997;272:H688–H694.

    PubMed  CAS  Google Scholar 

  24. Szabo C, Salzman AL. Inhibition of ATP-activated potassium channels exerts pressor effects and improves survival in a rat model of severe hemorrhagic shock. Shock. 1996;5:391–394.

    Article  PubMed  CAS  Google Scholar 

  25. Landry DW, Oliver JA. The ATP-sensitive K+channel mediates hypotension in endotoxemia and hypoxic lactic acidosis in dog. J Clin Invest. 1992;89:2071–2074.

    Article  PubMed  CAS  Google Scholar 

  26. Palmer RMJ. The discovery of nitric oxide in the vessel wall: a unifying concept in the pathogenesis of sepsis. Arch Surg. 1993;128:396–401.

    Article  PubMed  CAS  Google Scholar 

  27. Szabo C. Alterations in nitric oxide production in various forms of circulatory shock. New Horiz. 1995;3:2–32.

    PubMed  CAS  Google Scholar 

  28. Zingarelli B, Day BJ, Crapo JD, Salzman AL, Szabo C. The potential role of peroxynitrite in the vascular contractile and cellular energetic failure in endotoxic shock. Br J Pharmacol. 1997;120:259–267.

    Article  PubMed  CAS  Google Scholar 

  29. Elbers PW, Ince C. Mechanisms of critical illness – classifying microcirculatory flow abnormalities in distributive shock. Crit Care. 2006;10:221.

    Article  PubMed  Google Scholar 

  30. Garrison RN, Spain DA, Wilson MA, Keelen PA, Harris PD. Microvascular changes explain the “two-hit” theory of multiple organ failure. Ann Surg. 1998;227:851–860.

    Article  PubMed  CAS  Google Scholar 

  31. Groner W, Winkelman JW, Harris AG, et al. Orthogonal polarization spectral imaging: a new method for study of the microcirculation. Nat Med. 1999;5:1209–1212.

    Article  PubMed  CAS  Google Scholar 

  32. De Backer D, Hollenberg S, Boerma C, et al. How to evaluate the microcirculation: report of a round table conference. Crit Care. 2007;11:R101.

    Article  PubMed  Google Scholar 

  33. Harlan JM, Winn RK. Leukocyte–endothelial interactions: clinical trials of anti-adhesion therapy. Crit Care Med. 2002;30:S214–S219.

    Article  PubMed  CAS  Google Scholar 

  34. Parent C, Eichacker PQ. Neutrophil and endothelial cell interactions in sepsis. The role of adhesion molecules. Inf Dis Clin North Am. 1999;13:427–447.

    Article  CAS  Google Scholar 

  35. Poraicu D, Sandor S, Menessy I. Decrease of red blood cell filterability seen in intensive care. II. Red blood cell crenellation “in vivo” as morphological evidence of increased red blood cell viscosity in low flow states. Resuscitation. 1983;10:305–316.

    Article  PubMed  CAS  Google Scholar 

  36. Astiz ME, DeGent GE, Lin RY, Rackow EC. Microvascular function and rheologic changes in hyperdynamic sepsis. Crit Care Med. 1995;23:265–271.

    Article  PubMed  CAS  Google Scholar 

  37. Kirschenbaum LA, Astiz ME, Rackow EC, Saha DC, Lin R. Microvascular response in patients with cardiogenic shock. Crit Care Med. 2000;28:1290–1294.

    Article  PubMed  CAS  Google Scholar 

  38. Korbut R, Gryglewski RJ. The effect of prostacyclin and nitric oxide on deformability of red blood cells in septic shock in rats. J Physiol Pharmacol. 1996;47:591–599.

    PubMed  CAS  Google Scholar 

  39. Shires GT III, Peitzman AB, Illner H, Shires GT. Changes in red blood cell transmembrane potential, electrolytes, and energy content in septic shock. J Trauma. 1983;23:769–774.

    Article  PubMed  CAS  Google Scholar 

  40. Chaudry IH, Clemens MG, Baue AE. Alterations in cell function with ischemia and shock and their correction. Arch Surg. 1981;116:1309–1317.

    Article  PubMed  CAS  Google Scholar 

  41. Eastridge BJ, Darlington DN, Evans JA, Gann DS. A circulating shock protein depolarizes cells in hemorrhage and sepsis. Ann Surg. 1994;219:298–305.

    Article  PubMed  CAS  Google Scholar 

  42. Borchelt BD, Wright PA, Evans JA, Gann DS. Cell swelling and depolarization in hemorrhagic shock. J Trauma. 1995;39:187–192.

    Article  PubMed  CAS  Google Scholar 

  43. Mayer B, Oberbauer R. Mitochondrial regulation of apoptosis. News Physiol Sci. 2003;18:89–94.

    PubMed  CAS  Google Scholar 

  44. Fink MP. Bench-to-bedside review: cytopathic hypoxia. Crit Care. 2002;6:491–499.

    Article  PubMed  Google Scholar 

  45. Boulos M, Astiz ME, Barua RS, Osman M. Impaired mitochondrial function induced by serum from septic shock patients is attenuated by inhibition of nitric oxide synthase and poly(ADP-ribose) synthase. Crit Care Med. 2003;31:353–358.

    Article  PubMed  CAS  Google Scholar 

  46. Brealey D, Brand M, Hargreaves I, et al. Association between mitochondrial dysfunction and severity and outcome of septic shock. Lancet. 2002;360:219–223.

    Article  PubMed  CAS  Google Scholar 

  47. Hubbard WJ, Bland KI, Chaudry IH. The role of the mitochondrion in trauma and shock. Shock. 2004;22:395–402.

    Article  PubMed  CAS  Google Scholar 

  48. Rhee P, Langdale L, Mock C, Gentilello LM. Near-infrared spectroscopy: continuous measurement of cytochrome oxidation during hemorrhagic shock. Crit Care Med. 1997;25:166–170.

    Article  PubMed  CAS  Google Scholar 

  49. Taylor JH, Beilman GJ, Conroy MJ, et al. Tissue energetics as measured by nuclear magnetic resonance spectroscopy during hemorrhagic shock. Shock. 2004;21:58–64.

    Article  PubMed  Google Scholar 

  50. Chaudry IH. Use of ATP following shock and ischemia. Ann NY Acad Sci. 1990;603:130–140.

    Article  PubMed  CAS  Google Scholar 

  51. Van WC III, Dhar A, Morrison DC, Longorio MA, Maxfield DM. Cellular energetics in hemorrhagic shock: restoring adenosine triphosphate to the cells. J Trauma. 2003;54:S169–S176.

    Google Scholar 

  52. Blalock A. Shock: further studies with particular reference to the effects of hemorrhage. Arch Surg. 1937;29:837.

    Article  Google Scholar 

  53. Babaev A, Frederick PD, Pasta DJ, et al. Trends in management and outcomes of patients with acute myocardial infarction complicated by cardiogenic shock. J Amer Med Assoc. 2005;294:448–454.

    Article  CAS  Google Scholar 

  54. Fox KA, Anderson FA Jr, Dabbous OH, et al. Intervention in acute coronary syndromes: do patients undergo intervention on the basis of their risk characteristics? The Global Registry of Acute Coronary Events (GRACE). Heart. 2007;93:177–182.

    Article  PubMed  CAS  Google Scholar 

  55. Hochman JS, Sleeper LA, Webb JG, et al. Early revascularization in acute myocardial infarction complicated by cardiogenic shock. SHOCK Investigators. Should We Emergently Revascularize Occluded Coronaries for Cardiogenic Shock. N Engl J Med. 1999;341:625–634.

    Article  PubMed  CAS  Google Scholar 

  56. Urban P, Stauffer JC, Bleed D, et al. A randomized evaluation of early revascularization to treat shock complicating acute myocardial infarction. The (Swiss) Multicenter Trial of Angioplasty for Shock-(S)MASH. Eur Heart J. 1999;20:1030–1038.

    Article  PubMed  CAS  Google Scholar 

  57. Wei JY, Hutchins GM, Bulkley BH. Papillary muscle rupture in fatal acute myocardial infarction: a potentially treatable form of cardiogenic shock. Ann Intern Med. 1979;90:149–152.

    Article  PubMed  CAS  Google Scholar 

  58. Jacobs AK, Leopold JA, Bates E, et al. Cardiogenic shock caused by right ventricular infarction: a report from the SHOCK registry. J Am Coll Cardiol. 2003;41:1273–1279.

    Article  PubMed  Google Scholar 

  59. Brookes C, Ravn H, White P, et al. Acute right ventricular dilatation in response to ischemia significantly impairs left ventricular systolic performance. Circulation. 1999;100:761–767.

    Article  PubMed  CAS  Google Scholar 

  60. Wood KE. Major pulmonary embolism: review of a pathophysiologic approach to the golden hour of hemodynamically significant pulmonary embolism. Chest. 2002;121:877–905.

    Article  PubMed  Google Scholar 

  61. Ionescu A, Wilde P, Karsch KR. Localized pericardial tamponade: difficult echocardiographic diagnosis of a rare complication after cardiac surgery. J Am Soc Echocardiogr. 2001;14:1220–1223.

    Article  PubMed  CAS  Google Scholar 

  62. Fowler NO. Cardiac tamponade. A clinical or an echocardiographic diagnosis? Circulation. 1993;87:1738–1741.

    Article  PubMed  CAS  Google Scholar 

  63. Brown AF. Therapeutic controversies in the management of acute anaphylaxis. J Accid Emerg Med. 1998;15:89–95.

    Article  PubMed  CAS  Google Scholar 

  64. Mink S, Becker A, Sharma S, et al. Role of autacoids in cardiovascular collapse in anaphylactic shock in anaesthetized dogs. Cardiovasc Res. 1999;43:173–182.

    Article  PubMed  CAS  Google Scholar 

  65. Gavalas M, Sadana A, Metcalf S. Guidelines for the management of anaphylaxis in the emergency department. J Accid Emerg Med. 1998;15:96–98.

    Article  PubMed  CAS  Google Scholar 

  66. Zipnick RI, Scalea TM, Trooskin SZ, et al. Hemodynamic responses to penetrating spinal cord injuries. J Trauma. 1993;35:578–582.

    Article  PubMed  CAS  Google Scholar 

  67. Savitsky E, Votey S. Emergency department approach to acute thoracolumbar spine injury. J Emerg Med. 1997;15:49–60.

    Article  PubMed  CAS  Google Scholar 

  68. Hurlbert RJ. Strategies of medical intervention in the management of acute spinal cord injury. Spine. 2006;31:S16–S21.

    Article  PubMed  Google Scholar 

  69. Hurlbert RJ. The role of steroids in acute spinal cord injury: an evidence-based analysis. Spine. 2001;26:S39–S46.

    Article  PubMed  CAS  Google Scholar 

  70. Bracken MB, Shepard MJ, Holford TR, et al. Administration of methylprednisolone for 24 or 48 hours or tirilazad mesylate for 48 hours in the treatment of acute spinal cord injury. Results of the Third National Acute Spinal Cord Injury Randomized Controlled Trial. National Acute Spinal Cord Injury Study. J Amer Med Assoc. 1997;277:1597–1604.

    Article  CAS  Google Scholar 

  71. Levy MM, Fink MP, Marshall JC, et al. 2001 SCCM/ESICM/ACCP/ATS/SIS International Sepsis Definitions Conference. Crit Care Med. 2003;31:1250–1256.

    Article  PubMed  Google Scholar 

  72. Effect of high-dose glucocorticoid therapy on mortality in patients with clinical signs of systemic sepsis. The Veterans Administration Systemic Sepsis Cooperative Study Group. N Engl J Med. 1987;317:659–665.

    Google Scholar 

  73. Sprung CL, Caralis PV, Marcial EH, et al. The effects of high-dose corticosteroids in patients with septic shock. A prospective, controlled study. N Engl J Med. 1984;311:1137–1143.

    Article  PubMed  CAS  Google Scholar 

  74. Bone RC, Fisher CJ Jr, Clemmer TP, et al. A controlled clinical trial of high-dose methylprednisolone in the treatment of severe sepsis and septic shock. N Engl J Med. 1987;317:653–658.

    Article  PubMed  CAS  Google Scholar 

  75. Bollaert PE, Charpentier C, Levy B, et al. Reversal of late septic shock with supraphysiologic doses of hydrocortisone. Crit Care Med. 1998;26:645–650.

    Article  PubMed  CAS  Google Scholar 

  76. Briegel J, Forst H, Haller M, et al. Stress doses of hydrocortisone reverse hyperdynamic septic shock: a prospective, randomized, double-blind, single-center study. Crit Care Med. 1999;27:723–732.

    Article  PubMed  CAS  Google Scholar 

  77. Annane D, Sebille V, Charpentier C, et al. Effect of treatment with low doses of hydrocortisone and fludrocortisone on mortality in patients with septic shock. J Amer Med Assoc. 2002;288:862–871.

    Article  CAS  Google Scholar 

  78. Sprung CL, Annane D, Keh D, et al. Hydrocortisone therapy for patients with septic shock. N Engl J Med. 2008;358:111–124.

    Article  PubMed  CAS  Google Scholar 

  79. Dellinger RP, Levy MM, Carlet JM, et al. Surviving Sepsis Campaign: international guidelines for management of severe sepsis and septic shock: 2008. Crit Care Med. 2008;36:296–327.

    Article  PubMed  Google Scholar 

  80. Meehan TP, Fine MJ, Krumholz HM, et al. Quality of care, process, and outcomes in elderly patients with pneumonia. J Amer Med Assoc. 1997;278:2080–2084.

    Article  CAS  Google Scholar 

  81. Rivers E, Nguyen B, Havstad S, et al. Early goal-directed therapy in the treatment of severe sepsis and septic shock. N Engl J Med. 2001;345:1368–1377.

    Article  PubMed  CAS  Google Scholar 

  82. Ebihara S, Hussain SN, Danialou G, et al. Mechanical ventilation protects against diaphragm injury in sepsis: interaction of oxidative and mechanical stresses. Am J Resp Crit Care Med. 2002;165:221–228.

    Article  PubMed  Google Scholar 

  83. Bridges N, Jarquin-Valdivia AA. Use of the Trendelenburg position as the resuscitation position: to T or not to T? Am J Crit Care. 2005;14:364–368.

    PubMed  Google Scholar 

  84. Boulain T, Achard JM, Teboul JL, et al. Changes in BP induced by passive leg raising predict response to fluid loading in critically ill patients. Chest. 2002;121:1245–1252.

    Article  PubMed  Google Scholar 

  85. Finfer S, Bellomo R, Boyce N, et al. A comparison of albumin and saline for fluid resuscitation in the intensive care unit. N Engl J Med. 2004;350:2247–2256.

    Article  PubMed  CAS  Google Scholar 

  86. Kellum JA, Pinsky MR. Use of vasopressor agents in critically ill patients. Curr Opin Crit Care. 2002;8:236–241.

    Article  PubMed  Google Scholar 

  87. Rivers EP, Ander DS, Powell D. Central venous oxygen saturation monitoring in the critically ill patient. Curr Opin Crit Care. 2001;7:204–211.

    Article  PubMed  CAS  Google Scholar 

  88. Reinhart K, Kuhn HJ, Hartog C, Bredle DL. Continuous central venous and pulmonary artery oxygen saturation monitoring in the critically ill. Intensive Care Med. 2004;30:1572–1578.

    Article  PubMed  Google Scholar 

  89. Cohn SM. Near-infrared spectroscopy: potential clinical benefits in surgery. J Am Coll Surg. 2007;205:322–332.

    Article  PubMed  Google Scholar 

  90. Ward KR, Torres FI, Barbee RW, et al. Resonance Raman spectroscopy: a new technology for tissue oxygenation monitoring. Crit Care Med. 2006;34:792–799.

    PubMed  CAS  Google Scholar 

  91. Verdant C, De Backer D. How monitoring of the microcirculation may help us at the bedside. Curr Opin Crit Care. 2005;11:240–244.

    Article  PubMed  Google Scholar 

  92. Goedhart PT, Khalilzada M, Bezemer R, Merza J, Ince C. Sidestream Dark Field (SDF) imaging: a novel stroboscopic LED ring-based imaging modality for clinical assessment of the microcirculation. Opt Express. 2007;15:15101–15114.

    Article  PubMed  CAS  Google Scholar 

  93. Cortez A, Zito J, Lucas CE, Gerrick SJ. Mechanism of inappropriate polyuria in septic patients. Arch Surg. 1977;112:471–476.

    Article  PubMed  CAS  Google Scholar 

  94. Rady MY, Rivers EP, Nowak RM. Resuscitation of the critically ill in the ED: responses of blood pressure, heart rate, shock index, central venous oxygen saturation, and lactate. Am J Emerg Med. 1996;14:218–225.

    Article  PubMed  CAS  Google Scholar 

  95. Pinsky MR. Targets for resuscitation from shock. Minerva Anestesiol. 2003;69:237–244.

    PubMed  CAS  Google Scholar 

  96. Donati A, Loggi S, Preiser JC, et al. Goal-directed intraoperative therapy reduces morbidity and length of hospital stay in high-risk surgical patients. Chest. 2007;132:1817–1824.

    Article  PubMed  Google Scholar 

  97. Pearse R, Dawson D, Fawcett J, et al. Early goal-directed therapy after major surgery reduces complications and duration of hospital stay. A randomised, controlled trial. Crit Care. 2005;9:R687–R693.

    Article  PubMed  Google Scholar 

  98. Neumar R, Ward KR. Adult resuscitation. In: Marx J, Hockberger R, Walls R, editors. Rosen’s emergency medicine: concepts and clinical practice. St. Louis: Mosby; 2002. p. 64–82.

    Google Scholar 

  99. Fink M, Gunnerson KJ. Shock and Sepsis. In: Sellke F, del Nido P, Swanson S, editors. Sabiston and Spencer surgery of the chest. Philadelphia: Elsevier Saunders; 2005. p. 793–815.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Gunnerson, K.J., Rivers, E.P. (2010). Shock. In: O’Donnell, J.M., Nácul, F.E. (eds) Surgical Intensive Care Medicine. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-77893-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-77893-8_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-77892-1

  • Online ISBN: 978-0-387-77893-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics